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Abstract: Agroecosystems, accounting for more than one-third of arable land worldwide, play
an essential role in the terrestrial carbon (C) cycle. The development of agricultural practices,
which maximize soil C sequestration from the atmosphere, is receiving growing attention due to
the recognition of agroecosystems’ great potential to serve as sinks of atmospheric carbon dioxide
(CO2). In particular, cover crop and soil amendment applications are generating much interest
in mitigating climate change and enhancing agricultural ecosystem services. The objective of this
study was to evaluate the effects of winter cover crop and soil amendments, including broiler litter
(BL), flue gas desulfurization (FGD) gypsum and lignite, on soil CO2 flux from cropping systems in
southeastern USA, where related studies were limited. A field study was conducted from 2019 to
2021 in a Mississippi upland corn cropping system with measurements of soil CO2 flux, moisture and
temperature during cash crop growing seasons. We observed high temporal variability in soil CO2

flux with flux peaks between late June and early July, which is likely due to the temporal changes
in soil moisture. A significant increase in soil CO2 flux was found with BL application (p < 0.05).
Co-application of FGD gypsum and lignite with BL-reduced soil CO2 flux by 15–23% but did not
fully eliminate the rising effects. Significantly higher soil CO2 flux and lower soil temperature were
observed from fields with cover crops than those without cover crops in the third year of this study
(p < 0.05), which is likely attributed to the higher organic C content accumulated in soil with cover
crops. Future research should assess year-round soil greenhouse gas fluxes in both cash crop and
cover crop growing seasons using a high temporal resolution measurement scheme.

Keywords: broiler litter; flue gas desulfurization gypsum; lignite; daikon radish; wheat; crimson clover

1. Introduction

Agroecosystems in southeastern USA are the economic platform for a largely agriculture-
based society. Corn is the 3rd ranked cash crop in southeastern USA, with approximately
1,746,000 ha (4,315,000 acres) planted in 2016 [1]. In Mississippi, the average yield gap between
the potential and actual yield for corn production was 4.1 Mg ha−1 from 2012 to 2021 [2].
Developing regionally tailored agricultural management practices, which are safe, effective,
economical and sustainable, is necessary to close the crop yield gap and increase food security,
as well as to improve soil health, reduce environmental degradation, and increase cropping
system carbon (C) storage to mitigate global climate change [3].

Upland soils are generally low in nutrient content, organic matter (OM), and basic cations,
and they are vulnerable to water and nutrient losses through soil erosion and runoff [4].
Fertilizer application, especially nitrogen (N), is required for cropping systems in upland soils
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in order to reach the desired crop yield. Currently, only 47% of N fertilizer applied to the
cropping systems is converted into crop products, meaning more than half of the N is lost into
the environment and producing threats to air, water, soil and biodiversity [5]. Interest in using
broiler litter (BL) as an organic fertilizer has been increasing due to escalating fertilizer prices.
More than two-thirds of USA broiler production originates in southeastern USA, making BL
increasingly used as a fertilizer source in this area. Studies have shown that crop production,
such as corn and cotton, from the fields applied with BL at an appropriate rate is as good
as or even better than those from systems subjected to commercial N fertilizers [6–8]. BL
provides essential nutrients for crop growth, including N, phosphorus (P), potassium (K),
copper (Cu) and zinc (Zn). However, it also leads to nutrient accumulation in the surface soils
and increases potential nutrient transport, such as P and dissolved organic C in runoff [9–11].
Moreover, the large quantity of readily mineralizable N in BL is highly susceptible to the
volatilization of ammonia (NH3), surface runoff, and leaching [12–14]. Integrating one or
more agricultural practices to prevent these adverse environmental effects while maintaining
crop production is essential for upland soils.

Cover crop is an agronomically and environmentally sound management practice that
is recognized for its benefits in reducing nutrient loss from the agroecosystem to the envi-
ronment, as well as improving soil quality, and providing pest and weed controls [15,16]. A
meta-analysis covering 372 sites in different countries and climate zones demonstrated that
cover crops significantly decreased N leaching and increased soil organic C sequestration,
while one potential drawback of cover crops was grain yield reduction of approximately
4%, which could be avoided by planting mixed legume and non-legume cover crops [17].
The adoption of cover crops in the southeast of the USA has been low, due to limited
region-specific research and resistance to unproven practices. A few existing studies in
this area revealed that integrating cover crops in the upland cropping systems increased
surface soil total C content, cumulative infiltration, water aggregate stability, heterotrophic
plate count bacteria and reduced bulk density and penetration resistance, while the effects
on crop lint yield were not consistent [18,19]. The integration of winter cover crops into a
cotton system in Mississippi upland soil has been reported to significantly reduce nitrate
(NO3

−) leaching (by 21–45%) during the cover crop growing period, but the cover crop
residues increased P runoff during cotton growing season [4].

