Comparative Analysis of Machine and Deep Learning Models for Soil Properties Prediction from Hyperspectral Visual Band
Abstract
:1. Introduction
- To explore the possibility of prediction soil properties (SM, SOC, NC) from a 3-channel RGB band and the full spectrum of visual band data.
- To provide a prediction comparison in three cases: i. full range of HS band ii. VB, and iii. only RGB band.
- Effectively use EMD to eliminate data noise and improve the soil property prediction accuracy.
- To reduce large data dimension using PCA, minimize computational time and cost and improve prediction accuracy.
- Performance of a wide range of ML and DL models is evaluated to understand the best prediction accuracy depending on various soil properties.
2. Datasets
2.1. Soil Moisture Dataset
2.2. Soil Organic Carbon and Nitrogen Dataset
3. Methodology
3.1. Data Prepossessing
3.1.1. Data Cleaning and Filtering
3.1.2. Visual Band Selection
3.1.3. Data Scaling
3.1.4. Empirical Mode Decomposition
3.1.5. Dimension Reduction
3.2. Regression Model
3.2.1. Random Forest
3.2.2. Decision Tree
3.2.3. Gradient Boosting
3.2.4. Self Organizing Map
3.2.5. K Nearest Neighbors
3.2.6. Artificial Neural Network
3.2.7. Support Vector Regression
3.2.8. One-Dimensional Convolution Neural Network
3.3. Evaluation Parameter
4. Prediction Results
4.1. Soil Moisture Prediction from Visual Band
4.2. Soil Organic Carbon Prediction from Visual Band
4.3. Soil Nitrogen Prediction from Visual Band
5. Discussion
- Soil properties (SM, SOC, and NC) can be predicted only using 3-channel RGB band data.
- Improved prediction performance for most of the ML and DL models can be obtained when the full range of VB has been considered.
- For SM prediction, the best prediction accuracy is obtained for RF when PCA of VB is considered an input feature.
- EMD plays a good role in SOC prediction; the best result is obtained for SVR when PCA is performed on EMD transformation on VB.
- The good NC prediction is obtained for SVR when only VB is taken as an input feature.
- More stable NC prediction performance (Figure 8) is noted for SVR when PCA is done on EMD with VB.
- The performance of 1dCNN is satisfactory for all of those soil properties predictions in terms of error rate.
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yadav, A.N.; Singh, J.; Singh, C.; Yadav, N. Current Trends in Microbial Biotechnology for Sustainable Agriculture; Springer: Berlin/Heidelberg, Germany, 2021. [Google Scholar]
- Herrick, J.E.; Wander, M.M. Relationships between soil organic carbon and soil quality in cropped and rangeland soils: The importance of distribution, composition, and soil biological activity. In Soil Processes and the Carbon Cycle; CRC Press: Boca Raton, FL, USA, 2018; pp. 405–425. [Google Scholar]
- Fageria, N.; Moreira, A. The role of mineral nutrition on root growth of crop plants. Adv. Agron. 2011, 110, 251–331. [Google Scholar]
- Denmead, O.T.; Shaw, R.H. Availability of soil water to plants as affected by soil moisture content and meteorological conditions 1. Agron. J. 1962, 54, 385–390. [Google Scholar] [CrossRef]
- Wang, W.; Akhtar, K.; