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Abstract: Studies concerning fog water have been rapidly increasing due to its negative impacts on
different environmental processes. However, fog water harvesting has become beneficial in various
countries to overcome water scarcity. Accurate fog forecasting remains a challenging issue due
to its spatio-temporal variability and uncertainties despite the development and efforts made to
understand its chemistry and microphysics. The literature proved that the decrease in fog frequency
over time in most countries is mainly attributed to the improvement in air quality or the change in
regional climatic conditions. The current fog review summarizes its different types and collectors,
life cycle, and impacts, the effects of aerosols, and the latest results concerning its forecast challenges
and frequency. It also highlights the major chemical processes along with the main field studies
performed on fog water. The aim of this work is not to provide a criticism about fog but to present a
general comprehensive review of its physical and chemical aspects covering up to 330 research and
review papers aimed to serve as a basis for new challenges and findings about fog water.
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1. Introduction

Atmospheric pollution, characterized by measurements of biological, physical, or
chemical contaminants, has become an international policy problem having harmful conse-
quences for human health and ecosystems [1,2]. Accordingly, fog droplets are composed
of a mixture of organic and inorganic compounds resulting from scavenging hygroscopic
particles and water-soluble trace gases. Fog droplets are formed on aerosol particles in a
supersaturated atmosphere. However, the pollution loadings of these particles are higher
than those in clouds and precipitation [3]. It is the result of the synergic effect of weather
factors (relative humidity (RH), wind direction (WD), wind velocity (WS), temperature (T),
pressure (P), etc.) and pollution (presence of aerosols) [4]. Its chemical composition is an
important tool for the complementary analysis and identification of air and long-range
transport (LRT) pollutants because fog is formed in a shallow boundary layer which is
conducive to fog formation and has the ability to trap local and regional pollutants. Accord-
ing to the American Meteorological Society (AMS), fog comprises a large number of small
water droplets in the liquid form or ice crystals suspended in the atmosphere reducing the
visibility below 1 km (0.62 miles) in the surrounding area [5]. Surface visibility is critical for
aviation, transportation, and land safety, causing significant human and financial losses,
and is responsible for serious air, land, and water transportation [6–8]. Modern aircraft
have no difficulties with fogs of 1 km, but some restrictions can be imposed when the
visibility degrades to lower than that. Visibility of less than 500 m is classified as fog [9].
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The reduction in visibility depends on the resulting distribution of fog droplets and on the
concentration of cloud condensation nuclei (CCN). The densest and thickest fog mainly oc-
curs in urban or industrialized areas in the presence of a high number of polluted particles
in the air acting as CCN for water droplets [5,10]. Fog is of great meteorological significance
due to its strong relation to humidity factors and its capability of reducing the temperature
amplitude and local character of formation. Its formation, existence, and dissipation are
strongly influenced by numerous factors including local orographic conditions (changes
in atmospheric conditions), atmospheric circulations (heat distribution by large-scale air
masses), and the actual synoptic situation (pressure pattern, fronts, wind direction, wind
speed, etc.) [10]. The presence of natural fog affects many environmental components
including global and local climate, air quality, water quality, air–surface interactions, the
thermal and radiative budget of the atmosphere, etc. [11,12]. It has severe impacts on social
life leading to an increase in the number of injuries due to the reduced visibility whether in
water, air, or land transportation [5,12]. Fog has also direct and indirect adverse impacts on
human beings (primary and secondary) [13]. However, it has a beneficial effect on decreas-
ing the concentration of different air pollutants, cleaning the atmosphere through the wet
deposition phenomenon, and agricultural and water supply activities [14,15]. Therefore,
monitoring these climatic events in the different environmental matrices is crucial to better
understand the consequences of their presence in the environment and to meet the criteria
for defining good air quality. The assessment of major organic compounds in fog water is
complex and has created much curiosity in sampling, analyzing, and elucidating the chem-
istry of fog water [14,16]. Lately, the knowledge of fog water chemistry has been widely
expanded to include a wider number of pesticides, phenols, acids, polycyclic aromatic
hydrocarbons, polychlorinated pesticides, and other organic families [16–19].

Fog droplets acquire their chemical composition by mechanisms similar to those of
cloud water droplets [20]. The solute concentrations in fog water (organic acids, heavy
metals, ions, etc.) are usually up to 100 times higher than those observed in precipitation
due to the longer residence time in the atmosphere and their smaller droplet size. The
longer residence time makes possible the higher accumulation of the products of the
liquid-phase processes. The major composition of fog water is the result of the interaction
of sulfur dioxide (SO2), nitrogen oxide (NOx), carbon dioxide (CO2), hydrogen chloride
(HCl), and ammonia (NH3) with water in an oxidative atmosphere (oxygen (O2), ozone
(O3), sunlight, etc.) and in the presence of trace metals that may act as redox catalysts
(iron (Fe), copper (Cu), manganese (Mn), and organic materials including dust, soot, and
hydrocarbons (HCs)) [21]. Fogs act as a micro-reactor for chemical and photochemical
reactions with atmospheric oxidants such as singlet oxygen, hydroxyl radical, nitrate
radical, etc. They are important media for aqueous-phase reactions where inorganic gases
such as SO2, NOx, and dissolved volatile organic compounds (VOCs) are oxidized. These
reactions accumulate the oxidized inorganic and organic matters in fog water and promote
both the removal of particles from the atmosphere through wet deposition or the formation
of new particles through oxidative reactions, aerosol formation, nucleation scavenging,
droplet evaporation (post-fog), etc. [21–23]. For instance, some gases react to produce
new species which are left behind (as aerosols) after the evaporation of fog droplets [3].
Some of the atmospheric pollutants, such as the secondary organic aerosols (SOAs) re-
disperse in the air after fog dissipation and provide nucleation seeds that will be more
active acting as future CCN for the re-occurrence of other foggy events. Thus, fog is a
multi-phase reservoir in which dry particulate matter (PM), gaseous components, and wet
aerosols may coexist, and processes such as scavenging, aqueous-phase reactions, and
nucleation occur simultaneously [22]. The contents of this review are structured as follows:
In Section 2, the basic characteristics of fog types are described. In Section 3, fog forecasting
is explored along with the elaboration of the different phases for radiation and valley fogs.
In Section 4, fog frequency is summarized worldwide. In Section 5, fog droplet nucleation
and activation processes along with the effect of aerosols and droplet size are explained.
The negative and positive impacts of fog water on social life are detailed in Section 6,
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followed by the description of some active and passive fog collectors in Section 7. Fog
chemistry is elucidated in Section 8, showing the most important fog processes (oxidation,
deposition, scavenging, and acid/base interaction). It also states the different field studies
that have been performed all over the world. The basic conclusions of the review and some
perspectives are summarized in Section 9.

2. Fog Types

Several points of view have been widely used in fog classification. It might be based
on thermodynamic properties (mixed-phase fog), physical (freezing and ice fogs) and
dynamical processes (turbulence and mixing fogs), the chemical composition of particles
(dry fog), weather features (frontal fog), and the physiographic character of the surface
(valley fog). Another point of view suggests that fog might be divided into three categories:
liquid fog, mixed-phase fog, and ice fog. The latter forms when the temperature falls below
−10 ◦C, liquid fog forms when the temperature is higher than −10 ◦C, and the mixed-
phase fog forms between −10 ◦C and −30 ◦C [24]. However, fog might also form under
special conditions. For instance, ice fog can occur at a temperature of −20 ◦C in the case of
excessive vapor being absorbed by ice nuclei under steady-state conditions in the absence
of mixing processes [11]. Willett proposes a fog classification based on favorable synoptic
conditions. He sub-categorizes them into numerous types that might be formed in the
atmosphere [25]. They include advection fog, valley fog, upslope fog, freezing fog, ice fog,
steam fog, precipitation fog, and radiation fog [11,26–30]. Each type of fog is defined by a
special physical process responsible for its formation [11]. Advection fog results in locations
where warm air passes over cooler ocean water. As this process occurs, the temperature
drops to the dew point, and water vapor condenses in the warm air, producing an RH of
100% and leading to the formation of fog. It mainly occurs in windy conditions such as on
the Pacific coast of the US and San Francisco where the ocean is significantly cooler than the
surrounding land. Typical fogs extend up to a few hundred meters in height [31]. Valley fog
is formed during winter in mountain valleys where the dense air is trapped in the valley. In
this area, the dense air settles down the valley and condenses to form fog. It is essentially
due to a temperature inversion along with warmer air flowing above the valley. It may last
for a few days during winter in calm conditions. Upslope fog occurs when the air flow
rises up the terrain and cools it adiabatically to its saturation temperature allowing water
vapor to condense to form fog. When it is seen from below, it is viewed as stratus clouds;
as one goes up into the cloud, it is viewed as fog. This type is also known as the orographic
fog. Freezing fog is formed when water droplets in the air mass become supercooled, and
solid surfaces are frozen. As the fog intensity increases, the ground, trees, and other objects
are glazed by a layer of rime or frost. Freezing foggy events occur at temperatures below
0 ◦C. Ice fog develops in Polar or Arctic regions where air temperature is below freezing. It
is usually observed at high altitudes, in calm and clear weather, and in extremely cold air
(<−29 ◦C). Ice fog is composed of ice crystals suspended in the air instead of supercooled
water droplets. It results when water vapor is released into the atmosphere and is then
condensed to form droplets that are rapidly frozen into ice particles. Steam fog is somehow
the reverse of the advection fog. It occurs when cold air passes over relatively warm water.
The air is cooled and moistened, causing the dew point to increase, causing condensation of
water vapor leading to the formation of fog. It is a common phenomenon occurring during
early winter and autumn, in middle latitudes, near rivers and lakes where water is still
warm [32–34]. Precipitation fog is associated with weather fronts, especially warm frontal
boundaries. It is formed when warm rain falls through cold and almost saturated air. When
the precipitation falls down into colder air, the quantity of water vapor in the atmosphere
is increased through evaporation, causing the dew point to rise and the cool air to become
saturated to form fog. It is also known as frontal fog [31,35–38]. Radiation fog is known
as ground or continental fog that does not reach any of the clouds overhead. It usually
occurs at night under stable conditions (clear sky and calm wind) and dissipates in the
morning as the ground warms by increasing the heating rate from thermal radiation. This
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type is common in continental climates during winter under anticyclonic conditions (high
pressure). Radiation fog is produced when the heat absorbed by the surface is radiated
into the air, cooling the ground and causing a temperature inversion. As the surface cools,
a layer of moist air is created near the ground and reaches its dew point. At this point,
condensation occurs, resulting in the formation of fog [39]. The depth of the radiation fog
increases as long as sufficient moist air is available. Typical ground fogs reach 100 to 200 m
in height. Radiation fog is a mixture of liquid droplets, gaseous species, wet aerosols,
and dry PM, resulting from complex interactions among these phases, contributing to
the enrichment of fog droplets with inorganic and organic contaminations. Briefly, two
basic concepts lead to fog formation: either air temperature reaches the dew point, forming
advection, upslope, and radiation fog, or sufficient vapor is added to the air, forming frontal
and evaporation fog [40].

3. Fog Forecasting

Fog is an important meteorological phenomenon that should be predicted accurately
due to its strong influence on the economy and personal safety. Poor forecasting leads to
a greater disruption to surface, sea, and air transport with subsequent increased risk to
the economy and personal and social life. Fog is influenced by numerous factors, covering
multiple temporal and spatial scales [11]. Fog formation is correlated with the presence
of meteoroidal conditions such as low temperature, wind speed, wind direction, and very
high relative humidity. In fact, fog does not always occur in windless and calm conditions.
A historical dense foggy event was reported by Scott in 1896, stating that fogs with strong
winds accompanied by heavy rain occurred in the British Isles. Fog-related events asso-
ciated with strong winds are estimated to be about 135 in 15 years [41,42]. In 1892, fog
formation was found to be related to the role of aerosols. Mensbrugghe states that “aqueous
vapor condenses in the air only in the presence of solid particles around which the invisible
vapor becomes a liquid” [43]. Additionally, Willett emphasizes the importance of CCN
in fog formation. He reports that dust particles, hygroscopic particles, and those having
an electric charge or ions facilitate fog formation [25]. The presence of hydrophilic parti-
cles is an important key that facilitates the condensation of water vapor into fog droplets.
The pollution does lead to fog formation, and the heterogeneous nucleation of pollution
condensation nuclei leads to fog droplet formation. The increasing quantity in polluted
atmospheres decreases the surface tension, causing the pollution particles to be activated at
lower relative humidity and resulting in a denser and thicker fog [44]. All these factors lead
to the accumulation of pollutants in a stable and strong inversion boundary layer which
is responsible for fog maintenance. Thus, air saturation with water vapor and favorable
meteorological conditions are two driving parameters of fog formation. Fog appearance
and dissipation are still not very clear since they are directly related to turbulence, micro-
physical and radiative processes, thermodynamics, and surface conditions. The reason
behind that could be that fog is sensitive to the complex balance mechanism among all the
processes. The initial conditions of turbulence and humidity are critical for the prediction of
fog events. Some researchers suggest that fog is formed due to a turbulent mixing between
nearly saturated eddies with slightly different temperatures when the colder air mixes and
cools the hotter moister air reaching the saturation. Other researchers suggest that a virtual
cessation of turbulence is necessary before fog formation. In this mechanism, it is assumed
that the high levels of turbulence cause saturation to occur at the surface in the form of
dew, preventing the coalescence of fog droplets and fog formation. Once formed, its further
maturation or dissipation depends on the evolution of its physical processes and the envi-
ronmental conditions that govern the removal and production of liquid water. Overall fog
forecasting remains difficult and challenging since it depends on a large number of physical
and chemical processes along with non-linear interactions. Factors that may be involved are
many: atmospheric stability, radiation balance, moisture availability, turbulence, advection,
topography, and microphysics [45]. Despite those limitations, it is important to work fur-
ther on fog forecast to avoid its expected negative impact on social life and human health.
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For this aim, researchers have used modeling that greatly ameliorates the ability to forecast
severe events to some extent. Numerical weather prediction (NWP) models were first as-
sessed by Ballard et al. to predict fog occurrence [46]. In that study, they employed the UK
Meteorological Office mesoscale model implemented by Golding to predict a sea fog in the
northeast Scottish coast [47]. They concluded that the accurate forecasting of fog primarily
depends on the initial weather condition (relative humidity), physical parameters, sea sur-
face temperature, and the treatment of synoptic forcing. In addition, models implemented
by Zhou and Du and Van der Velde et al. are unable to forecast the accurate locations and
life cycle of a fog layer [48,49]. Further simulations and models about the formation, vertical
development, and dissipation of fogs are necessary to understand the physical mechanisms
of fog layers [50,51]. Other researchers investigated the accuracy of fog prediction based
on the vertical resolution [27,52,53], initial conditions [52], and horizontal resolution [54].
However, the NWP model for fog forecasting is still challenging and incomplete, since
all studies did not take uncertainty into consideration regarding the visibility algorithms
and complex processes in fog appearance, maturation, and dissipation [11,49,55–64]. Small
errors in the initial state of the atmosphere contribute to unreliable fog forecasting [65–67].
Numerous studies investigated the performance of the NWP models and tried to operate
such models for the prediction of fog between 12 and 72 h [68–72]. Despite the progress
made for the NWP models in terms of physical parametrization schemes [58,73,74], land
surface processes [54,65,75], and vertical and horizontal resolutions [59,62,76], the spatio-
temporal variability of fog leads to a severe problem regarding the uncertainty attributed
to individual model forecast which becomes impractical and useless after a certain time
limit. Additionally, NWP presents some restrictions since its resolution is not enough, the
stable boundary layer (SBL) is not well represented, the different microphysical processes
are poorly considered, the systematic biases are difficult to overcome, the accurate data are
difficult to initialize, and the variability conditions are needed to be kept up-to-date [45]. To
overcome all the above-cited issues, the Ensemble Forecast System (EFS) is then employed
for the probabilistic prediction of fog which takes into account the remaining uncertainty
and some of the restrictions in the NWP model. The EFS model has proved its effective-
ness in recent years in fog prediction in China, the US, and India [48,53,77]. Furthermore,
some researchers have tried to use satellite data and imagery for fog prediction [78–87].
Satellite imagery has been an immense advantage in assessing weather hazards such as
low clouds. The geostationary satellites that are employed by fog forecasters include
the Geostationary Operational Environmental satellite (GOES) [88], Spinning Enhanced
Visible and Infrared Imager System (SEVIRI) [78,79,85], Advanced Very-High Resolution
Radiometer (AVHRR) [84,89,90], Cloud-Aerosol Lidar and Infrared Pathfinder Satellite
Observation (CALIOPSO) [91,92], Multifunctional Transport Satellite (MTSAT) [93,94],
Moderate Resolution Imaging Spectroradiometer (MODIS) [80], and Indian National Satel-
lite (INSAT-3D) [95–98]. In addition, some studies combined both numerical models with
satellite data to fill gaps in the fog life cycle [56,99,100]. However, satellite-based fog detec-
tion still suffers from limited detection, since they do not consider all the available data
obtained from satellite imagery. Therefore, numerous machine learning (ML) (decision
tree, random forest, support vector machine, etc.), deep learning (convolutional neural
networks (CNNs)), and fuzzy logic practices, which all belong to artificial intelligence (AI),
have been used to improve fog forecasting. The CNN was first implemented in 1995 [101],
and then case studies were performed by many researchers [102–106]. Fuzzy logic was
first tested [107,108] and then improved [109–111]. The decision tree was also assessed by
several researchers, including [87,88,112]. On one side, the use of AI leads to many advan-
tages for fog forecasting including cost savings, increased accuracy, and faster predictions.
On the other side, there are several barriers related to the use of AI for fog prediction such
as those related to the accuracy of AI models, the complexity of the interpretation of AI
models, and under-performing forecasts [45].
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3.1. Radiation Fog

There are three main radiative processes that are related to the evolution of the radia-
tion fog. First, the radiative cooling through the emission of longwave (LW) radiation at the
top of the fog produces liquid water by condensation, preventing the depleting processes of
liquid water. Second, fog droplets absorb the shortwave (SW) radiation in the near-infrared
spectrum, causing heating, subsequent evaporation, and loss in the liquid water content
(LWC). Third, fog evaporates from below, caused by a sensible heat transfer (HT) of the SW
radiation from the ground to the fog. Generally, its life cycle is decomposed according to
the behavior of the turbulent kinetic energy (TKE) [113,114]. The balance between turbulent
mixing, radiative cooling, and droplet sedimentation is a factor that is greatly related to
the life cycle of radiation [115]. Radiation fog involves three phases: the initiation phase,
maturation phase, and dissipation phase.

3.1.1. Initiation Phase

The initiation phase, also known as the onset stage, is characterized by a strong inver-
sion near the ground level and low intensity of turbulence. It corresponds to the radiative
cooling of the ground when the surface radiates more heat than it receives, causing a
temperature inversion in the lower layers. If the cooling of the ground propagates to higher
levels, water droplets condense, producing a relative humidity of 100% and leading to the
formation of fog. The stable inverse temperature promotes the formation and maintenance
of fog. For instance, a strong, single-layer thermal inversion structure is conducive to fog
development (pollutant enrichment), while a multi-layer weak thermal inversion structure
tends to dissipate fog (inability of atmospheric pollutants to diffuse) [116]. The balance
between radiative and turbulent processes is essential for the formation of the radiation
fog [113,114]. Low turbulence is required for the vertical propagation of the radiative
cooling [117,118]. The weak turbulence expands the fog and cooling layers promoting
fog development and maturation. However, if the turbulence is too weak, saturation
results in a significant dew deposit on the surface. On the contrary, strong turbulence
enhances the mixing of fog and cooling layers contributing to fog dissipation or low cloud
formation [119,120].

3.1.2. Maturation Phase

The maturation phase, also known as the development phase, is characterized by an
increase in the TKE and by the appearance of a mixed fog layer. In the case that fog persists,
it will continue to grow in depth and become more optically thick because of its higher
content of liquid water. This will increase the radiative cooling in the fog layer at its top,
while the lower part of the fog is shielded from cooling. The warmer soil from below heats
the surface canopy at this point which in turn warms the lower part of the fog layer. At
this time, its peak becomes the dominant radiative feature and cools to space [119]. The
combined effect of these two processes is related to the reduction in the stability within the
fog layer and the creation of a saturated adiabatic temperature profile [50,113,114,121].

3.1.3. Dissipation Phase

The dissipation phase is the result of the breakdown in the balance as one or more
parameters suddenly change. The cooling from above or possibly the heating from below
destabilizes fog layers and produces convective motions. Then, the unstable fog layers are
intensified either by solar radiation (surface heating) or by an increase in wind intensity
(turbulence fluctuation), mixing the saturated air of fog with the dry air above the inversion
layer [115]. Upon the sun’s elevation, its solar radiation influences the life cycle by warming
either the fog layer or the ground. The solar radiation is partly reflected by the fog and
partly transmitted to the ground. The latter will be heated by absorbing the radiation which
gradually warms the lower fog layers and makes the atmosphere slightly unstable. In the
case the turbulence is increased, the evaporation process speeds up from the bottom of
the fog, reaching the stratus where the fog entirely dissipates. The intensity of heating
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depends on the type of the surface, turbulence, and liquid water content. The higher the
water content, the more fog absorbs the heat. This phase might be also affected by a change
in radiative heating like the appearance of the stratus layer, heating from ground heat
fluxes, and the drying of the air by fog droplet deposition on the earth’s surface. The
combination of these processes produces a young inhomogeneous fog that can appear and
disappear randomly. In addition, the presence of a cloud layer above the fog may also lead
to its dissipation by sending back the infrared radiation emitted by the top of the fog. The
advection of the cloud layer above the existing fog will shelter fog and can be a probable
mechanism for its dissipation [113,114,122].

3.2. Valley Fog

Pilié et al. studied the manner in which valley fog is formed. The following is
concluded [123]:

• Nocturnal radiation from the surface and subsequent turbulent heat transfer from the
air to the ground produce an early low-level temperature inversion and stimulate the
downslope wind and upward return flow near the center of the valley. At this level,
the deposition of dew at the cold surface creates the dew point inversion at the low
level. The upward movement at the center of the valley carries the cool and dry air
upward to cause the inversion to deepen.

• Almost 3 h before fog formation, the wind coming from the mountain provides a
continuity for the downslope wind and prevents the upward movement of the air near
the valley center. Cooling is restricted only to low and mid-levels of the valley which
are the two levels in which fog will form. The downslope wind is mixed with warm
air masses at mid-levels in the valley leading to the maximization of the cooling air in
this zone. Then, a thin layer of fog appears.

• Later, the cold foggy air is mixed with almost saturated air, causing saturated air to
propagate downward.

In the case valley fog is formed before sunrise, the surface warming is the result of a
decrease in net radiation from the surface caused by fog forming aloft and heat conduction
from subsurface levels. In the case valley fog is formed after sunrise, both surface warming
and dew evaporation are caused by the sun. Then, the resulting instability at the low level
stimulates vertical motions, causing the moist air from low levels to be mixed with cooler
air. At this point, air saturation is reached, leading to fog formation.

4. Fog Frequency

The United States National Oceanic and Atmospheric Administration (US NOAA)
runs the Global Daily database from over 8000 stations worldwide to make a useful
comparison regarding the average annual fog frequency. A twenty-year period, between
1991 and 2010, is investigated to obtain precise meteorological data. The annual number of
foggy days and annual cycle of fog widely vary according to local conditions and weather
factors. The high occurrence of fog water usually occurs where water vapor is in excess
such as in locations near the ocean, river, lake, sea, and other humid sites as well as where
favorable conditions are present (i.e., cooling). Other factors including local conditions
(altitude, type of land), mesoscale (distance to the coast, exposure to advection air masses),
and synoptic scale (cyclonic scale) affect the duration and frequency of fog. The highest
fog frequency has been observed in Washington/US (NDF = 311), Śnieżka/Poland (298),
and Harz/Germany (284). High fog occurrence has also been detected in equatorial and
subequatorial zones such as in Iquitos/Peru (102), due to the extremely high humidity
and nocturnal radiative cooling. Fog occurrence is found to be high in montane tropical
atmospheres such as in Quito/Ecuador (208). Further, in tropical and subtropical zones
next to the coast, fog frequency is also high such as in Chile (189), where the region is
influenced by cold oceanic air masses. In polar zones, the occurrence of foggy events is also
high such as in Nuuk/Greenland (81) and Marambio/Antarctic (138), where advection fog
is dominant. However, fog frequency all over the world has shown a significant decrease.
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Statistical results show that the strongest relation to fog occurrence is air pollution. In the
case air pollution becomes less severe, environmental factors such as wind speed, urban
heat island (UHI), relative humidity, and inversion layer become decisive in controlling its
occurrence and duration [124]. Literature studies reported a decrease in the majority of fog
stations worldwide. Williams et al. reported that the change in regional climatic conditions
such as the ongoing intensification effect of UHI or atmospheric circulation leads to an
increase in air temperatures contributing to a decrease in the fog frequency in southern
California [89,125]. Aerosols are found to have a direct relation with fog evolution [126].
For instance, Vautard et al. investigated weather information from over 300 stations in
Europe and reported that fog frequency has decreased in the last 30 years. The main reason
was attributed to a strong decrease in the emissions of sulfur dioxide since the late 1980s.
Air quality has improved, and therefore, the number of condensation nuclei, which act
as the substrate on which water vapor condenses, is reduced, leading to a decrease in fog
occurrence [127]. Fog frequency has been also studied by Araujo et al. and Goncalves et al.
in the metropolitan region of Sao Paulo between 1993 and 2005 [128–131]. They found that
the decrease was mainly correlated to the decrease in the relative humidity and increase in
air temperature caused by the UHI intensification. Han et al. observed an increase in fog
frequency in the North China Plain between 1980 and 2010 [132]. The main reason behind
this increase is attributed to the decrease in air quality. Fu et al. found that fog frequency
in the North China Plain increased before 1995, fluctuating between 1995 and 2003, and
has decreased since then [133]. The decrease is attributed to the improvement in air quality.
The same scenario was also observed by Quan et al.: an increase in fog occurrence between
the 1970s and 1980s and a decrease after 1999 [134]. Ding and Liu stated that the decrease
in the relative humidity causes this trend in China [135]. In Japan, fog occurrence has also
decreased, as reported by Belorid et al. [136]. This was attributed to the decrease in the
nocturnal radiative cooling rates. Most of the fog frequency in Iran decreased between
1985 and 2005 over 100 stations except for three stations. Rahimi stated that the increase in
temperatures was found to be the main cause for this decrease [137]. The same results were
found in Thailand between 1951 and 1995 at over 50 stations [138]. Giulianelli et al. also
stated that fog frequency has decreased over the last three decades which is in agreement
with other results [139]. They suggested either a decline in the available condensation
nuclei or an increase in temperatures.

5. Fog Nucleation and Activation
5.1. Fog Nucleation

The formation of fog water requires relatively high humidity conditions ranging from
undersaturated to slightly supersaturated conditions [140]. The presence of atmospheric
aerosols is a key factor for droplet formation, where they can grow in size more easily
in a saturated atmosphere [44]. The process of forming the droplet nuclei, known as
the nucleation scavenging process, is of great significance for cloud, particle, and fog
formation [141]. The presence of hydrophilic inorganic species including sulfate, nitrate,
and ammonium (SNA) and soluble elements including magnesium and calcium plays a
vital role in fog formation by acting as CCN. The presence of water-soluble organic carbon
(WSOC) has been pointed out to modify the hygroscopicity of aerosol particles and enhance
their tendency to act as CCN [142]. The availability of trace metals like copper, manganese,
and iron also plays a significant role in aerosol–fog interactions by acting as catalysts for
aqueous-phase reactions.

Fog formation and droplet growth highly depend on the physico-chemical character of
CCN. Thus, they are expected to be formed in environments with large CCN concentrations
associated with low levels of supersaturation [16,143,144]:

• Heterogeneous nucleation (nucleation scavenging): It is the condensation of water
vapor into a subset of particles in the presence of foreign condensation nuclei. Many
atmospheric aerosols (AAs) are hydroscopic in nature. The presence of hydrophilic
particles in the atmosphere is an important factor that facilitates the condensation



Environments 2023, 10, 224 9 of 33

of water vapor into droplets. The resulting droplet diameter ranges from several
micrometers to tens of micrometers. The nucleation of supersaturated water vapor
on aerosol wettable particles, whether soluble or insoluble, will be responsible for fog
droplet formation. Particles having the tendency to nucleate liquid fog droplets are
known as CCN [145,146]. Among the factors that determine the ability of particles
to act as CCN at a given level of supersaturation, are the size, shape, and wettability
of particles, solute content, surface tension, solubility, supersaturation level, and the
presence of surface-active substances. In the absence of suitable particles, fog will
not be able to form because very high supersaturation levels are required for the
condensation of water vapor, and such levels usually remain below 10% and even
below 1% [40,143].

Numerous types of AA particles are capable of acting as CCN. Some of the AAs
are generated from natural sources (sea spray, volcanic debris, biogenic aerosol, etc.),
while others are derived from human-made activities (industrial emissions, agricultural
activities, biomass burning, fossil fuel combustion, etc.) [23,147]. In the presence of small
amounts of water supersaturation, AAs tend to grow spontaneously to form fog droplets.
Particles containing water-soluble compounds are more desirable to act as CCN over those
containing largely insoluble compounds [148]. Particles with diameters ranging from
0.001 to 0.2 µm play a significant role in fog/cloud and precipitation microphysics. In
fogs, aerosols are activated and grow into droplets whenever their size is greater than
0.1 µm and smaller than 1 µm. This means that the accumulation-mode particles are mainly
responsible for fog formation. Particles with diameters greater than 1 µm may grow but
without being activated [148–150]. In the case the particle concentration is high and/or
the supersaturation level is low, the minimum size of the particle required for activation
is 0.5 µm [150]. The accumulation-mode particles are formed through the coagulation of
smaller particles that belong to the Aitken nuclei (<0.1 µm) or from the condensation of
vapors into existing particles, forcing them to grow [151]. They are characterized by their
long residence time and high concentrations compared to other modes. The accumulation-
mode particles account for a substantial fraction of the total aerosol mass and have the
greatest surface area. This makes them of high importance to atmospheric heterogeneous
chemistry. Such particles are released through the incomplete combustion of coal, oil, wood,
gasoline, etc. They consist of SO2−

4 , NH+
4 , NO−

3 , metal compounds (Cu, Ni, Cd, Fe, Zn, Mn,
Pb, etc.), organic compounds, and elemental carbon (EC) [152].

More recently, organic aerosols have received particular attention. Organic CCN occur
naturally or though anthropogenic activities and could be produced from primary and
secondary organic aerosol (SOA) sources. The main primary sources of organic CCN
include biogenic emissions, biomass burning, vehicle exhaust, etc. The oxidation products
of soot, secondary anthropogenic aerosols, and secondary biogenic aerosols are among the
main secondary CCN sources. Primary biogenic aerosols are those containing fragments,
reproductive materials, whole organisms, and decaying biogenic organic aerosols. The
main secondary biogenic aerosols include the oxidation of VOCs released from biological
organisms [153]. Some of the organic aerosols that have proved their efficiencies in acting
as CCN are as follows:

1. Total organic carbon (TOC)/dissolved organic carbon (DOC): A substantial amount
of organic carbon (OC) is found in fog water. Its concentration ranges from 1 ppm
in remote marine environments to 100 ppm in polluted radiation fogs. Very high
concentrations have been measured in biomass-burning-impacted atmospheres which
vary between 100 and 200 ppm (mgC L−1). Such high levels were obtained at Mt. Tai
in China at a high altitude (1500 m), released from abundant smoke from agricultural
combustion [22]. Most of the organic fraction in fog is considered to be DOC which
reflects the abundance of volatile organic carbon (VOCs) in the atmosphere. It has been
found that DOC constitutes about 80% of the TOC in the aqueous phase. Thus, DOC
is a nearly quantitative measure of TOC in the condensed phase of fogs [154–156].
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2. Monocarboxylic (MCA) and dicarboxylic acid (DCA): The predominant species be-
longing to MCA in fogs are formic (HCOOH) and acetic (CH2COOH) acids, while
DCA species such as oxalic acid, malonic acid, and succinic acid constitute only a
small fraction of the total water-soluble organic species in the atmosphere [153]. Pre-
vious work demonstrated that mono-, di-, and poly-functional carboxylic acids are
the major contributors to the water-soluble organic matter in fog water [142,154,155].

3. Humic-like substances (HULIS): They are fine particles having good water solubility
consisting of aliphatic and polysaccharide substructures. They originate from biogenic
sources and comprise a large fraction of OC. They are found in fog droplets with a
similar scavenging ratio to that of inorganic ions. These substances affect the physico-
chemical properties of aerosol particles as well as the formation of CCN. HULIS have
been characterized as surface-active materials produced from the oxidation of gaseous
precursors on aerosols in the atmosphere. Their presence increases the surface-active
nature of fog water and decreases surface tension contributing to a higher uptake of
hygroscopic organic vapor-phase compounds [153,157].

4. Bacteria (0.25 to 8 µm in diameter): A group of very metabolically diverse, prokaryotic,
and unicellular microorganisms. They are found to be temperate vegetation zones,
such as raw crop areas (high primary production) and desert areas (relatively low
production). Living and dead bacteria have been observed in cloud water, fog water,
and rainwater as well as in different parts of the atmosphere (boundary layer, upper
troposphere, and stratosphere (up to 41 km above sea level)). Among the bacteria able
to act as CCN at low saturation ratios (from 0.07% to 1%), are the plant pathogenic
bacteria Erwinia carotovora, as well as Gram-positive and Gram-negative bacteria
(Micrococcus agilis, Mycoplana bullata, and Brevundimonas diminuta) [153].

Therefore, AAs are responsible for the acceleration and intensification of fogs, espe-
cially in urban areas because of the presence of more hygroscopic particles in the atmosphere
that may regulate its optical thickness [44]. The polluted atmosphere is capable of having
eight times more droplets with half the size and twice the optical depth and surface area,
causing higher obscurity than unpolluted atmospheres [158].

5.2. Fog Activation

For a complete understanding of the activation process, the size distribution and
chemical composition of AAs must be taken into consideration. The size of AAs is highly
connected with water vapor supersaturation in fogs which is a key for the activation process.
Particles are divided into two categories: activated and non-activated particles. In the case
the critical supersaturation level (SScr) is lower than the actual supersaturation, particles
are activated. In the case the SScr is higher than the actual supersaturation, particles grow
to their equilibrium diameters by capturing water but remain inactivated [144,159]. Thus,
the ability of CCN to be activated into droplets is determined by the physical and chemical
properties of AAs [150,160]. The spontaneous growth of CCN into fog droplets under
supersaturated water vapor conditions is described by the classic theory of Kohler. The
rate of droplet growth depends on the initial size of aerosols and their solubility [161].
CCN activation depends on the interrelation between the Raoult effect—known as the
water activity—and the Kelvin effect. In the Raoult effect, the potential of CCN activation
increases with decreasing water activity or increasing solute concentration. In the Kelvin
effect, the potential of CCN activation decreases with the decreasing size of the water
droplet or increasing surface tension. Through the Raoult effect, certain aerosol particles
absorb water vapor at a relative humidity below 100%, and then they grow in size. In this
way, they reach sufficient diameters for the Kelvin effect to occur leading to the creation
of droplets, absorbing water vapor at their disposal. The transition from the Raoult effect
to the Kelvin effect is the activation process of CCN [159,162]. Therefore, aerosols are
considered to be “activated” once these droplets reach a certain size, where they are more
easily grown within a saturated environment [161]. AAs might be hydrophobic particles
(will not be activated at all) and water-soluble particles possessing hydrophilic sites that
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allow activation at higher supersaturation or have some water-soluble components that
will be activated at lower supersaturation.

5.3. Effects of CCN

The radiative effects of aerosols on fog may be classified as direct, indirect, and
semi-direct [163]. First, aerosols may scatter and absorb solar radiation (short and long
waves). Second, aerosol particles may scatter, absorb, and emit thermal radiation. Third,
aerosol particles may act as CCN. The first two mechanisms are the direct effects, while
the last one is the indirect effect. The semi-direct effect is a consequence of the direct
effect of absorbing aerosols [164–167]. Direct radiative forcing of aerosols may either cool
(nitrates, sulfates, etc.) or warm the atmosphere (black carbon (BC)), depending on the
proportion of the scattered light to the absorbed light. The scattering aerosols have a
cooling effect on the atmosphere, whereas the absorbing aerosols have a heating effect on
the atmosphere. Absorbing CCN is also known to influence fog formation because when air
temperature increases, the relative humidity is reduced, prohibiting the appearance of fog
or shortening its life in the case it is formed through enhancing droplet evaporation [168].
This is one of the main reasons for declining fog frequency along with the effects of urban
heat intensification [125,169–171]. Both direct and semi-direct effects of aerosols have
been studied by Bott using numerical simulations. The latter shows that urban aerosols
containing particularly soot absorb solar radiation and thus increase the cooling rate of
the surface and accelerate fog formation. This is the direct effect. The same aerosol that
absorbs more solar radiation leads to fog dissipation. This is the semi-direct effect [163].
The first indirect effect (Twomey or cloud Albedo) of aerosols on fog water was studied
experimentally by Hudson on the west coast of the US subjected to air masses of different
origins [172]. He showed that sea (maritime) fog comprises few water droplets with large
diameters, while urban (continental) fog contains more droplets but that are smaller in size
due to two reasons. The first reason is that aerosol concentrations in oceanic regions are
lower than those in continental or polluted areas. An increase in aerosol concentrations
leads to an increase in fog droplet concentrations. However, Bott and Trautmann show by
means of numerical simulations that the higher the concentration of aerosols, the lower
the supersaturation in fog leading to completely opposite effects of those observed by
Hudson [69]. Indeed, the lowest concentrations of droplets formed in the case of low
total aerosol concentration have larger diameters, and they are unable to absorb the excess
water vapor. The second reason is related to the physico-chemical properties of aerosols.
Sea-salt aerosols are more hydrophilic than those of urban sources. They tend to absorb
water more quickly, leading to lowering the ambient supersaturation in water vapor. They
slow down the activation rate of new aerosol particles in water droplets. The second
indirect effect (cloud lifetime or Albrecht) concerns the impact of cloud microphysics on the
lifetime of fog. The number concentration of CCN largely determines the “cloud droplet
number concentration” known as CDNC and affects indirectly the LWC through droplet
sedimentation. With a low CCN number, the condensation of water is limited by the
available surface area, resulting in higher supersaturation. Fog droplets have large droplet
size distribution for a given liquid water path, enhancing the rate of droplet sedimentation
and decreasing the cooling rate and thus the production rate of liquid water content, leading
to a shorter life of the fog. In contrast, with a large number of CCN, the condensation
will be sufficient, resulting in a lower supersaturation. The droplet size will be smaller
with a narrower droplet size distribution for a given liquid water path, slowing down the
rate of droplet sedimentation and increasing the cooling rate and thus the production of
liquid water content, making fog more intense and denser which will delay its evaporation
process. Therefore, the concentration of CCN has a strong impact on the life cycle of
fog [173].
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5.4. Droplet Size Dependence

The chemical composition of fog varies according to the droplet size mainly due to
two reasons. The first reason is the inhomogeneous chemical composition of the CCN,
while the second reason is the differences in the solubility rates of the gas uptake by small
and large fog droplets. Smaller fog droplets are much more concentrated and grow faster
than larger droplets as long as there is enough water vapor for condensation. The possible
explanations for the enrichment of major inorganic solutes and organic carbon in smaller
fog droplets include the higher dissolution rate of CCN in smaller amounts of water,
differences in condensational growth, and the higher surface/volume ratio of the small
droplets promoting greater surface area for gas/liquid transport and consequently more
chemical reactions. The distribution of the chemical components across the aerosol size
distribution depends on the chemical composition of the CCN on which the fog droplets
form. The smallest activated droplets are formed on the smallest CCN, whereas the largest
droplets are formed on the largest CCN. Thus, species contained in small accumulation-
mode particles (e.g., SNA) are enriched in smaller fog droplets, and species originally
found in the coarse mode such as calcium, magnesium, chloride, and sodium are enriched
in larger fog droplets. However, large droplets are unnecessary to be more diluted than the
smaller droplets. Through numerical simulations, Pandis et al. stated that droplets whose
diameter is 20 µm have a bigger solute concentration than 10 µm droplets by a factor of
3.6 [174]. Thus, fog chemistry varies from one case to another with droplet size including
the rate of condensation on CCN, rate of dilution, rate of soluble gas uptake, and rate of
chemical reactions (e.g., S(IV) oxidation) [16]. For a given LWC, the levels of concentrations
are affected by the variability in the concentrations of the dissolved pollutant per unit
volume. If the LWC decreases (a decrease in the number of fog droplets per unit volume of
air), the concentrations of fog water increase for a given concentration of pollutant per unit
volume of air. For a given droplet size, the liquid-phase concentrations are governed by the
ratio of the concentration of the dissolved pollutant per unit volume of air to the number of
droplets per unit volume of air [4,175].

6. Fog Impacts

Globally, fog negatively affects a wide variety of human activities. These effects range
from inconvenience to annoyance and from high costs to deadly consequences. However,
there are also some positive benefits as well, especially those related to water supply
applications, agricultural activities, and ecosystems [5,11,176,177].

6.1. Air Quality

The high fog frequency in a particular region affects the air quality of that region. The
most popular effect of the fog–aerosol interaction is commonly known as haze or smog
(a combination of smoke and fog) [178,179]. There are mainly two forms of smog: the
classical smog (London type) [180] and the photo-chemical smog (Los Angeles type) [181].
The latter is caused by the interaction of CO, O3, VOCs, and NOx with solar radiation and
occurs near mid-day, especially during the summer season [182]. The classical smog is
caused by the interaction of SO2 with PM and takes place in winter and autumn near the
ground at temperatures around 0 ◦C in windless conditions. Once the haze fog contains the
atmospheric pollutants, air quality decreases. The trapped NOx and HCs near the ground
surface are converted into harmful O3. The greenhouse gases (GHGs) highly spread in
the air are also trapped within the stable layer of the inversion zone. All these trapped
pollutants in the inversion layer remain suspended and will have an adverse impact on
the ecosystem and climate change. Recently, a new form of smog has been recognized
in Poland known as the Polish or Dusty smog, because high volumes of dust (PM2.5 and
PM10) have been detected [183]. In addition, fog processing results in an increase in the
secondary organic aerosols, their size, and their loadings due to the high occurrence of
aqueous-phase reactions [184]. An increase in total particulate matter (PM1) is reported
in Hisar and Kanpur. Coagulation processes during foggy days also lead to an increase
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in particle size [185]. Gas-to-particle conversion processes increase due to the presence of
chemical reactions in the medium which acts as a physico-chemical process, resulting in
high concentrations of SNA.

6.2. Human Health

Depending on the chemical and physical nature and composition of fog droplets,
fog water has direct and indirect adverse effects on human health (skin and eye damage,
respiratory and radiation diseases, secondary health effects, etc.) [186–188]. Exposure to
fine aerosol particles, especially acidic species, nitric acid sulfur dioxide, sulfur oxide,
and microbes, increases the morbidity and mortality of diseases in the respiratory system,
cardiopulmonary system, throat irritation, cardiovascular system, muscular system, and
lung cancer [186,189]. Exposure to sulfuric dioxide tends to affect the respiratory tract,
leading to aggravation in asthmatics. Exposure to nitrogen dioxide demonstrates a slight
unfavorable impact on the respiratory system at ambient concentrations. The inhalation
of fog with high sulfuric acid concentrations has no clear influence on pulmonary activity,
only a slight impact on the respiratory system [190,191]. The relation between asthma
patients and air pollution or meteorological factors has been further investigated over a
period of two years on 102 adults (44 patients are non-atopic while the rest are atopic).
The results show that hospital visits increase on foggy days compared to fog-free days,
especially on days with lower pH and low levels of gaseous air pollutants. An increase in
hospital visits is observed when the concentrations of NO2 and NO are low in the case of
non-atopic patients. Meanwhile, hospital visits of atopic patients increase with decreasing
NO2 and SO2 concentrations. The reason might be possibly due to the scavenging of these
pollutants by fog which could increase the acidity of fog water. Tanaka et al. state that
adverse bronchial epithelium problems might be caused by several possible mechanisms
associated with H+, O3, H2SO4, and HNO3 [186]. Thus, the fact that airway resistance
caused by acidic pollutants increases might be due to the reduced absorption capacity of
the hydrogen ions in the airway mucus [192]. The neutralization of naturally occurring acid
fog with ammonia may reduce the impact of the inhaled acid aerosol during foggy days.
Ammonia might neutralize about one-quarter of inhalable acid in healthy volunteers [193].
Concerning the meteorological conditions, the high ozone concentrations and the low
day-to-day temperature differences lead to an increase in hospital visits for non-atopic
patients. In both cases, high water vapor pressure favors the increase in hospital visits [194].
Researchers have recently found that fog inhalation is responsible for changes in breathing
problems and cough for healthy subjects. For this aim, a study has been carried out on the
respiratory response induced by fog, implementing a probable way to decrease respiratory
problems. The effects of no drug, nedocromil sodium (NCS), and placebo were evaluated on
14 healthy subjects during fog inhalation [191]. The results show that NCS is able to reduce
changes in the breathing pattern and inhibit fog-induced cough. N-nitrosodimethylamine
(NDMA) in fogs proves its efficacy in acting as a source of potential carcinogens. Notable
concentration levels of NDMA are found in the range of 7.5–397 ng L−1 in fog [188].
Further, exposure to smog fog can have a short-term and long-term negative impact on
the cardiovascular and respiratory systems, causing severe illness [195]. Most recently, the
presence of metals (Cu, Zn, Sr, As, Pb Na, Mg, V, Ni, Ba, Cr, etc.) detected during a fog-haze
event showed that their risks evaluated on children and adults exceed the precautionary
level of 10−6 by factors of 1.32 and 5.29, respectively [116]. In addition, the presence of
O3, PMs, and NO2 in smog events increases the development of cardiovascular illnesses,
respiratory problems, and ischemic heart disease (IHD), especially for those who suffer
from various health problems [196,197].