The co-application of soil amendments, flue gas desulfurization (FGD) gypsum and
lignite with cover crops could be a potential solution to further mitigate agricultural
pollutants as these industrial by-products have been proposed as sustainable practices to
reduce nutrient loss, especially for P and N. FGD gypsum is a coal combustion by-product
of the coal industry, which has been applied in soil systems to reduce nutrient losses and
improve soil physical properties (e.g., increase soil infiltration) [20]. High calcium ions
(Ca2+) in gypsum can form insoluble complexes with nutrients, especially P [21,22], and
promote soil aggregates, stabilize soil structure and increase water infiltration [23]. Lignite
(brown coal) is a low-grade coal with low heating values, high recalcitrant C content, and
an acidic nature. The application of lignite with manure-based fertilizer reduces NH3
volatilization and soluble P and N in surface runoff by lowing soil pH and chelating
nutrients with organic acids [24–26].

Limited studies have investigated the interactive effects of winter cover crops and soil
amendments on the naturally vulnerable and nutrient-deficient upland soils in southeastern
USA with a humid subtropical climate. Available studies mainly focus on crop growth and
yield [7,19,27], soil physical and biological properties [18,27], and nutrient loss [4,28], while
the effects on greenhouse gas flux are largely unknown. In addition, data on greenhouse
gas flux from agricultural management practices in southeastern USA are very scarce [29].
Soil CO2 flux, a major component determining agroecosystem net CO2 flux, is likely to
be influenced by cover crop, soil amendment and their combined effects, since these
management practices can alter soil biogeochemical properties (such as organic C content
and quality, nutrient availability, pH, water content, aeration, microbial communities, etc.),
which are important factors regulating soil CO2 production and flux [30–34]. Thus, the
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objective of this study was to evaluate the effects of winter cover crops and soil amendments
(including BL, FGD gypsum and lignite) on soil CO2 flux from an upland corn cropping
system in southeastern USA.

2. Materials and Methods
2.1. Study Site and Experimental Design

The study site was located at the Mississippi Agricultural and Forestry Experiment
Station near Pontotoc, MS (34◦14′ N, 88◦99′ W). The soil is classified as Falkner silt loam soil
(fine-silty, siliceous, active, thermic Aquic Paleudalfs). The site is comprised of marginally
productive upland soil with approximately 3% slope and managed under rainfed conditions
with no tillage. The climate is subtropical and humid with annual mean precipitation of
1483 mm and annual mean air temperature of 15.9 ◦C [35]. Monthly temperature and
precipitation of the study site in 2019, 2020, and 2021 are shown in Figure 1.
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Figure 1. Monthly temperature and precipitation from January 2019 to December 2021. The solid
line is the average daily maximum temperature of the month; the dashed line is the average daily
minimum temperature; grey bars are monthly precipitation (Data source: Mississippi State University
Extension, Delta Agricultural Weather Center).

In spring 2019, before initiating the experiment and to provide baseline characteri-
zation, 20 soil cores were randomly taken at 0–15 cm depth using a 2.5 cm diameter soil
probe and thoroughly mixed to form one composite sample from the experimental area.
This composite soil sample was air-dried, ground to pass a 2.0 mm mesh, and analyzed
for soil chemical properties (Table 1). Soil pH was measured on a 1:1 soil:calcium chloride
solution (0.05 M) using a combination electrode (Accuphast electrode, Fisher Scientific,
Pittsburg, PA, USA). Total C and N were measured using a Vario Max Cube Elemental
CNS Analyzer (Elementar Americas, Inc. Mt. Laurel, NJ, USA). Soil P, K, Ca and Mg were
extracted with Mehlich 3 procedure [36], and elements were quantified using inductively
coupled plasma spectroscopy (ICP, Varian Analytical Instruments, Walnut Creek, CA, USA).
Cation exchange capacity (CEC) was determined with the modified ammonium acetate
compulsory displacement method [37].

In 2019, a study with a split-plot block design (Figure 2) was applied to the site in a
2 × 7 factorial scheme (considering cover crop vs. no cover crop as main plot and 7 rates of
soil amendment and fertilizer as subplot) with three replicates (Figure 1). Three main plots
(blocks) assigned for cover crop treatment (WCC) were planted with deep-rooted, winter
cover crop mixture of daikon radish (Raphanus sativus var.), wheat (T. aestivum L.), crimson
clover (Trifolium incarnatum) with the rate of 28, 67 and 3.9 kg ha−1, respectively, soon after
the cash crop was harvested for grain and the stalks shredded. Cover crops were killed
chemically 2 to 3 weeks before planting main crops. Three other main plots assigned for no
cover crop treatment (NCC) were left fallow between cash crop growing seasons. Seven
subplots in each block were assigned to treatments with different rates and combinations of
soil amendments and fertilizers, including control; three rates of FGD gypsum and lignite
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(2:1 ratio) with urea ammonium nitrate (UAN); BL only; BL mixed with FGD and lignite;
and UAN only (Table 2). The size of each subplot was 3.8 × 9 m2. The alleyways between
blocks were 6 m wide.

