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Abstract: This paper reports the multifractal characteristics of lengthy PM10 time series from five
stations in the Greater Athens Area (GAA), Greece. A novel methodology based on the multifractal
detrended fluctuation analysis (MFDFA) is applied to raw and shuffled series in 74 segments in
11 date-periods, previously located, with very strong self-organised critical (SOC) and fractal proper-
ties. The MFDFA identified multifractality in all segments. Generalised and classical Hurst exponents
are in the range 0.8–1.5 and 9–4.5 for the raw and shuffled series, while the multifractal f (a)− a is
within 0.5–1.2 and 0.1–2, respectively. The f (a)− a data are fitted to polynomials to calculate the mul-
tifractal parameters W, FWHM and fmax. While these are bimodal, a new parameter, FWHM/ fmax,
is normally distributed, and due to this, it is employed to locate the important multifractal behaviour
via the FWHM/ fmax outliers. Five date-periods are found. The date-period 8 January 2015 has
extraordinary multifractality for raw and shuffled series for both the AGP and LYK stations. This
date-period is one of the three reported in the most recent combination study. Finally, sliding window
MFDFA evolution plots of all the series are given. The results provide very strong evidence of the
multifractality of the PM10 time series.

Keywords: air pollution; PM10; MFDFA; sliding windows

1. Introduction

When pollutants are released into the atmosphere, they go through a variety of physical
and chemical changes before being deposited on the ground, in bodies of water and in
plants, where they are absorbed by humans and animals [1]. Approximately 90% of the
general population is exposed to high levels of air pollution, raising the burden for chronic
obstructive pulmonary disease, heart failure, stroke, pneumonia and cancer. Air pollution is
a serious health problem with more than four million deaths globally and half a million only
in Europe [2]. Recent publications, e.g., [2–4], along with many others from the previous
two decades, highlight the enormous health impact of air pollution, recognising the serious
concerns both for adults and children, male and female. Nowadays, the concerns grow
because PM is also found to affect the dispersion of COVID-19 and the morbidity within
the population. Specifically, Pegoraro et al. [5] suggested a positive linkage between
PM10 concentrations and the probability of developing pneumonia due to COVID-19 in
Italy and that new measures to control air pollution are becoming increasingly important.
Solimini et al. [6] identified a substantial relationship between COVID-19 instances and air
pollution, suggesting a probable causal link between PM levels and COVID-19 incidence.
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They suggested that if the pollution level increases by 10 µg/m3, the number of COVID-19
cases within 14 days increases by 8.1% (95% CI 5.4%, 10.5%) for PM2.5 and by 11.5% (95% CI
7.8%, 14.9%) for PM10. In addition, Sanduijav et al. [7] reported that the higher exposures
to PM2.5, of people infected with COVID-19, yield to more hospitalisations.

The above findings demonstrate the need for the precise analysis of fluctuations in air
pollution series, particularly in large cities. The related literature includes the use of neural
networks [8], statistics [9] and wavelets [10]. The experience in Greece is significant [11–15].
Nevertheless, the successful analysis of PM concentrations also requires knowledge of
the fractal and self-organised critical (SOC) trends that are also present in time series.
For example, Dong et al. [16], by utilising the detrended fluctuation analysis (DFA) and
MFDFA in PM10 and PM2.5 time series, observed that both series were self-affine, had
long-memory patterns and exhibited multifractal features. Varotsos et al. [17], by studying
deseasonalised O3 concentration time series, observed the existence of power-law associ-
ations and the persistent behaviour, with lags between 1 week and 5 years. In Shanghai,
China, Kai et al. [18] found two different power laws in three time series of air pollution.
They suggested that their finding indicates separate self-organised critical (SOC) states.
The DFA and multifractals were used by Liu et al. [19] to explore whether the temporal
changes in the SO2, NO2 and PM10 concentrations in Shanghai, China, have non-linear
behaviour. They concluded that air pollution can be explained as an SOC process. They
also observed the different SOC behaviour of the PM10, NO2 and SO2 time series, and they
suggested that this was due to differences in the corresponding power laws. By analysing
one-year data using monofractals, Lee at al. [20] observed that the hourly averages of O3
time series are invariant of scales and that the box dimension function decreased over the
year. By using a Rescaled-Range (R/S) analysis, Windsor and Toumi [21] found highly
persistent hourly ozone concentration series which extended up to 400 days. By the same
method, Weng et al. [22] observed that the maximum deseasonalised ozone concentrations
at the ground level in the south of Taiwan are persistent and exhibit fractal and long-lasting
characteristics. Chelani [23] utilised the chaotic systems theory to build artificial neural
networks models aiming to predict PM10 concentration variations in a certain residential
spot of Delhi, India. The same author analysed, for Delhi, India, the persistent behaviour
of hourly ozone concentrations at the ground level [24] and the extreme concentrations of
NO2, O3 and CO [25]. In addition, Xue et al. [26] expressed the view that the power-law
spectral fractal analysis, DFA, R/S and power spectrum analysis are advanced methods for
describing the periodicity, the distribution and the hidden trends of air pollutant concentra-
tions. Yuval and Broday [27] utilised the continuous wavelet transform for the analysis of
fractals of air pollution time series. They observed that, in the short scale, air pollutants
and meteorological variables are consistently predicted. Panchecho et al. [28] compared the
pollutant dispersion in a Gaussian model, using the wind rose from the city of Andacollo
(Chile), with a model based on the chaos theory. The chaotic approximation showed that
entropies of meteorological variables act on that of the pollutant, causing an asymptotic
decay according to the loss of persistence. Finally, Du et al. [29] utilised machine learn-
ing algorithms with a two-stage decomposition embedding sample entropy technique to
achieve a better forecasting accuracy of PM10 and PM2.5 concentrations.