6.3. Transportation and Economy

Fog affects a wide range of human activities. It may cause high costs, inconvenience,
and even death [198]. It reduces visibility which acts as a barrier for driving, sailing, or even
flying [199]. The total financial and human loss for fog-related transport accidents (sea, air,
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and land) is approximately the same as that of tornadoes, hurricanes, and winter storms in
some cases [11,56]. Adverse visibility and ceiling conditions lead to 35% of weather-related
accidents in civil aviation and cause, on average, 168 mortal casualties per year. In fog-prone
regions, fog is cited up to 10% of the time as the principal source of accidents, especially
in multiple-vehicle crashes. In the case of dense foggy events, airports refuse to accept
planes and cancel take-offs due to security reasons such as the cases reported in Canada
and the US [6,200]. This may cost the airlines between USD 5,000 and USD 25,000 for any
delayed or canceled flight. Concerning sea transportation, many shipping operations are
either stopped or slowed-down in the case where the visibility is lower than 0.5 km, and
the economic losses typically range between USD 10,000 and USD 25,000/day/ship and
cost millions of dollars for moderately active ports [11]. The estimation of the economic
losses in 2006 associated with dense fog events in the pre-Christmas period was at least
GBP 25 million at seven British airports. Approximately 50 people die yearly in Canada
due to vehicle accidents in which fog is the main cause. Fog-related accidents resulted
in 13,720 deaths between 1995 and 2004 in the US. The presence of fog led to 1122 fatal
air accidents and killed around 229 people in the US between 1982 and 2013. In addition,
the Aviation Safety Network reported that six planes have crashed in Iran due to poor
visibility conditions, and 353 persons have been killed since 1988 [201]. Overall, a huge
number of deaths is reported worldwide in fog-related ship collisions, vehicle crashes, and
aviation [199]. An annual increase in road accidents, deaths, and injuries was reported in
India between 2017 and 2019 due to reduced visibility during foggy events [202]. Fog also
has a direct impact on military rescue operations. It contributes to property damage, supply
delays, and event cancellation. It affects the travel time reliability and the operations of
schools and colleges [11,199].

Numerous studies were previously conducted to develop methods for artificially
removing fog from airports in the early 1970s. The main purpose was to see how fog can
be prevented from a specific area as in the airport or shipping port. Since fog is formed
in a narrow droplet size range, its dissipation might occur by increasing its droplet size
through coalescence processes. It is suggested that using specific amounts of hygroscopic
particles (e.g., coarse particles) such as sodium chloride (NaCl) ameliorates the visibility
and might be one of the possible ways for fog dissipation [203,204]. Plank et al. reported
another way for fog dissipation that is based on the turbulent mixing of dry air above the
inversion layer with the saturated air in the fog by a helicopter’s downwash [205]. Other
recent studies implemented the use of the acoustic field at airports for fog precipitation.
This technology helps to disperse the different phases of a fluid under specific conditions.
In the case the air is efficiently saturated, the droplet size increases (droplet coagulation)
under the influence of the acoustic field leading to fog precipitation [206].

6.4. Benefits

Despite the severe negative impacts of fog around the world, it proves its beneficial
impacts in terms of water applications, agricultural applications, and ecosystems. Fresh
water scarcity has become a major problem facing humanity and is expected to further
intensify due to the rapid increase in population density and climate change. Fog harvesting
started between 1901 and 1904 in South Africa, and continuous progress has been achieved
regarding this issue. The number of its research interests addressing technical aspects,
policies, community development, economics, and impacts has increased, in addition to the
increase in the operational fog water collection systems over time [207–211]. The number
of publications on fog water collection revealed a growing interest and has increased from
4 (between 1981 and 1990) to 223 (between 2011 and 2020), most of them focusing on the
experimental or technical part of fog collection [210]. An efficient option to overcome
this issue is fog water harvesting using either the standard fog collector (SFC) or the
large fog collector (LFC) using mesh nets (Rachel nets). The mesh materials can be nylon,
polyethylene, and polypropylene (Shade cloth) which are able to capture different quantities
of water from fog [212]. The size of the SFC, which was developed by Schemenauer and
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Cereceda, is 1 m2, while that of the LFC varies between 40 and 48 m2, and the ratio of
width to height must be between 2.5 and 3 [213]. The number of fog collectors depends
on many factors such as fog thickness, duration, and frequency, along with the water
demand and financial capacity. The collectors are placed perpendicular to the prevailing
wind [214]. The cost of the LFC is regulated by the price of mesh varying between USD
25 and 50 per 1 m2. Fog collection starts when fog droplets come into contact with the
mesh net standing perpendicular to the fog-carrying winds where they are impacted.
As fog droplets increase in size by coagulation, they find their way to the collection
reservoir by gravity. In the fog harvesting project in Morocco, the price of the mesh net
is USD 5/m2 due to the low-cost material. Successful fog harvesting projects performed
in Namibia [215], South Africa [216], Morocco [217], Chile [218], Saudi Arabia [219,220],
Egypt [221,222], Azerbaijan [223], Ecuador [224], Oman [225], Spain [226], etc., have proved
its possibility to be a potential alternative for conventional water resources, particularly
in dry regions characterized by high fog frequency. In some cases, water collected may
even adhere to potable quality standards, unless the fog collection is performed near
polluted environments (urban and industrialized areas) [227]. Fog collected at Cape is
found to be of high quality and fit for human consumption. Choosing the best and
optimal sampling site relies on many features as well including the terrain characteristics,
accessibility, potential to harvest the biggest fog volume, and the proximity to a water-poor
community [208,214]. Fessehaye et al. suggested that one of the suitable locations can
be a high mountain range close to a coastline [208]. The yield of the collector water is in
turn dependent on the persistence of high-density foggy events and the moisture content.
The most important aspects that should be taken into account regarding the water quality
are the chemical composition of fog water and the probable alteration in fog composition
during storage [214,216]. So far, no negative impacts on vegetation, animals, humans, and
ecosystems have been reported in fog harvesting projects [214]. Additionally, the deposition
of fog water is found to be critical to agricultural operations in Mexico, Chile, and other
countries around the world. Fog water is found to be important for the growth of the giant
Redwood trees in the US (California). It plays an important role in the physical interactions
within plant canopies and their growth and physiological conditions [5]. Fog proved its
importance for the development and growth of tress and plant species in coastal and alpine
zones, flora and fauna in desert areas, and biota in coastal and alpine areas [89,178,228–231].
In addition, fog water is an important atmospheric deposition phenomenon for washing
and cleaning the atmosphere due to the continuous scavenging and depositing effects of
air pollutants.

7. Fog Collectors

Fog water collection has a long history. So far, several techniques and collectors have
been developed and applied for the collection of fog samples including active and passive
fog collectors. Passive collectors solve the problem of unavailable main power at the site.
However, they might be contaminated by an unknown fraction of drizzle, conventional
precipitation, and horizontal wind-driven rain. Many experiments employ passive fog
collectors in which wind is the principal factor that drives fog droplets to the sampler
where they are collected via their impaction on strings. The deposition plate is the simplest
passive fog sampler. It includes a horizontal plate on which fog droplets are settled. The
next fog collector is the string screen sampler. Fog droplets are collected through their
impaction on a string screen. The droplets adhere to the string, move down along the
string, and are collected in trays [232]. In active fog systems, the air flow containing
water droplets is forced by mechanical means using either forced flow through rotating
motors or fans and pumps to achieve the same end. The first type of active collector
is described by Jacob et al. [233]. In this type, fog condenses on the wires, the baffle
smoothes the flow of the air, and the fan pulls the air past the wires. Fog droplets collected
on the wires move down the wire and are then collected in a clean bottle. The Caltech
Active Strand Cloud Collector (CASCC) is another type of active fog collector developed
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by Daube et al. [234] and then modified to include droplet-size fractionation [235]. The
CASCC has been used in numerous field studies [16,18,236–244]. Fog water droplets are
collected by inertial impaction on Teflon strands. The strands are inclined 35 degrees
from the vertical. The collected droplets condense together and flow down into a Teflon
trough by aerodynamic and gravity forces. Samples are then delivered to the collection
bottle. Larger CASCCs are described in Fuzzi et al. [245], Minami and Ishizaka [246], and
Sasakawa and Uematsu [247]. A similar but smaller collector (CASCC2) was developed
by Demoz et al. [248]. However, problems might happen in the case where the ambient
temperature is below the freezing point of liquid water. In this case, the collected fog
droplets will be frozen immediately. To overcome this problem, collectors with heating
options are developed and applied in several experiments [249]. For this purpose, the
CalTech heated rod cloud water collector (CHRCC) is developed. The collection surface of
the CHRCC is made up of stainless steel rods that have the ability to be heated internally
in the case the temperature decreases below 4.5 ◦C. In this way, the collected fog water
droplets melt again and find their way to the collection bottle [250]. Heating should be
applied only when the ventilator is turned off to minimize the evaporation that alters the
collection efficiency. The characteristics and operating conditions of all these collectors are
described in Demoz et al. [248]. Further development involves the multi-stage fog collectors
that resolve more than one-size fraction (sf-CASCC) [236,251,252]. A five-stage cascade
rectangular jet impactor is also used by Straub and Collett [253] and Moore et al. [254]
for fog and cloud collection. The main drawbacks of an active fog collector are its high
consumption of electricity, and its deployment is restricted to sites that provide main power.
Therefore, it is necessary to develop a new active collector to overcome electricity problems.
For this issue, a new type of CASCC collector has been developed, known as MiniCASCC.
It is the smallest active fog collector that allows further decreasing the cost of building and
operating the device [255].