Table 1. Background chemical characteristics of soil at 0–15 cm depth and the mean of chemical
properties of poultry litter, FGD gypsum and lignite across years.

Parameters Soil Poultry Litter FGD Gypsum Lignite

pH 6.22 7.1 7.2 5.5
Moisture (%) 28.1 25.7 12.3 24
TC (g kg−1) 8.1 327 0.26 664
TN (g kg−1) 0.82 32.3 0.0 2.6
C/N ratio 9.9 10.2 – 255
P (g kg−1) 0.0082 15.2 110 0.43
K (g kg−1) 0.025 28.2 0.42 1.2
Ca (g kg−1) 2.5 21 240 4.9
Mg (g kg−1) 0.11 5.6 622 2.3
CEC (cmolc

kg−1) 14 – – 75

TC: total carbon; TN: total nitrogen; CEC: cation exchange capacity.
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Figure 2. Study site located in Pontotoc, MS (left), and the experiment design plot showing the cover
crop main plots and soil amendments subplots (right, not to scale). WCC: with cover crop; NCC: no
cover crop.

Table 2. Application rates of soil amendment and fertilizer of seven treatments.

No. Treatment Soil Amendment and Fertilizer Rates

1 Control No soil amendment and fertilizer applied
2 1T FGD + L + FRT 6.4 kg FGD/plot + 3.2 kg lignite/plot + UAN 1

3 2T FGD + L + FRT 12.7 kg FGD/plot + 6.4 kg lignite/plot + UAN 1

4 3T FGD + L + FRT 19.1 kg FGD/plot + 9.5 kg lignite/plot + UAN 1

5 BL 37.6 kg broiler litter/plot

6 BL + FGD + L 37.6 kg broiler litter/plot + 6.4 kg FGD/plot +
3.2 kg lignite/plot

7 FRT UAN 1 only
1 Urea ammonium nitrate (UAN) was applied 168 kg ha−1 at V6 corn growth state in May.

The cash crop corn (Zea maize L.) was planted in April and harvested in September
(Table 3). In each subplot, four rows of corn were planted with 0.75 m row spacing. Poultry
litter and UAN solution (urea ammonium nitrate, 33% N) were applied in early May.
Poultry litter was collected fresh from the local broiler chicken operation each year. The
FGD gypsum was obtained from a southern company power plant and had fine-grain,
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white and sand-like texture. Lignite was received from the Mississippi Coal Company.
Major chemical characteristics of BL, FGD gypsum and lignite are provided in Table 1.

Table 3. Field operations information during three years of study.

Year
Cover Crop Corn Broiler Litter

UAN, FGD
Gypsum and

Lignite

Planting Terminating Planting Harvesting Cultivar Applied Date Applied Date

2018–2019 12 October 2018 14 March 2019 6 April 2019 20 September 2019 Dekalb 63–84 5 May 2019 6 May 2019
2019–2020 14 October 2019 28 March 2020 9 April 2020 11 September 2020 Dekalb 63–84 2 May 2020 3 May 2020
2020–2021 18 October 2020 20 March 2021 12 April 2021 17 September 2021 Dekalb 66–40 3 May 2021 4 May 2021

UAN: urea ammonium nitrate.

2.2. Soil CO2 Flux

During the cash crop seasons of 2019–2021, soil CO2 flux was measured from each
subplot on 30 May, 19 June, 9 July, 1 and 21 August in 2019, 16 June, 6 and 22 July; 12 August
in 2020; and 26 May, 30 June, and 16 August in 2021. Polyvinyl chloride collars (20 cm
diameter, 11.4 cm height) were GPS-located and pre-placed in the 3rd crop row and centered
lengthwise in each subplot after corn was planted. Collars were inserted into the soil and
approximately 5 cm remained above the soil surface, with no corn growing within collars.
The collars stayed in the field during corn growing season, were removed for harvest, and
replaced in the same position the following year. Twenty-four hours prior to gas measurement,
plant material within collars was clipped to less than 5 cm height to exclude the effects of
plant respiration and photosynthesis. Before each measurement, collar height above the soil
surface was taken at every 90◦ for 4 locations inside each collar and the mean was used to
correct the actual volume within each chamber for flux calculation.

To take soil CO2 flux measurements, a semi-automated chamber (8200-01S, LiCor Inc.,
Lincoln, NE, USA) was situated tightly on top of the pre-placed collars. The chamber was
paired with an infrared analyzer, the LI-8100A soil CO2 flux system (LiCor Inc., Lincoln,
NE, USA), to monitor CO2 concentration inside the chamber once every second for 90 s.
The chamber was pre-purged with air for 5 s before analysis and post-purged for 30 s with
air between measurements to avoid cross-contamination between subplots. The automated
chamber closing/opening, purge and analysis period were controlled via Wi-Fi-connected
computer software provided by LiCor. SoilFluxProTM (LiCor Inc., Lincoln, NE, USA) was used
to calculate soil CO2 flux over time based on the exponential increase in CO2 concentration.
All flux measurements were taken from approximately 9 a.m. to noon to minimize inter-day
variation caused by the diurnal pattern of soil CO2 flux.