To date, a variety of methodologies have been employed to study the fractal and SOC
concentration inter-change phases that occur in the PM10 pollution series in the GAA, Greece.
Four fractal techniques (the fractal dimension (FD) analysis with the methods of Higuchi,
Katz and Sevcik and an R/S analysis) were reported in Nikolopoulos et al. [30]. Two fractal
techniques (the DFA and R/S analysis) were reported in Nikolopoulos et al. [31], but the
most important part of this publication was the combined use of thirteen different fractal
techniques. The most important approach, however, was given in the very recent paper [32],
where the combined statistical and SOC analysis of the PM 10 system was reported. In
this paper, two measures of entropy were used, namely the Boltzmann (BE) and Tsallis
entropy (TE), via sliding windows and symbolic dynamics. The great importance however
is that this paper utilised statistical methods to outline the non-statistical periods of the
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PM10 system and hence then located the periods with enhanced evidence of SOC trends.
Several date-periods (two-month windows with one corresponding date) were found with
non-statistical behaviour and simultaneously BE and TE values below the critical thresholds.
Most importantly, 11 date-periods were common between at least three different monitoring
stations. The present paper initiates from this significant last finding. It starts from these
11 common date-periods and applies the MFDFA in order to investigate if multifractal
characteristics are also present. This is very important because multifractals can outline
the exact contribution of each small micro-scale in the PM10 system. The total dataset of
the main core of this paper comprises the 37 different two-month time series (date-periods)
reported in the above publication [32]. The MFDFA is applied to the raw (R) and shuffled
(S) periods of these 37 periods, yielding to a total of 74 date-periods for the present study.
As a last step in the related analysis, the MFDFA via sliding windows is employed to
study the whole time series of all the stations. Through this holistic approach, a variety of
MFDFA results are presented which add new aspects regarding the fractal properties of PM10
systems. This paper is expected to also provide new, novel viewpoints to the PM10 variation
knowledge base.

The paper is organised as follows. At first, the experimental techniques are described.
Then, the mathematical aspects of the MFDFA are given. The results section presents
several MFDFA results, including the generalised Hurst exponents. Then, it presents a table
with a full overview of the MFDFA findings for all the analysed two-month time series. A
statistical analysis is reported for the multifractal characteristics. Via the outlier analysis,
the date-periods of extraordinary multifractal behaviour are reported. Finally, the sliding
window MFDFA results are given. The implications and further views are discussed.

2. Experimental Methods
Area of Study

GAA is a vast metropolitan area in the Attica peninsula that comprises the cities of
Athens and Piraeus (the port), as well as its suburbs. It mostly covers the Attica basin and
is included within the administrative limits of five Attica Region Regional Units: Central,
South, North and West Sectors of Athens and Piraeus. According to the Hellenic National
Census of 2011, GAA has a population of around 2.6 million people, accounting for 69% of
the entire population of the Attica Region [33]. The GAA basin is encircled by mountain
peaks. More precisely, the mountain Egaleo (468 m a.s.l.) is located on the west side of GAA.
Parnitha mountain (1413 m a.s.l.) is located on the north north-west side of GAA, Penteli
mountain (1109 m a.s.l.) on the north north-east side, and Ymittos mountain (1026 m a.s.l.)
on the east side. The GAA’s lone opening is in the south, on the coast of the Saronic Gulf,
which is part of the Aegean Sea. The GAA has a moderate climate that is similar to that
of the Mediterranean. Even in the middle of winter, bright days are common. Rainfall is
mostly from October to April; however, rainfall is generally modest throughout the year,
averaging 400–450 mm. The mean monthly low temperature is about 7.0 ◦C, while the
mean monthly maximum temperature is around 31.8 ◦C. Finally, the prevailing winds are
from the south, resulting in the surrounding mountains coexisting with a substantial air
pollution problem due to poor air circulation and air pollutants dispersion [34].

The PM10 concentrations are provided by five separate air quality monitoring stations
positioned in GAA. These stations are part of a network that monitors air pollution and is
run by the Hellenic Ministry of Environment and Energy (HMEE). PM10 concentrations are
continuously measured, via β radiation absorption, by automated analysers which deliver
approximately one value of PM10 concentration every minute. The mean hourly PM10
concentrations are then determined by microprocessors coupled to automatic analysers
and are transmitted to the HMME’s server through telephone lines. In this way, the
continuous monitoring of PM10 levels at each station’s location is achieved. From the
recorded hourly concentrations, the mean daily PM10 concentrations are calculated as in
related papers [30–32]. These average daily PM10 concentrations are employed hereafter
in this study. The total length of the series is 17 years. This makes the dataset lengthy
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and, hence, proper for study with MFDFA. PM5 concentration measurements of HMEE
started only during the last years and, for this reason, are not yet adequate, either for
MFDFA or comparisons with the PM10 ones. On the other hand, O3 is a photochemically
controlled pollutant and, therefore, has completely different behaviour when compared to
PM10 pollutants. For this reason, the study of O3 is left for a different study.

The map of the GAA and the locations of the five air pollution monitoring stations
are depicted in Figure 1. The characteristics of the five investigated stations are shown in
Table 1.

Figure 1. The map of the GAA and the location of the five air pollution monitoring stations.

Table 1. The examined air pollution monitoring stations and their characteristics. Abbr. means
abbreviation, Alt. means altitude above sea level (a.s.l.) and D.C. means data completeness.

Monitoring Station Abbr. Longitude Latitude Alt. (m) Characterisation D.C.

Aristotelous ARI 23°43′39′′ 37°59′16′′ 75 Urban-Traffic 85.8%
Lykovrissi LYK 23°47′19′′ 38°04′04′′ 234 Suburban-Background 89.2%
Maroussi MAR 23°47′14′′ 38°01′51′′ 170 Urban-Traffic 82.5%
Agia Paraskevi AGP 23°49′09′′ 37°59′42′′ 290 Suburban-Background 88.7%
Thrakomakedones THR 23°45′29′′ 38°08′36′′ 550 Suburban-Background 77.2%

The altitude of the stations in Table 1, in association with their proximity to the
centre of Athens, differentiates the stations in Urban-Traffic and Suburban-Background.
Urban-Traffic (UT) station areas are influenced directly by the traffic and generally by
vehicles emissions. Suburban-Background (SB) station areas are influenced by all types
of neighbouring emissions. In these kinds of monitoring stations, the air pollution is
mainly due to pollutants transport from urban activities [15]. It is important to note also
that the data compactness is different between the various stations. This means that the
total length of successive measurements (e.g., non-zero values) is different and, hence,
the length of the series of each station is also different. The reader should note here that
an integrated statistical analysis of the data related to Table 1 has been implemented in
a recent publication [15], whereas other statistical calculations are also given in another
publication [32].