8. Fog Water Chemistry

Fog consists of water droplets suspended in the air whose diameters typically range
from 1 to 100 µm. The LWC is generally smaller than that of rain and cloud waters and
varies between 0.01 and 0.5 g m−3. Chemical species found in fogs exist in three phases as
gases, interstitial aerosols, and inside the droplet as liquids. The physico-chemical relations
among particles, gases, and fog droplets affect fog chemical composition. The incorporation
of gases and fine particles into the aqueous phase is a multi-step process. The molecules are
first diffused toward the liquid surface where mass transfer across the gas/liquid interface
and chemical reactions occur (if any). After that, the species are diffused into the fog
droplet [244,256]. The overall atmospheric concentration of any species “i” in fogs is given
by Equation (1) [257].

[Ci]t = [Ci]l ∗ LWC + Pi(R ∗ T)−1 + [Ci]a (1)

where [Ci]t is the total concentration of any species i (mol m−3), [Ci]l is the concentration of
the species “i” in the droplet phase (mol m−3), LWC is the liquid water content (dm3 m−3),
Pi is the partial pressure of species “i” in the gas phase (atm), R is the universal gas constant
(m3·atm K−1 mol−1), T is the temperature (K), and [Ci]a is the concentration of the species
“i” in the aerosol (mol m−3).

The LWC is an important microphysical parameter that controls fog chemistry. The
solute concentration in fog water is proportional to its atmospheric loading but inversely
proportional to the LWC which decreases with increasing the LWC. However, instead of
falling along a straight line, it has seen an exponential function of the trend. An increase in
LWC in fog water leads to a diluting effect of the solute [156,258–262]. However, LWC alone
cannot always explain the temporal evolution in terms of the concentrations [244,246]. The
latter is determined by many factors in addition to LWC such as the rate of the chemical
reactions, gas scavenging, air masses, and other microphysical properties. Other studies
show that no relation exists between LWC and DOC given the differences in gas and
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particle-phase organic carbon concentrations [22,244]. During the formation stage, the
concentration of pollutants tends to be the highest under the high-temperature inversion
where the LWC and the surface area per unit volume (S/V) are the lowest. However, the
ratio of surface to LWC is large, meaning higher scavenging efficiency with respect to the
dilution effect. Therefore, the concentrations stay at high levels. During the maturation
stage, the pollutant concentrations tend to decrease dramatically over the course of the fog
event. In this phase, the surface area will be higher leading to an increase in the scavenging
potential of pollutants and their subsequent deposition. Further, the LWC also rises with the
increase in the supersaturation levels in the maturation period of fog leading to a dilution
effect. During the dissipation phase, the surface area will be lower again, meaning that
the scavenging potential is lower, and thus, the deposition will be smaller. In addition, the
LWC is lower, and the ratio of surface to LWC increases, contributing to a gradual increase
in the pollutant concentrations [227,263].

8.1. Processes Controlling Fog Chemistry

Fog influences the ecosystem by concentrating, transforming, and depositing atmo-
spheric pollutants into the surface. The interactions between aerosols and fog alter the
chemical composition of fog droplets which is governed by aqueous-phase reaction rate
and the scavenging effect. Fog droplets can effectively trap pollutants near the surface
and enhance the formation of secondary aerosols through liquid-phase oxidation reactions
leading to an increase in the aerosol concentration [178,254,264]. Fog may also decrease
the ambient aerosol concentration by removing part of the aerosol particles through the
continuous scavenging and settling effects [116,265,266]. A decrease in the atmospheric
particle loading could increase the ambient supersaturation when ignoring the changes in
the source term of supersaturation. In this way, the CCN activation rate increases, altering
the chemical and microphysical characteristics of fog [168].

8.1.1. Oxidative Reactions

Fog droplets are considered efficient scavengers of boundary pollutant layers and
may provide a favorable environment to produce strong acids through aqueous-phase
reactions [22,154,266]. It is evident that aqueous-phase chemistry in fog droplets could lead
to a substantial formation of SOA material by transforming volatile gas-phase species to
less volatile (semi-volatile) material that remains in the particle phase upon drop evap-
oration [267]. The size of the new products is larger than their original size [184]. The
aqueous-phase oxidation is of special interest for SO2 and NO2 during the occurrence of
fogs. The production of S(VI) from the oxidation of S(IV) is one of the most important
liquid-phase reactions altering fog acidity, reducing visibility, and causing negative effects
on human life and climate [233,266,268]. The production of sulfate may occur in both
phases; however, it will be faster in the aqueous phase. One possible mechanism for the
oxidation of SO2 includes the gas-phase oxidation of SO2(g) to sulfuric acid (H2SO4(g)),
followed by condensation of H2SO4(g). Another possible mechanism might be the disso-
lution of SO2(g) into an aqueous solution to form sulfurous acid (H2SO3(aq)), followed by
the aqueous conversion of the latter to H2SO4(aq). The production of nitrate (NO−

3 ) is also
possible during fog events through an aqueous-phase reaction. Even though the direct
oxidation of nitrogen dioxide (NO2) and nitric oxide (NO) is theoretically possible, their
kinetics are very slow to produce significant amounts of NO−

3 . The high NO−
3 amount

produced through the aqueous-phase reaction is mainly derived from the dissolution of
nitric acid (HNO3) or dinitrogen pentoxide (N2O5) and nitrate aerosols. Another pathway
might be the oxidation of NO−

2 to NO−
3 in the liquid phase after the production of NO−

2
from nitrous acid (HNO2) [257,269]. Many oxidative reactions are kinetically affected by
catalysts and are photo-chemically induced in oxidative environments and in the presence
of trace metals that can act as redox catalysts. The major oxidants are H2O2, O3, hydroxyl
radical (OH.), O2 (auto-oxidation), and sunlight. The traces are organic materials such as
HCs, soot surfaces, and dust or metals such as Fe, Mn, and Cu.
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8.1.2. Acid–Base Interaction

The high acidity of fog water causes severe damage to the environment because of
its high potential to destroy materials, vegetation, and human health. Fog is considered
acidic when its pH is lower than 5 and alkaline when its pH is higher than 6. The main
strong acidic compounds emitted to the atmosphere are H2SO4 and HNO3. The acidity of
fog water differs from one region to another due to the presence of many acidic species.
In remote environments, fog water droplets are partly acidified due to the dissolution of
carbon dioxide (CO2). In regions where the pollution is critical, further acidification occurs
by scavenging H2SO4 and HNO3. In polluted and pristine atmospheres, low molecular
weight (LMW) carboxylic acids, such as formic and acetic acids, are the major contributors
to increased fog water acidity. Carbonyls and dicarbonyls also have a significant role in
increasing acidity due to their high levels in the air and their capability to react with the
dissolved SO2. However, the presence of some alkaline species (especially NH+

4 , Ca2+, and
Mg2+) titrate and neutralize the free acidity under high nitrate and sulfate conditions. They
react with HNO3 and H2SO4 at high humidity to produce concentrated ammonium and
sulfate salt droplets. A substantial fraction of sulfur dioxide also reacts with dust particles
to form sulfate. Thus, dust aerosols have an important role in neutralizing fog acidity. So,
in a way, the presence of fog leads to efficiently neutralizing its acidity [268].