2.3. Soil Temperature and Moisture

Soil temperature at 5 cm depth was measured in the field along with each gas measure-
ment event using the LI-8100A temperature probe attached to the CO2 flux system. The probe
was inserted into the soil within 20 cm outside of the collar and temperature was recorded by
the system at the same intervals that it measured CO2 and H2O vapor concentrations.

Along with the flux measurements, triplicate soil samples (0–15 cm) were taken within
6 m of soil collars near plant roots from each subplot using a soil probe with an inner
diameter of 4 cm. Soil samples from the same subplot were placed in a sterile plastic bag
and transported in a cooler to the laboratory in the USDA-ARS Genetics and Sustainable
Agriculture Research Unit for analysis. After arriving in the laboratory, soil samples were
mixed and homogenized in the plastic bag with root and recognizable organic fragments
greater than 2 mm in diameter removed. Soil moisture (gravimetric water content; water
weight/dry soil weight × 100%) was determined from mass loss of 10 g subsample oven
dried at 104 ◦C for 24 h.
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2.4. Data and Statistical Analysis

Data and statistical analyses were performed using the R program (v 4.2.0, R Core Team
and the R Foundation for Statistical Computing, Vienna, Austria). Cumulative CO2 flux between
the first and last measurements of each year was calculated, that is, 30 May–21 August in 2019
(in total 84 days), 16 June–12 August in 2020 (in total 58 days) and 26 May–16 August in 2021 (in
total 83 days). Briefly, the CO2 flux was first converted to daily flux with a unit of g C m−2 d−1.
Linear data interpolation was applied between flux measurements using na.approx function in
the R package “zoo” v. 1.8-9 [38]. The cumulative flux during the measurement period of each
year was then calculated as the sum of the interpolated daily CO2 flux.

Due to the distinct gas and soil sampling schedules in different years, the statistical
analyses were conducted for three years separately. For each year, soil CO2 flux, soil
temperature, and soil moisture were analyzed by a three-way repeated measurements
ANOVA with cover crop, soil amendment and sampling time as independent variables,
using lmer function in R package “lmerTest” v. 3.1-3 [39]. The same function was applied
for the two-way ANOVA of cumulative CO2 flux with cover crops and soil amendments
as independent variables. Q-Q plots were made to visually check data normality. Data
were transformed with a natural logarithm function to meet the assumptions of ANOVA
where needed. Tukey’s tests were then conducted for multiple means comparisons, using
the emmeans function in R package “emmeans” v 1.7.5 [40]. The relationships between
soil CO2 flux and temperature and moisture were tested using Pearson’s product-moment
correlation. Data plots were generated using R package “ggplot2” v. 3.3.6 [41].

3. Results
3.1. Soil Temperature and Moisture

Soil temperature showed significant temporal variation among measurement days for
all three years (p < 0.001, Table 4), ranging from 26.7–35.5, 24.9–29.1 and 24.7–27.7 ◦C in
2019, 2020 and 2021, respectively (Figure 3). The effects of amendment treatment on soil
temperature were not as evident as that of the measurement day but were significant in all
three years (p < 0.01). The highest soil temperature was found between control and FRT
treatment, while the lowest was among treatments with BL (BL and BL + FGD + L), and
3T FGD + L+FRT in the three years. The cover crops did not have significant effects on
soil temperature in 2019 and 2020, but a notable difference between WCC (25.6 ± 0.1 ◦C,
mean ± standard error) and NCC (26.2 ± 0.1 ◦C) was seen in 2021 (p < 0.05). Significant
interactions among cover crop, amendment treatment and measurement day were not
found, except for the interaction of cover crops and measurement days in 2021 (p < 0.001,
Table 4). Notably, high soil temperature values were observed during the first measurement
event in 2019, possibly due to the high air temperature of late May in 2019 (Figure 1), and the
canopy of cash crops was not fully developed to provide shade to lower soil temperature.

Table 4. Effects of cover crop, amendments, time and their interactions on soil parameters. The num-
bers presented in the table are p values from the ANOVA test. *—p < 0.05, **—p < 0.01, ***—p < 0.001,
and NS—not significant.