3. Mathematical Methods
3.1. Multifractal Detrended Fluctuation Analysis

Both monofractal and multifractal patterns have the significant property so that they
do not change formation when the scale is altered. As a result, each part of a monofractal or
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multifractal is a magnified or compressed imitation of the whole [35–37]. While monofrac-
tals can be outlined by a single power law, multifractals necessitate a collection of power
laws to adequately define them because they display both spatial and temporal variations,
occasional fluctuations and diverging long-range correlations. MFDFA is the most used
method for detecting multifractals. This approach is extremely powerful and reliable, with
applications ranging from economics [38], mathematics and two-dimensional data, such
as maps and photographs, to one-dimensional, discrete or continuous, time series [35].
MFDFA has been successfully used in pre-seismic time series in various articles [35,39–43].
The concept is that there are circumstances when the scaling characteristics of the underly-
ing system are different in different portions of it, necessitating the use of distinct scaling
exponents to describe each component. Because complex air pollution systems can generate
scale-invariant multifractal time series comparable to those seen in pre-seismic nature, it is
critical that MFDA is used in these time series as well.

Application of MFDFA

MFDFA is used to recognise the scaling of the q-th order moments dependency of the
time series under inquiry. The MFDFA algorithm is made up of the seven stages below [36]:

1. If zι is a time series of length N and i = 1, 2, 3. . .N, the following mathematical
calculation is used to compute the time series’ mean value :

zavg =
1
N

N

∑
k=1

zκ (1)

2. The trajectory or integrated profile y(i) is obtained, if the time series zι comprises
increments of a random walk process around the average value

y(i) =
i

∑
k=1

[
zκ − zavg

]
(2)

where k = 1, 2 . . . N. The reader should note that by integrating the time series, the
decrease in measurement noise in the data can be achieved.

3. The time series is separated into Ns non-overlapping bins, with Ns being the integer

component of
(

N
s

)
and s being the time span. A small portion of the time series is

not handled because N is not necessarily an integer multiple of s, and as a result, a
short part of the time series is not processed. To incorporate this, the same operation
is performed starting from the opposite end. In this manner, Ns bins are obtained,
yielding a better degree of estimation accuracy.

4. The data in each bin are fitted to a polynomial, and the variance in each bin, υ,
υ = 1, 2, . . . , Ns and υ = Ns + 1, . . . , is used to determine the local trend in each of
the two Ns bins. The following equation is used to calculate the square fluctuations

F2(s, υ) =
1
s

s

∑
i=1
{y[(υ− 1)s + i]− yυ(i)}2 (3)

where yυ is the polynomial fit of the profile y(i), segment υ. Similarly, in each seg-
ment’s υ in the backward direction process, the square fluctuations are as follows:

F2(s, υ) =
1
s

s

∑
i=1
{y[N − (υ− Ns)s + i]− yυ(i)}2 (4)

5. The q− th order fluctuation function is derived by averaging all the segments after
the series has been detrended, as shown in the equation below
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Fq(s) =

{
1

2Ns

2Ns

∑
υ=1

[
F2(s, υ)

] q
2

} 1
q

(5)

where the index 1
q is a variable when q 6= 0, with q real. Because of the diverging

exponents, the selection q = 0 uses a logarithmic averaging approach:

F0(s) = exp

{
1

4Ns

2Ns

∑
υ=1

ln
[

F2(s, υ)
]}
≈sh(0) (6)

Fluctuation Fq(s) is only defined for s≥m + 2. The typical DFA procedure is obtained
for q = 2. The main goal is to determine the scaling behaviour and estimate the
generalised fluctuation functions for various order q values and time spans s. If the
time series zi contains long-range power-law correlations, Fq(s) rises as a power law
for long values of scale s, as shown in equation (7):

Fq(s)∼sh(q) (7)

6. The scaling exponent h(q), also known as the generalised Hurst exponent, is estimated
in the last phase. For each value of q, the log–log plot of Fq(s) vs. s is used to
estimate it. The Hurst exponent is equal to h(q = 2) for q = 2, and the associated
logarithmic plot is the usual DFA diagram [35,36]. h(q), which is independent of
q, characterises monofractal time series with compact support. Because tiny and
large variations scale differently, h(q) will be very dependent on q. h(q) describes
the scaling behaviour of segments with small fluctuations (small deviations from
the corresponding fit) for negative q, whereas h(q) describes the scaling behaviour
of segments with large fluctuations (large deviations from the corresponding fit)
for positive q (large deviations from the corresponding fit).The generalised Hurst
exponent h(q) of MFDFA is related with classical scaling exponent τ(q) by the relation

τ(q) = q(h(q))− 1 (8)

7. A monofractal time series with long-range correlation is characterised by linear asso-
ciation between exponent τ(q) and q, namely there is a single Hurst exponent. On the
other hand, multifractal time series have non-linear association between τ(q) and q,
and therefore there exist multiple Hurst exponents. Furthermore, the multifractality
of the time series can be characterised by deriving the multifractal spectrum f (α),
which is related to τ(q) by a Legendre transform α = (dτ)/(dq) and f (α) = qα− τ(q),
where α is the singularity strength or Holder exponent and f (α) specifies the dimen-
sion of the subset series, which is characterised by α. The association between α and
f (α) related to h(q) is

α = h(q) + qh′(q) (9)

f (α) = q[α− h(q)]− 1 (10)

8. The singularity spectrum is used to quantify the time series’ long-range correlation
features. The width of a spectrum indicates the range of exponents and is sometimes
referred to as the degree of fractality. The spectrum is fitted to a quadratic function
at the point of its maximum at α0 to enable quantitative description of multifractal
spectra. Extrapolating the fitted curve to zero can be used to calculate the spectrum’s
width W. The richer the multifractality in the dataset [39–42], the wider the width.