8.1.3. Fog Scavenging

Fog scavenging is the process through which the suspended particles in the atmo-
sphere are transferred into the aqueous phase of fog water [270]. Organic matter in fog
droplets comprises a wide variety of compounds that might enter fog drops either through
particle scavenging or through absorption from the gas phase, depending on whether
the organic compound is found primarily in the gas or particle phase in the atmosphere;
therefore, its entry route into fog drops will differ. Fog scavenging processes reduce the
atmospheric loading of aerosols by promoting wet removal and modifying the particle
size distribution of aerosols and their hygroscopicity. Previous studies show a decrease
of 78% and 65% for ultrafine and accumulation-mode particles, respectively, before and
after fog formation [271,272]. This proves the effective scavenging impact of fog on air
pollutants and its beneficial effect in washing and cleaning the atmosphere. Fog scavenging
mainly takes place either through nucleation scavenging or impaction scavenging. The
latter occurs when the interstitial particles (non-activated particles) are incorporated into
fog droplets by collision with a droplet, with possible collection mechanisms like inertial
impaction, phonetic effects, and Brownian diffusion. However, the former occurs when-
ever aerosols acting as CCN are activated to generate fog droplets in a supersaturated
atmosphere. This pathway mainly dominates in fog aerosol scavenging [259,273]. The
scavenging efficiency of different species varies between different chemical species and
mainly depends on their water solubility. Studies reveal that fog scavenging removes more
water-soluble inorganic components than organic matter [185]. Lower efficiency is observed
for carbonaceous hydrophobic species like EC or BC, and higher efficiency is observed
for water-soluble species such as SNA [185,266,273]. For instance, the highest scavenging
efficiency is observed for nitrate, while that of sulfate is lower [273]. The overall mass
scavenging efficiency (MSE), defined as the fraction of PM (expressed as mass concentra-
tions) incorporated into droplets, is a function of particle size and composition and further
depends on other conditions (e.g., peak supersaturation, particle number concentration)
within the fog. In fogs, two methods can be used to measure the MSE. In the first method,
MSE is evaluated from the difference in chemical composition in fog water and interstitial
aerosol reservoirs by performing a parallel sampling during foggy events [142,265,274–276].
In the second method, MSE is calculated from the difference in aerosol concentration pre-
and post-fog. The scavenging ratio differs from one species to another. Species having
higher hygroscopicity and low vapor pressure tend to have higher MSE [142,273,277].
During atmospheric transport, oxidation processes increase the hydrophilic properties of
the particles, while coagulation and condensation processes increase particle size. Both
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processes are able to ameliorate the scavenging efficiency of aged fog compared to fresh
particles, particularly in the case of EC which tends to be hydrophobic and small in size
when originally formed. For instance, highly polluted areas with fresher soot are more
likely to have lower EC scavenging efficiency, while more aged material will be highly
scavenged [22]. Further, there is a relation between the scavenging efficiency and solubility
of organic compounds. The efficiency of molecular markers of vehicle exhaust is lower
than that of biomass burning, suggesting differences in the fog processing of carbonaceous
species released by different source types. Scavenging efficiencies have implications for the
atmospheric lifetimes of species released due to the fact that fog processing of fine particles
is an important link to the removal mechanisms by occult and wet deposition [276,278].
Regarding gas-phase scavenging, compounds with effective Henry’s constants larger than
1000 M atm−1 are highly subjected to scavenging and wet deposition. Even in compounds
with effective Henry’s constants lower than 1000 M atm−1, surface adsorption on the fog
droplet may enhance species uptake and contribute to wet deposition due to the large
specific surface area contributed to small droplets [266].

8.1.4. Fog Deposition

Wet deposition is the process in which particles and gases are removed from the
atmosphere by their impaction on the earth’s surface (fog water) or by their absorption into
droplets followed by droplet precipitation (rainfall). Wet deposition steadily decreases the
atmospheric pollutant loadings in fog droplets during a foggy event. However, the uptake
through evaporative water loss upon fog dissipation causes an increase in the pollutant
concentrations in the atmosphere. Most fog droplets evaporate before being deposited,
altering the chemical and physical properties of the residual particles. These particles
become more active, acting as future CCN and promoting future fog formation. This cycle
is termed the smog–fog–smog cycle [279]. The importance of the removal process depends
on the frequency of occurrence of fog, its duration, and the scavenging efficiency [280].
Fog droplets can be deposited though gravitational settling or turbulent deposition much
faster than fine particles are deposited through dry deposition processes. These processes
are highly important when fog is in contact with the surface. Fog deposition is equivalent
to or even larger than wet deposition fluxes via rain or snow due to the higher solute
concentrations [22,154].

8.2. Literature Studies

Several studies concerning the chemical composition have been carried out on fog
water in different countries worldwide such as France, Germany, China, Japan, India, and
the US [22]. Most of them are directed toward the inorganic fog analysis, while few of
them focus on the organic analysis. In the 1980s and 1990s, observational studies of fog
chemistry were mostly made in North America and Europe, with few studies in Japan
and Asia. Limited studies were performed on the organic analysis (pesticides, PCBs,
PAHs, and phenols), especially those in California [281,282], Dübendorf [283], Zürich [284],
Strasbourg [285], Colmar [262], North East Bavaria [286], Northwestern Mountains [287],
Shanghai [288], and Mount Taishan [289]. One of the most recent publications related to the
analysis of organic contaminants of different functional groups in fog water is illustrated in
Khoury et al. [18]. In this study, a new analytical approach is developed and optimized
for the extraction and analysis of 242 organic compounds of different functional groups
(acids, pesticides, PAHs, PCBs, and phenols) and then validated on different fog samples
taken from the Alsace region (Erstein, Bas-Rhin) and Fnaideq (Akkar, North-Lebanon).
Studies performed on the inorganic analysis of fog water are many including California,
Dubendorf, Corvallis, Po Valley, Mount Tremblant, New Delhi, Louisiana, San Joaquin,
Strasbourg, etc. [16,285,290–294]. Since 2005, there has been a strong focus on chemistry
in Asia, particularly in China [3,176,295–300], Japan [274,275,301,302], India [276,303,304],
South Korea [305], and Taiwan [306]. Some observations were reported in Europe from the
Czech Republic [307,308] and Poland [158,309]. At the same time, large field studies were
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conducted in Germany to investigate the fog and cloud processing of both inorganic and
organic pollutants [310–312]. Other locations include Puy de Dome in France [313] and
the Po Valley in Italy [314]. In North America, the study of fog chemistry continued in the
Central Valley of California [13,14,277,282], northern Arizona [315], the Texas-Louisiana
Gulf coast [155,316,317], and the Central California coast [318]. A few studies reported
observations in South America [20,319] and Africa [320]. Then, investigators began to
examine temporal changes in fog chemistry in several locations [158,274,309,321–325]. Also,
a field study on the influence of LRT of air masses on fog water composition was performed
in 2019 at the Lumbini site in Nepal. Recently, more studies on the inorganic analysis
have been conducted in several locations in India [326], Egypt [222], Switzerland [327],
Bangladesh [328], and Lebanon [329].

9. Conclusions

The objective of the current review is to provide the reader with a wide overview
of the physical and chemical aspects of fog water. It highlights the different fog types
and collectors, the activation process, forecasting and frequency, and the effects of cloud
condensation nuclei (CCN), along with its negative and positive impacts on human life and
the environment. Fog is a climatic phenomenon impacting the ecosystem, human health,
transportation, air quality, and environment balance. It is mainly influenced by the presence
of favorable weather conditions (humidity, temperature, boundary layer, wind speed, air
masses, etc.) along with the presence of pollution particles (CCN) that are critical to its
formation and maintenance. CCN either help in fog formation (increasing the cooling rate)
or lead to fog dissipation (decreasing the cooling rate) depending on their behavior. On one
side, fog negatively affects a wide variety of human activities due to the reduced visibility
(below 1 Km), leading to serious injuries and even deaths in some cases. On the other side,
fog has been found to be an important source of fresh water to overcome water scarcity and
in agricultural activities and the ecosystem by decreasing pollutant concentrations. The
number of research studies related to fog harvesting has increased over time, especially in
poor countries that suffer from water shortages. This is particularly vital for poor regions
where the water distribution infrastructure is inaccessible or poorly designed because of
inadequate rules and regulations by local governments. However, additional technical
work is still needed to advance the physical development of this sustainable technology
in order to find the optimal mesh type and structure (2D/ 3D) to maximize the water
yield. Fog chemistry has been widely studied for a long time and has expanded recently
to cover more countries. Most of the studies focus on the inorganic composition of fog
water, whereas few of them investigate the organic matter. Its chemistry is a function of the
droplet size which varies from case to case depending on the rate of the gas uptake, rate
of the CCN condensation, rate of the chemical reactions, etc. The fog droplet is composed
of a mixture of organic and inorganic species, resulting from the scavenging of those
particles. The particle scavenging efficiency mainly depends on its solubility (the degree
of hygroscopicity) and vapor pressure. The main fractions that are found in fog water
include organic and inorganic carbon, Humic-like substances (HULIS), and more recently
bacteria. Fog droplets are found to be an effective medium for microbial sustenance and
transport. More research should be performed on the analysis of fog biology (bacteria,
fungi, etc.) because of the limited number of papers regarding this issue. It is also necessary
to work more on developing new analytical protocols for the characterization of a wide
number of organic and biological contaminations in fog water. Furthermore, fog acts like a
reservoir where aqueous-phase reactions occur. Those reactions accumulate the oxidized
species which either increase or decrease the particle loadings after the foggy events. This
phenomenon leads to the loss of the species through the wet deposition or the formation
of new particles to promote future foggy events. Lots of studies have achieved notable
improvements in understanding the chemistry, mechanism, and nature of fog. However,
further studies are required to elaborate on the evolution of each fog type according to the
different phases (formation, maturation, and dissipation). Moreover, a wide number of
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studies have shown a decrease in fog frequency worldwide since 1980. The investigations
revealed two main reasons responsible for this decrease: either an improvement in air
quality (especially a decrease in sulfur dioxide) or an increase in the air temperature (caused
by the urban heat island). Fog modeling algorithms such as numerical weather prediction
(NWP) and artificial intelligence have helped to forecast fog. However, its prediction is still
incomplete given the intrinsic uncertainty in the initial conditions and physical parameters.
Thus, new models and techniques can provide more accuracy for fog forecasting. By
gathering all the information regarding the physical (life cycle, activation process, aerosol
impacts, etc.) and chemical (composition, chemical reactions, etc.) aspects of fog, further
achievements can be performed to better understand its evolution with time. Regarding
fog collection, it will be practical to add a feature for the active fog collectors to be operated
remotely by connecting them to a cellphone or smartwatch via Bluetooth. In spite of the
abundant study of this issue so far, it is still an open field for continuous development
and research.
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