Soil Temperature Soil Moisture Soil CO2 Flux

2019 2020 2021 2019 2020 2021 2019 2020 2021

Cover Crop
(CC) 0.594NS 0.314NS 0.036 * 0.402NS 0.236NS 0.987NS 0.197NS 0.844NS 0.033 *

Amendment
(A) 0.001 ** <0.001 *** 0.002 ** 0.108NS 0.335NS 0.624NS <0.001 *** 0.213NS <0.001 ***

Time (T) <0.001 *** <0.001 *** <0.001 *** <0.001 *** <0.001 *** <0.001 *** <0.001 *** <0.001 *** <0.001 ***
CC × A 0.928NS 0.940NS 0.778NS 0.906NS 0.926NS 0.507NS 0.15NS 0.775NS 0.557NS
CC × T 0.619NS 0.487NS <0.001 *** 0.301NS 0.737NS 0.907NS 0.185NS <0.001 *** 0.365NS
A × T 0.929NS 0.926NS 0.335NS 0.189NS 0.699NS 0.659NS <0.001 *** <0.001 *** <0.001 ***

CC × A × T 0.996NS 0.998NS 0.817NS 0.279NS 0.863NS 0.342NS 0.511NS 0.15NS 0.914NS
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Significant differences in soil moisture were only observed among measurement 
days (p < 0.001) but not found either with or without cover crops or among amendment 
treatments (Table 4). The interactive effects of cover crop, soil amendment and measure-
ment day on soil moisture were not significant. Soil moisture ranged 6.4–13.6, 10.3–22.2 
and 14.7–21.9% in 2019, 2020 and 2021, respectively (Figure 4), with the highest soil mois-
ture generally observed in late July and early August. 

Figure 3. Soil temperature at sampling events. Red, blue and blacklines represent soil temperature in
2019, 2020 and 2021, respectively. Solid cycles are the mean of replicates, and error bars are standard
errors (n = 3). Red, blue and black letters show the results of Tukey’s multiple comparison tests
for 2019, 2020 and 2021, respectively, with no letter in common denoting significant differences at
α = 0.05 (ns: no significant difference). WCC: with cover crop; NCC: no cover crop.

Significant differences in soil moisture were only observed among measurement
days (p < 0.001) but not found either with or without cover crops or among amendment
treatments (Table 4). The interactive effects of cover crop, soil amendment and measurement
day on soil moisture were not significant. Soil moisture ranged 6.4–13.6, 10.3–22.2 and
14.7–21.9% in 2019, 2020 and 2021, respectively (Figure 4), with the highest soil moisture
generally observed in late July and early August.
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Figure 4. Soil moisture at sampling events. Red, blue and black lines represent soil moisture in 2019,
2020 and 2021, respectively. Solid cycles are the mean of replicates, and error bars are standard errors
(n = 3). Red, blue and black letters show the results of Tukey’s multiple comparison tests for 2019,
2020 and 2021, respectively, with no letter in common denoting significant differences at α = 0.05 (ns:
no significant difference). WCC: with cover crop; NCC: no cover crop.

3.2. Soil CO2 Flux

Similar to soil temperature and moisture, significant differences in soil CO2 flux were
constantly observed among measurement days (p < 0.001, Table 4). Averaged across the
cover crop and soil amendment treatment, the soil CO2 flux in 2019 was significantly
higher on 19 June (14.6 ± 3.0 µmol m−2 s−1, p < 0.05) and significantly lower on 21 August
(1.6 ± 0.2 µmol m−2 s−1, p < 0.05) compared to flux on the other measurement days, ranging
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from 4.7 to 7.5 µmol m−2 s−1; in 2020, the flux significantly decreased (p < 0.05) in the order of
7.5 ± 0.2 µmol m−2 s−1 on 6 July, 6.5 ± 0.2 µmol m−2 s−1 on 22 July, 5.9 ± 0.2 µmol m−2 s−1

on 12 August, and 4.7± 0.2 µmol m−2 s−1 on June 16; in 2021, the order was 9.9± 1.0 µmol
m−2 s−1 on June 30, 6.9 ± 0.4 µmol m−2 s−1 on 26 May, and 4.7 ± 0.3 µmol m−2 s−1 on
August 16.

The interaction between soil amendments and measurement days was also found to
be significant for all three years (p < 0.001, Table 4), indicating that temporal changes in CO2
flux from plots that received various soil amendments were different, which can be seen in
Figure 5. CO2 flux peaks are evident in the plots under BL treatment on 19 June 2019 both
with and without cover crops (51.0± 24.3 and 41.8± 5.6 µmol m−2 s−1). The peak flux was
25% (with cover crop) and 39% (without cover crop) lower by integrating FGD gypsum and
lignite with BL application. This pattern was not observed in 2020; moderate flux peaks
appeared on 30 June 2021 for BL and BL + FGD + L treatments with and without cover
crop, ranging from 14.6 to 23.7 µmol m−2 s−1.
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Figure 5. Soil CO2 flux. Red, blue and black lines represent soil CO2 flux in 2019, 2020 and 2021,
respectively. Solid cycles are the mean of replicates, and error bars are standard errors (n = 3). Red,
blue and black letters show the results of Tukey’s multiple comparison tests for 2019, 2020 and 2021,
respectively, with no letter in common denoting significant differences at α = 0.05 (ns: no significant
difference). WCC: with cover crop; NCC: no cover crop.