W = amax − amin (11)

The multifractal spectrum f (α) of the subset series can be obtained from Equations (9)
and (10).
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4. Results and Discussion

As mentioned in Section 1, this paper initiates from the 11 different date-periods
(two-month windows) that are reported in Nikolopoulos et al. [32], for which the PM10
generating system in the GAA is (a) out of stochastic behaviour, (b) has BE and TE values
below the critical thresholds and (c) periods a and b are common between at least three
different monitoring stations. The underlying idea is that where the system is out of
stochastic behaviour and shows, simultaneously, SOC traces from recordings from three
or more stations, it has a noteworthy possibility of also having multifractal behaviour
because hidden SOC traces and fractal patterns are strongly associated, according to
several publications [44–55]. At first, the identification of the SOC traces in the PM10
concentrations is a very important finding. A system in an SOC state is (a) critical and
(b) exhibits self-organisation. Both properties are not found in stochastic systems, e.g., the
typical meteorological alteration sources, causes of usual variations in environmental radon,
sources of trivial disturbances of urban air pollution and, consequently, not addressed in
Markovian systems, i.e., systems for which any next state is only dependent on a current
state and independent of anything in the past. SOC systems have the property to self-
organise their states, which means that a current self-organised state not only refers to
the system’s past but determines both the current state and, most importantly, the future
states. This is because the inner dynamics of self-organisation yield to the formation of
patterns that correspond to solutions generated within a non-solution background, and
most significantly, these patterns follow the next states of the system in a long-lasting
manner. Only when the system escapes from these self-formed patterns may it return to
stochastic–deterministic behaviour. Otherwise, it remains in self-organised states which
are critical, meaning that they are described by the physics of critical processes. Therefore,
the above 11 date-periods of PM10 with SOC traces correspond to very different phases:
definitely, not deterministic, stochastic or statistical. Moreover, in some of these date-
periods, as well as in others [30–32], the PM10 system of the GAA also exhibits fractal
traces. In these fractal states, roughly interpreting, any part of the series is an imitation of
a greater part or, more specifically, any small part of the spatial distribution of the PM10
pollutants is an imitation of a greater part. This is because fractals are combined in space
and time and, as a result, the fractal properties may be observed both in space and time,
or, alternatively, the PM10 system determines both space and time. Most significantly,
however, the PM10 system is non-Markovian and its current state is determined not only
by its past (deterministic nature) but also governs its future in a solution bifurcation path
where the past, present and future are linked in a long-term manner. All the above have
been addressed not by the PM10 data of one station but commonly (in terms of time) of
at least three stations. The above facts are significant for the reader to outline the terms
SOC, fractal and long memory and to delineate the importance of the previous related
publications for the GAA [30–32] and of all the other related publications given in Section 1.
This delineation of the framework of the previous publications is important for the readers
because it emphasises the reasons why the search of the above periods with multifractals is
important and what is the novelty of the approach of this paper.

After the above, Table 2 presents these 11 two-month date-periods of
Nikolopoulos et al. [32]. As can be observed, there is a total of 37 different time se-
ries. As mentioned in Section 1, the analysis is implemented in raw and shuffled se-
ries and, therefore, the total dataset comprises 74 series. One date-period series from
Nikolopoulos et al. [32] (2015-02-02, THR station) was problematic with the MFDFA tech-
nique, and for this reason, it is not included in this study. The reader should note that,
as in the previous papers, the reported date-periods are the initial date-periods of every
two-month window and are determined after a sliding window analysis of step one, namely
covering all the actual date-periods (but one) of the 17-year series. This is also a non-trivial
approach in the related analysis for urban air pollution series as can be observed from
the publications given in Section 1. With all the above views, the analysis of this paper is
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expected to add new aspects to the lengthy 17-year PM10 time series of the previous studies
and to provide new viewpoints to the PM10 variation knowledge base.

Table 2. Date-periods of the 11 areas (date-periods) of Nikolopoulos et al. [32] that simultaneously
(a) are out of stochastic behaviour, (b) BE is below 2.0 and TE below 1.18 and (c) points a and b are
commonly found by 3 or more monitoring stations of Table 1. i/i is the index value of the common
date-periods.

i/i Date Monitoring Stations

1. 25 March 2007 AGP, ARI, MAR
2. 28 July 2007 AGP,LYME,MAR

3. 4 April 2009 AGP, ARI,LYK, THR
4. 6 April 2009 AGP, ARI, MAR, THR

5. 7 June 2010 AGP, LYK, MAR

6. 26 June 2014 AGP,ARI,LYK,MAR
7. 27 June 2014 AGP,ARI,LYK,MAR

8. 8 January 2015 AGP,LYK,MAR
9. 2 February 2015 AGP, MAR
10. 6 February 2015 AGP, ARI,MAR,THR