The significant effects of soil amendment on soil CO2 flux were observed in 2019 and
2021 (p < 0.001) but not in 2020 (Table 4). Averaged flux across cover crops and measurement
days for BL and BL + FGD + L treatments were 13.7 ± 3.9 and 10.5 ± 2.5 µmol m−2 s−1,
respectively, in 2019, which were significantly higher (p < 0.05) than flux under other amend-
ments (3.6–4.0 µmol m−2 s−1, Table S1). Similar differences were found in 2021 with flux
for BL and BL + FGD + L treatments of 12.2 ± 1.9 and 11.0 ± 0.9 µmol m−2 s−1, respec-
tively, and other treatments in the range of 4.8–6.4 µmol m−2 s−1. The effects of cover crops
on soil CO2 flux were not shown until the third year (Table 4), with a significantly higher
flux of 7.5 ± 0.5 µmol m−2 s−1 with cover crops (average across amendment treatments and
measurement days) than 6.9 ± 0.7 µmol m−2 s−1 without cover crops.

3.3. Cumulative CO2 Flux

Analysis of variance for the cumulative CO2 flux showed no significant interaction
of cover crops and soil amendments (p > 0.05, Table 5, Figure 6). The strong effects of
soil amendment on flux were observed in 2019 and 2021 (p < 0.001) but not in 2020. Av-
eraged across cover crops and no cover crops, cumulative CO2 flux for treatments BL
were 22.44 ± 4.23 and 20.11 ± 17.15 g CO2-C m−2 in 2019 and 2021, respectively. Inte-
gration with FGD gypsum and lignite reduced the cumulative flux to 15.90 ± 1.88 and
17.15 ± 1.02 g CO2-C m−2 in 2019 and 2021, respectively. The two treatments that received
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BL had significantly higher cumulative flux than other treatments without BL, which had
cumulative flux in the range of 5.58–5.92 g CO2-C m−2 in 2019 and 7.81–9.77 CO2-C m−2

in 2021. Cover crops marginally increased cumulative soil CO2 flux in 2019 and 2021
(p < 0.1). Averaged cumulative flux in 2019 was 10.25 ± 1.86 g CO2-C m−2 with cover crop,
and 8.86 ± 1.44 g CO2-C m−2 without cover crop, while the values were 11.45 ± 1.01 and
10.83 ± 1.56 g CO2-C m−2 in 2021. Cover crops did not affect cumulative soil CO2 flux
in 2020.

Table 5. Effects of cover crop, amendment and their interactions on cumulative CO2 flux. The numbers
presented in the table are p values from the ANOVA test. ***—p < 0.001, and NS—not significant.

2019 2020 2021

Cover Crop (CC) 0.081NS 0.857NS 0.094NS
Amendment (A) <0.001 *** 0.218NS <0.001 ***

CC × A 0.408NS 0.619NS 0.554NS
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Figure 6. Cumulative CO2 flux. Red and blue bars represent the mean of replicates, and error bars
are standard errors (n = 3). Lower case letters with no common letters denoting significant differences
of Tukey’s multiple comparison tests at α = 0.05 (NS: no significant difference). WCC: with cover
crop; NCC: no cover crop.
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3.4. Relationships between Soil CO2 Flux and Soil Parameters

Soil temperature and moisture are the most common abiotic variables affecting soil
CO2 flux. The relationships between the natural logarithm of flux and soil temperature and
moisture from each plot on all the measurement days are shown in Figure 7. The Pearson
product-moment correlation revealed a significantly positive correlation between soil CO2
flux and moisture (r = 0.382, p < 0.001). The correlation of CO2 flux with soil temperature
was not as strong as that with moisture (p = 0.054), and the flux tended to decrease when
soil temperature increased.
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4. Discussion

Accounting for more than one-third of arable land worldwide, agroecosystems play an
important role in C storage and release of terrestrial C cycle [42,43]. Soil CO2 flux, together
with plant photosynthesis and respiration, determines ecosystem net CO2 flux and whether
an agroecosystem serves as a sink or source for atmospheric CO2. It is predicted that the
agroecosystems can store up to 1 GT C per year, which offsets approximately 10% of annual
global greenhouse gas emissions [44]. Recognizing the great potential of agroecosystems
to serve as sinks of atmospheric CO2 and mitigate climate change, the development of
agricultural practices maximizing agricultural soil C sequestration from the atmosphere is
receiving growing attention. The implementation of these practices should be adapted to
local soil and climate conditions, management opportunities and site-specific trade-offs [3].
Soil CO2 flux is the product of microbial-mediated decomposition of organic matter [30,31],
and it is very sensitive to agricultural practices and varies with climatic conditions [45,46].

Our work is one of the few studies that evaluate the effects of sustainable practices
on soil CO2 flux in southeastern USA agroecosystems. Excluding the extreme values at
flux peaks, soil CO2 flux in this study ranged between 0.6–11.5 µmol m−2 s−1, which is
within the same order of magnitude as the reported values in other southeastern USA crop-
ping system: 0.8–5.8 µmol m−2 s−1 in a corn cropping system in northeast Alabama [47],
0.1 to 6 µmol m−2 s−1 in cotton cropping systems in northern Alabama [45], 7–14 µmol m−2 s−1

in a soybean cropping system in Mississippi [48] and 1.3–10.4 µmol m−2 s−1 in a corn and cotton
rotation field in Mississippi [49]. Another study conducted in the subtropical climate but located
in New South Wales, Australia had soil CO2 flux ranging between 2–16 µmol m−2 s−1 from
corn fields, similar to the values in our study [50].

4.1. Temporal Change in Soil CO2 Flux

Temporal variability in soil CO2 flux has been widely reported in the field studies of
both natural and managed ecosystems [45,48,49,51,52]. Similar with previous studies, the
measurement day has the most significant effect (p < 0.001) on soil CO2 flux of our study,
more so than cover crops and soil amendments (Table 4 and Figure 5). In cropping systems,
temporal variation in soil CO2 flux occurs mainly due to changes in environmental drivers,
as well as fertilizer application, crop harvest, tillage and other management events [45]. In
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our study, the flux temporal variability was likely attributed to the environmental drivers
(e.g., temperature and precipitation) but not agricultural management as major manage-
ment events did not occur during our measurement period (Table 3). This assumption
is further supported by the observed correlations between CO2 flux and soil moisture
(p < 0.001) and soil temperature (p = 0.0054, Figure 7). In our three-year study, the highest
flux of each year occurred between late June and early July (Figure 5), consistent with
another study in Mississippi [48].

Soil moisture and temperature, which are strongly regulated by air temperature and
precipitation, are considered the two most common abiotic variables affecting soil CO2
flux [31,53]. Soil moisture exerts influences on CO2 flux by regulating both biotic (microbial
aerobic and anaerobic respiration) and abiotic (nutrient transport and diffusion, and CO2
movement in the soil profile) processes [53,54]. Different correlations between CO2 flux
and soil moisture have been reported in previous studies [45,52,55]. It is generally accepted
that soil has the highest CO2 flux when soil-water-filled pore space (WFPS) is 60–75%, and
WFPS increases CO2 flux when it is below this optimal range (water limiting) but decreases
flux when above (aeration limiting) [54,55]. Soil moisture content during our measurement
period was 4.5–29%, equivalent to the WFPS of 11.5–74% (using soil bulk density of
1.30 g cm−3 [18], and particle density of 2.65 g cm−3 for the conversion calculation), which
falls in the water-limiting range [54], agreeing with the proportional relationship between
soil CO2 flux and soil moisture in our study (Figure 7). Soil temperature is often considered
to account for a large portion of seasonal and diurnal CO2 variation [53]. A marginal
negative correlation was observed between soil temperature and CO2 flux in our study
(Figure 7). Soil temperature during our measurement period ranged from 23.6 to 41.2 ◦C in
which CO2 production was unlikely to be suppressed by high temperature as the optimal
temperature for soil microbial respiration is reported between 38.5 to 46.0 ◦C and the
respiration rate increases with temperature below the optimal temperature [56]. We hold
the view that the negative correlation between soil CO2 flux and temperature is attributed to
the lower soil moisture content under higher temperature conditions (r = −0.554, p < 0.001;
Pearson product-moment correlation). Water availability is the primary limiting factor
controlling dryland production in southeastern USA [18].

4.2. Effects of Fertilizer and Soil Amendment

In 2019 and 2021, clearly increased soil CO2 flux was found when BL was applied
to the fields (Figures 5 and 6), agreeing with previous studies in the southeast region,
which reported higher soil CO2 flux in corn and cotton fields with BL application than
those that received commercial fertilizers, such as UAN and ammonium nitrate [45,47].
The BL application rate is typically determined by the N rate, which often brings the
excessive co-application of organic C, P and other macro- and micro-nutrients [10,11]. The
concurrent large amount of bioavailable organic C, N and P in the BL provides abundant C,
energy sources and substrates to the microorganisms for their growth and also increases
microbial activities, leading to higher microbial respiration and cascading larger soil CO2
flux [30]. This notion is supported by greater microbial biomass C (28%), phosphatase (12%)
and invertase (17%) in corn cropping systems with BL application than those receiving
urea [6]. In our study, compared to the control treatment, which received neither commercial
N fertilizer nor BL, treatments with UAN applications, including 1T FGD + L+FRT, 2T
FGD + L+FRT, 3T FGD + L+FRT and FRT, did not show any increase in soil CO2 flux
(Figures 5 and 6). Together with significantly higher values from treatments with BL, our
results indicate that the soil CO2 flux in this corn system is likely limited by labile organic C
or co-limited by both C and N, which is reflected by the low TC content in our soil (Table 1).

The co-application of FGD gypsum and lignite with BL-reduced cumulative soil CO2
flux by 15–23% in 2019 and 2021 compared to those from treatment with BL alone but
did not completely eliminate the rising effects of BL on soil CO2 flux (Figure 6). This
reduction in flux is likely due to there being fewer available nutrients to microorganisms
as FGD gypsum and lignite application can promote soil aggregations and the formation
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of insoluble complexes with nutrients in BL, which limit the nutrient accessibility both
physically and chemically [23,24]. Pretreatments on the BL to reduce or stabilize C could
be potential solutions to further avoid the increase in CO2 evolution from the low C
content soil systems after BL applications. Caution also needs to be paid to management
practices that would introduce a great amount of labile organic C into the upland cropping
systems with low C content that can possibly result in substantial soil CO2 flux. Low
C/N ratio and high content of mineral N in BL are also likely to create a favorable soil
environment for producing nitrous oxide (N2O) [50,57,58], a potent greenhouse gas with a
global warming potential of 298 times greater than CO2. Further studies need to include
N2O flux measurement to provide a more holistic understanding of the effects of BL
application on greenhouse gas flux.

The above differences in soil CO2 flux between treatments with and without BL were
observed in 2019 and 2021 but not in 2020 (Figures 5 and 6). If we look in more detail,
differences in 2019 and 2021 were mainly triggered by the high flux peaks between late June
and early July from plots that received BL, which were not observed in 2020 (Figure 5). We
acknowledge the inter-year variation in soil CO2 flux caused by distinct climate conditions
between years [48,49]. However, we are more inclined to reason that we might have missed
the flux peaks of CO2 from the BL treatment in 2020, which warrant a measurement scheme
with higher temporal resolution in future studies.

4.3. Effects of Cover Crop

The idea of sequestering atmospheric CO2 in agricultural soil by introducing cover
crops has been generating interest in mitigating climate change and enhancing other
ecosystem services [59]. Due to the lack of region-specific research and resistance to
unproven practices, the adoption of cover crops in the southeast USA has been low [48].
Specific studies on the effects of cover crops on soil CO2 flux in this area are sorely lacking.
In this study, we observed a significantly higher (8.7% higher, p < 0.05) averaged soil CO2
flux from the plots with cover crops than without cover crops in the third year but not in
the first two years (Table 4 and Figure 5). Concurrently, significantly lower (p < 0.05) soil
temperature was observed in the plots with cover crops than without cover crops in the
third year (Table 4 and Figure 3). These phenomena are likely caused by the higher organic
C accumulated in the soil systems with cover crops over three years. Cover crop has been
reported to accumulate 0.32–0.56 Mg ha−1 y−1 soil organic C in the upper 30 cm soil depth
across different regions [16]. As we mentioned earlier, soil respiration in our study site
is possibly limited by C or co-limited by C and N, and higher organic C sequestered in
soil by the introduction of cover crops leads to higher soil CO2 flux. Soil organic C also
acts as an insulator and cools the soil during the high temperature period [60]. We cannot
simply conclude that cover crops could increase soil CO2 flux in the upland cropping
systems in the southeast area, as our results only account for the cash crop growing season.
The pattern could be altered after including the soil CO2 flux during the winter cover
crop growing season because it is reasonable to hypothesize that cover crops compete for
available nutrients with soil microorganisms and lead to lower soil CO2 flux in cover crops
than in fallow systems. Therefore, year-around studies, including both cash crop and cover
crop seasons, are needed to provide a robust assessment to discern cover crop effects on
soil CO2 flux.

5. Conclusions

Our work is one of the few studies evaluating the interactive effects of cover crops
and soil amendments on soil CO2 flux in southeastern USA agroecosystems. Excluding
the extreme values at flux peaks observed between late June and early July, soil CO2 flux
in this study ranged from 0.6 to 11.5 µmol m−2 s−1. The application of BL led to a clear
increase in cumulative CO2 flux during the cash crop growing season. The incorporation of
FGD gypsum and lignite with BL application reduced soil CO2 flux but did not completely
eliminate the rising effects of BL. Higher soil CO2 flux and lower soil temperature were
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observed from fields with cover crops than without cover crops in the third year of this
study. Future research should assess year-round soil CO2 flux, as well as other greenhouse
gases, especially N2O, with a high temporal resolution measurement scheme.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/environments10020019/s1, Table S1: Means and standard errors
(SE) for CO2 fluxes of each year. Values followed by letters with no letter in common denote
significantly different CO2 fluxes (Tukey’s test, α = 0.05).
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