11. 7 July 2016 AGP, ARI, THR

Figure 2 presents a typical curve of the variation in the generalised Hurst exponent,
h(q), with parameter q. The example case of Figure 2 corresponds to a two-month window
with the start date 28 July 2007 and refers to the data from the AGP station. The reader
may recall from Table 1 that the AGP is a Suburban-Background station. As mentioned
in Section 1 and in the previous related papers for the GAA [30–32], this two-month
window is typical for a fractal and entropy analysis of the PM10 time series of the GAA
with the sliding window technique. Figure 2 is quite representative of the variation in
h(q) versus q. The slight differences between the segments of all the other date-periods
occur only in the value range of h(q). It is very interesting that the curve of Figure 2 is
similar to the corresponding plots of the generalised Hurst exponents reported in the other
related publications [36,41,56] and, especially, regarding the air pollution series [57] and
PM series [26]. The reader may also recall that h(q = 2) is the classical Hurst exponent and
the corresponding logarithmic plot is the typical DFA diagram [35,36,36]. As emphasised
already, the DFA and Hurst exponent analysis through the R/S (case q = 2) has been
implemented already [30,31]. According to the reported results in these publications, the
special case q = 2 is significant in terms of the analysis of the PM10 time series in the GAA,
Greece. The reader should note in relation that the case q = 2 refers to a monofractal
analysis. When multifractals are employed, importantly, the generalised Hurst exponent
(h(q)) shows a dependency on q. This implies that there is different scaling behaviour
between the small and the large fluctuations. The reader should emphasise in reference
to Figure 2 that the negative q values correspond to the small fluctuations, whereas the
positive, to the large fluctuations. The non-symmetric curve of Figure 2 indicates a larger
intensity of the small fluctuations in comparison to the large ones. Indeed, from q = −5 to
q = 0, the h(q) values fall from approximately 1.5 to 1.2 (0.3 change), whereas from q = 0
to q = 3, the fall is from 1.2 to about 1 and then a plateau up to q = 5. These findings
imply noteworthy multifractal behaviour. Because this was observed in all the cases
studied, it can be concluded that the corresponding series of this paper exhibit multifractal
patterns. This finding justifies a posteriori the usefulness of the multifractal approach,
without cancelling the results of the monofractal analysis. In the opinion of the authors,
the monofractal analysis provides an average view of the related phenomena; however,
simultaneously, it is very robust in discriminating areas that may be fractal or with long-
lasting interactions and, therefore, areas that are, surely, non-stochastic. Moreover, in the
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previous publications for the GAA, the results of the monofractal analysis were combined
together (from 2 up to 13 different methods), and in this manner, very strong evidence was
given regarding the underlying fractal and long-memory mechanisms. This is an advantage
of the monofractal analysis of the PM10 time series in the GAA, and importantly, the novel
monofractal combination approach was also checked in pre-seismic series [58]. In addition,
the identified multifractality is not a priori associated with the SOC patterns identified in
the PM10 time series in Nikolopoulos et al. [32]. This is why this paper initiated from the
SOC periods of Table 2. The SOC periods may, practically and not theoretically, associate
with fractality and, possibly, multifractality. In the opinion of the authors, this approach is
the best to investigate the multifractal behaviour of lengthy data.

Figure 2. Generalised Hurst exponent (h(q)) versus qs for the AGP monitoring station and date
28 July 2007 (case i/i = 2 of Table 2).

As mentioned in Section 3, the generalised Hurst exponent h(q) of the MFDFA of
the series in Figure 2 is related to the classical scaling exponent τ(q), according to Equa-
tion (8). Figure 3 presents the variation in the classical scaling exponent τ(q) with q. The
indicated polynomial trendline corresponds to a polynomial of order 2 with equation
τ(q) = −0.059 · q2 + 1.17 · q− 1.09 and adjusted R2 = 0.998. At a first glance, this non-
linear association implies that there is multifractality in the corresponding two-month
window and hence multiple classical Hurst exponents describe the underlying environ-
mental system. However, a closer observation indicates a very small non-linearity coef-
ficient (0.059). Under this view, the linear fit of the corresponding relation shows that
τ(q) = 1.19 · q− 1.17, with the square of the square of the Spearman’s correlation coeffi-
cient R2 = 0.986, makes the linear approximation valid as well. This is a very important fact
because it indicates, additionally to the arguments given in the previous paragraph, that
the papers for PM10 in the GAA that were based on classical monofractal approximations
(via the R/S analysis, DFA and fractal dimension analysis) provide solid aspects of the
problem. Under a different viewpoint, as mentioned, the monofractal approximation of a
multifractal system flattens the multifractal effects to an average coefficient of fractality.
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Figure 3. Classical scaling exponent τ(q) with q for the AGP monitoring station and date 28 July 2007
(case i/i = 3 of Table 2).

Characteristic example cases of typical multifractal plots of f (α) versus α are given
in Figures 4–6. It is very interesting that these multifractal plots are similar to those
reported in other related publications [36,39–42,56], as well as in environmental pollution
series [16,19,26,57]. It should be emphasised here that the sources of multifractality in the
time series of these figures may originate because of the (a) existence of a broad probability
function; (b) the different contributions of the small and large fluctuations to the total
long-range correlations; and (c) a combination of both (a) and (b) [40,41]. The nature
of the different contributions of the small and large fluctuations can be investigated by
randomly shuffling the original data [36,36]. The process of shuffling removes all the long-
range correlations present in the time series because the data points are rearranged in a
random order. Importantly, if the shuffled data series still exhibit multifractal characteristics
after the removal of the long-range correlations, then the multifractality of the underlying
environmental system is due to a broad probability density function [36,36]. In this case, the
generalised Hurst exponents of the original and shuffled time series will be, more or less,
identical. As can be observed from Figures 4–6, both raw and shuffled time series exhibit
the multifractal behaviour of various maxima and widths and, additionally, shifted one
to the other. It is significant that the shuffled series retain the multifractal spectrum, a fact
that indicates (as aforementioned) that the source of multifractality of the PM10-generating
system in the GAA is the existence of a broad probability function. The width of the
spectrum indicates the degree of multifractality in the time-series data [16,19,26,39–42,57].
In these publications, the maximum value and width of the multifractal spectrum have
been employed as a measure of multifractality and criticality of the multifractal behaviour.
In order to calculate the differences in the characteristics of the multifractal associations
between f (α) and α, the next mathematical procedure was followed:

1. The derivatives of the polynomial trendlines of every association f (α) and α (i.e., the
trendlines similar to the dotted red and blue lines in Figures 4–6 and here symbolised
as y = A2 · α2 + A1 · α + A0) were set equal to zero. Trivially, through this, the
α value corresponding to the maximum is calculated (here symbolised as αmax) as
αmax = − A1

2·A2
.

2. The maximum value of f (α) (symbolised as fmax) is calculated, trivially, as
fmax = A2 · α2 + A1 · α + A0.

3. Thereafter, the half-maximum (HM) spectrum value is calculated as yHM = fmax
2

where y = A2 · α2 + A1 · α + A0 is the corresponding trendline.
4. Trivially, by solving the second-order polynomial equation A2 · α2 + A1 · α+ A0 = yHM,

the two solutions for α (α1, α2) are calculated.
5. The full width at half maximum (FWHM) is calculated as FWHM = |α2 − α1|.
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Figure 4. Multifractal plot of f (α) versus α for the THR monitoring station and date 7 July 2016 (case
i/i = 11 of Table 2). Blue dots indicate the raw two-month series and the red dots the shuffled series.
The dotted trendlines refer to fitted polynomial curves of order 2. For details, the reader should
refer in-text.

Figure 5. Multifractal plot of f (α) versus α for the THR monitoring station and date 4 April 2009
(case i/i = 10 of Table 2). Blue dots indicate the raw two-month series and the red dots the shuffled
series. The dotted trendlines refer to fitted polynomial curves of order 2. For details, the reader
should refer in-text.

Figure 6. Multifractal plot of f (α) versus α for the THR monitoring station and date 6 February 2015
(case i/i = 11 of Table 2). Blue dots indicate the raw two-month series and the red dots the shuffled
series. The dotted trendlines refer to fitted polynomial curves of order 2. For details, the reader
should refer in text.
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Table 3 presents the MFDFA results according to the methodology described above.
In the opinion of the authors, the parameters fmax and FWHM are the most informative
measures of the multifractal characteristics of the two-month windows of Table 3. Indeed,
both estimate the maximum value and width of the multifractal spectrum. Meanwhile,
simultaneously, they are mathematically calculated from the fitted curves of the multifractal
associations of f (α) versus α. Figures 7 and 8 present the corresponding value distributions
of fmax and FWHM of Table 3. What is very interesting is that all f (α)-α curves have
excellent fitting because, in all the cases, the R2 values are quite higher than the critical
value of 0.95, which has been utilised in several publications of the team. This interesting
fact, significantly, is independent from the curve shape of f (α)-α. As a further analysis of
the FWHM data of Figure 8, Figure 9 presents the distribution of the W values derived
according to Equation (11). The reader may recall, in association, that the parameter W
has been utilised by researchers as a measure of multifractality [39,40,56] in the same
manner as FWHM is suggested to be used here. Interestingly, as long as the corresponding
polynomial curves of f (α) versus α are not skewed, it is expected that the parameters
FWHM and W are proportional, at least a priori. It is, therefore, crucial to check whether a
linear association between FWHM and W actually exists. Towards this, a linear model was
built in R, between FWHM and W, for both raw and shuffled series. For the raw series,
the slope is (2.62 ± 0.8) with Student’s t = 3.290 (p = 0.00234) and F = 10.82 (p = 00238).
For the shuffled series, the slope is (0.58 ± 0.07) with Student’s t = 8.069 (p = 2.09 × 10−9)
and F = 65.11 (p = 2.086 × 10−9). An excellent linear association is observed in both cases.
The higher (t, F) values of the shuffled series (and, consequently, lower corresponding p
values) can be attributed to the process of shuffling, which, more or less, provides series,
unbiased from potential sources of an additional disturbance. It can be supported, therefore,
that both FWHM and W are good measures of multifractal broadening, with the FWHM
parameter to be advantageous due to its strict calculation. For this reason, it is selected
in the following as the appropriate broadening measure. In addition, from the view of R
statistical density plots, all plots are bimodal, however mainly with a central main peak and
a very suppressed second peak. As expected from the density plots, FWHM and W are not
normally distributed. Indeed, the outputs of the R Shapiro normality test show probabilities
of p = 1.128 × 10−11 for the raw data FWHM values and p = 0.0004358 for the shuffled data
FWHM values, while p = 8.795 × 10−11 for the raw data W values and p = 0.001317 for the
shuffled data W values. All the p values are well below the critical value of p = 0.05 and
therefore the hypothesis of a normal distribution is rejected. The results are also verified
by the R qq plots with deviations from the limits of normality for FWHM and W above 1
in all cases. The average FWHM equals 1.586 with the population’s standard deviation of
3.065 for the raw series and 0.770 with the population’s standard deviation of 0.346 for the
shuffled series. As in the case of the linear model in R, the shuffling process produces an
FWHM of a significantly lower deviation. The reader should note that, in both cases, the
average and standard deviation are not representative quantities and hence give only raw
outlines. On the other hand, the R statistical density plots of parameter fmax are five-modal;
however, the main peak is more than 10 times higher from all the other four modes. The
probabilities of the R Shapiro normality test are 3.958 × 10−11 for the raw series W values
and 2.329 × 10−11 for the shuffled series W values; namely, both are much lower than the
p = 0.95 threshold. The average fmax equals 1.481 with the population’s standard deviation
of 1.360 for the raw series and average 1.333 with the population’s standard deviation of
1.012 for the shuffled series.
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Figure 7. Scatter plot of fmax values versus the i/i value of Table 2. Blue dots indicate the raw
two-month series and the red dots the shuffled series.

Figure 8. Scatter plot of FWHM values versus the i/i value of Table 2. Blue dots indicate the raw
two-month series and the red dots the shuffled series.

Figure 9. Scatter plot of ranges W (Equation (11)) versus the i/i value of Table 2. Blue dots indicate
the raw two-month series and the red dots the shuffled series.
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Table 3. MFDFA results of the 11 date-periods of Table 2. In these date-periods, according to
Nikolopoulos et al. [32], the following facts happen simultaneously: (a) the PM10 is out of stochastic
behaviour, (b) BE is below 2.0 and TE below 1.18 and (c) points a and b are commonly found by 3 or
more monitoring stations of Table 1. For calculations of FWHM and fmax, the reader should refer to
text. R2 is the square of the adjusted coefficient of each fit.

Date Station Raw Shuffled

R2 fmax FWHM FWHM/
fmax

R2 fmax FWHM FWHM/
fmax

25 March 2007 AGP 0.990 1.080 1.000 0.926 0.993 1.43 0.965 0.673
ARI 0.999 1.053 0.366 0.347 0.999 1.01 0.45 0.442
MAR 0.997 1.022 0.562 0.550 0.997 1.02 0.525 0.516

28 July 2007 AGP 0.992 1.05 0.768 0.730 0.997 1.01 0.483 0.477
LYK 0.994 1.05 0.771 0.734 0.997 1.01 0.435 0.431
MAR 0.994 1.06 0.834 0.790 0.967 1.02 0.568 0.556

4 April 2009 AGP 0.995 1.039 0.706 0.679 0.9973 1.08 0.417 0.385
ARI 0.991 1.073 1.019 0.950 0.9976 0.78 0.476 0.608
LYK 0.997 1.017 0.485 0.477 0.9994 1.01 0.310 0.308
THR 0.993 1.025 0.635 0.620 0.995 1.03 0.585 0.570

6 April 2009 AGP 0.990 0.759 0.811 1.068 0.996 3.15 1.159 0.368
ARI 0.965 4.681 10.440 2.230 0.998 1.02 0.493 0.486
MAR 0.991 1.075 0.969 0.901 0.9978 2.56 0.771 0.301
THR 0.992 1.013 0.544 0.537 0.9954 1.02 0.583 0.569

6 July 2010 AGP 0.987 1.098 0.965 0.880 0.9938 1.02 0.498 0.489
LYK 0.999 0.988 0.555 0.743 0.9924 1.00 0.549 0.550
MAR 0.995 1.039 1.055 1.068 0.9967 1.26 0.720 0.570

26 June 2014 AGP 0.993 1.039 0.763 0.734 0.9899 1.06 0.887 0.834
ARI 0.992 1.699 0.646 0.380 0.9937 1.06 0.832 0.787
LYK 0.993 1.046 0.841 0.804 0.9975 1.02 0.551 0.539
MAR 0.997 1.016 0.505 0.497 0.9907 1.03 0.651 0.632

27 June 2014 AGP 0.995 1.042 0.729 0.699 0.9871 1.03 0.630 0.613
ARI 0.993 1.040 0.690 0.664 0.9975 1.03 0.612 0.596
LYK 0.994 1.034 0.679 0.656 0.9963 2.12 0.967 0.456
MAR 0.997 1.019 0.502 0.493 0.9967 1.02 0.551 0.539

8 January 2015 AGP 0.985 1.246 1.964 1.576 0.9829 1.21 1.860 1.535
LYK 0.985 1.195 1.755 1.469 0.9801 1.16 1.538 1.328
MAR 0.982 1.141 1.415 1.240 0.9927 6.68 1.533 0.230

2 February 2015 AGP 0.990 1.092 1.044 0.956 0.998 1.01 0.965 0.958
MAR 0.994 1.027 0.696 0.677 0.9893 1.08 1.065 0.987

6 February 2015 AGP 0.988 1.114 1.205 1.082 0.987 1.10 1.084 0.985
ARI 0.993 1.035 0.665 0.643 0.993 1.05 0.831 0.789
MAR 0.991 5.789 2.055 0.355 0.9939 1.03 0.728 0.709
THR 0.969 7.099 17.005 2.395 0.9941 1.03 0.601 0.586

7 July 2016 AGP 0.993 1.052 0.824 0.783 0.9929 1.06 0.887 0.835
ARI 0.995 1.039 0.684 0.659 0.9973 1.02 0.550 0.538
THR 0.990 1.921 1.540 0.802 0.9918 1.08 1.197 1.110

Figure 10 presents the distribution of the FWHM/ fmax values of Table 3 while
Figures 11 and 12 present the qq normality plots of the FWHM/ fmax values for the raw and
shuffled series, respectively. According to Figure 11, five values are outside the normality
limits, and these are the values with an FWHM/ fmax > 1.2. For the case of Figure 12, the
cut-off normality limit is 1.1, and outside the normality limits are three values with an
FWHM/ fmax > 1.1. Table 4 presents the date-periods with the multifractal characteristics
out of the normality limits. The reader should focus on the fact that in these date-periods,
the following are valid: (a) the PM10 system is out of stochastic behaviour; (b) the BE is
below 2.0 and the TE is below 1.18; (c) points a and b are commonly found by three or
more monitoring stations of Table 1; and (d) FWHM/ fmax > 1.2 for the raw series and
FWHM/ fmax > 1.1 for the shuffled series. It is very important to emphasise that during
these date-periods, the PM10 system is well away from randomness, exhibits SOC traces,
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has fractal trends and shows extraordinary multifractal behaviour. Therefore, in these
date-periods, the critical and SOC and multifractal evidence is very rigid. Very importantly,
in the date-period 8 January 2015, the FWHM/ fmax is out of all the thresholds, simultane-
ously, for the raw and shuffled series for both the AGP and LYK stations. Most significantly,
the above date-period of 8 January 2015 has been reported in Nikolopoulos et al. [32] as one
of the three most significant date-periods where the PM10 system is out of any threshold
and, therefore, the scientific justifications for the combined fractal, SOC and multifractal
trends are of the highest value. The reader should reflect on this last finding of this analysis.
The combined facts coincided with the previous publications fully for one date-period and
the data of one station. The background analysis however employed the fractal and critical
behaviour of the data of other stations and of three stations in combination. Such data have
been presented and emphasised.

Figure 10. Scatter plot of FWHM/ fmax versus the i/i value of Table 2. Blue dots indicate the raw
two-month series and the red dots the shuffled series.

Figure 11. QQ nomality plot of FWHM/ fmax values of Table 3 for the raw time series.

In many parts of this paper, the viewpoint of the authors regarding the fractal, SOC
and multifractal behaviour of the PM10 system of the GAA has been expressed under
various different aspects so as to stress on the main fact: A single finding of a fractal, SOC
or multifractal behaviour is significant, but only through a combination of many different
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techniques may incontrovertible evidence be supported. All the partial multifractal data are
therefore of importance because it is a non-trivial behaviour of the PM10 series in general.
The date-period 8 January 2015 for the AGP station is by far the period with the highest
accuracy, supporting it as the one with multifractal, fractal and SOC trends.

Figure 12. QQ nomality plot of FWHM/ fmax values of Table 3 for the shuffled time series.

Table 4. Date-periods of Table 2 for which: (a) the PM10 system is out of stochastic behaviour; (b) BE is
below 2.0 and TE below 1.18; (c) points a and b are commonly found by 3 or more monitoring stations
of Table 1; (d) FWHM/ fmax > 1.2 for the raw series or FWHM/ fmax > 1.1 for the shuffled series. Raw
symbolises the FWHM/ fmax of the raw series and Shuffled of the shuffled series, respectively.

Date Station Raw Shuffled

6 April 2009 ARI 2.230 0.486
8 January 2015 AGP 1.576 1.535
8 January 2015 LYK 1.469 1.328
6 February 2015 THR 2.395 0.586
7 July 2016 THR 0.802 1.110

As a final step regarding the multifractal nature of the PM10 system of the GAA,
the sliding window MFDFA results are given in all the sub-figures of Figure 13. The
generation of these sub-figures necessitated the design of special new software and a
significant amount of additional calculations. In the related literature (see the example
cases of Telesca et al. [39–41,56]), the sliding window MFDFA represents the final phase of
the analysis of the multifractals, in the opinion of the authors of course. Figure 13 presents
three key generalised Hurst exponents of all the series in this paper with a window of
four months. The main q’s are given:q = 0, q = 2 and q = 5. These values are positive and
hence, as mentioned, refer to the large variations. From the data given already, q = 0 is
the cut-off point between the small and large fluctuations. The value q = 2 refers to the
monofractal analysis as in all the previous papers. Finally, q = 5 is an upper value that is
usually selected. The four-month window is chosen to combine the two-month windows
of the analysis of the main core of this paper and to include more values so as to present
additional data. Significant variations can be observed. The q = 0 time variations are higher
than the corresponding ones for q = 5. The classical Hurst exponents (q = 2) are intermediate.
As expressed in a previous publication [59], the q = 2 values above 1 or below 0 yield to
the saturation of the corresponding fractal dimension (to 2 and 0, respectively). Therefore,
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these values may be considered as h(q = 2) = 1 and h(q = 2) = 0, respectively. It is also
very interesting that certain periods with great plateaus are observed in the values of the
generalised Hurst exponents in Figure 13. This is more prolonged in the MAR and THR
series. In these plateau periods, the main core of the classical Hurst exponents are around
0.5. This is very significant because, in these periods, the related series are random, namely
stochastic and, hence, of a statistical description. The reader may recall that the MAR
station is Urban-Traffic, whereas the THR station is Suburban-Background. Therefore, the
sliding window MFDFA variations seem to be independent from the type of the station. The
reader should draw their attention to the following fact. It is indicated by other researchers,
e.g., [60], that the differentiations in the window parameters yield to significant over- or
under-estimations in the Hurst exponents. In all the analysis, the two-month window
is adopted with the exception of the MFDFA sliding window results where four-month
windows were used. More or less, variations are observed in all the generalised Hurst
exponents of Figure 13, where the main core of the estimations refer to non-fractal and,
possibly, stochastic–statistical behaviour.

(a) AGP station. (b) ARI station.

(c) LYK station. (d) MAR station.

(e) THR station.

Figure 13. Results of the sliding window MFDFA.

It can be supported from all the analysis of this paper that the PM10 system of the GAA
has several scattered parts in which fractal, SOC and multifractal patterns are addressed,
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and this is a new insight, at least, in view of the employed methodology. The most important
finding is the date-period 8 January 2015 for the AGP station because the related evidence
of fractality, multifractality and self-organised criticality is of the highest value. The results
of this paper in the field of fractal and SOC analysis combines well with the results of
all the recent related publications in the field of urban pollution PM10 data, providing
new views for the non-stochastic and multifractal phenomena that govern the related
atmospheric physics.

5. Conclusions

This paper reports the multifractal characteristics of a 17-year PM10 time series from
five stations in the Greater Athens Area, Greece. The design and implementation of
this study is a novel combination methodology which counts the multifractal properties
calculated with a multifractal detrended fluctuation analysis applied in key periods. These
key periods comprise 11 different date-periods of two-month windows for which the PM10
system is out of stochastic behaviour and has Shannon entropy and Tsallis entropy values
below the critical thresholds, and all these are addressed simultaneously by at least three
different monitoring stations. Accounting for the different stations per date, the total dataset
of the different multifractal characteristics consists of 74 different two-month windows, 37
for the raw series and 37 for the shuffled series. All these two-month key periods were
addressed in a very recent combination study conducted by the team and are considered as
showing very strong evidence regarding the SOC and fractal behaviour of the PM10 system.
The multifractal detrended fluctuation analysis showed that multifractal characteristics are
present in all key periods. This paper reports the generalised and classical Hurst exponents
and the f (α) versus α plots for the raw and shuffled series. All the f (α) versus α plots
are fitted to polynomials and, from these, the parameters FWHM and fmax are calculated
and reported. The scatter plots of FWHM, fmax and FWHM/ fmax are presented for all
74 two-month series. The statistics with R are reported for these parameters. Based on the
results of the statistical analysis of the multifractal parameters, FWHM/ fmax is suggested
as the best quantity to describe the results from the multifractal detrended fluctuation
analysis. Analysing the outliers of the multifractal properties, five date-periods are found
exhibiting extraordinary multifractal behaviour. From these, the date 8 January 2015 had
extraordinary multifractal behaviour for the raw and shuffled series and for both the AGP
and LYK stations. The most important finding is that this date was also identified as one
between three date-periods in the most recent combination study of the team. The results
and this last significant finding provide very strong evidence regarding the multifractal
behaviour of the PM10 air pollution time series. Finally, the sliding window MFDFA results
are given for the data of all the stations.
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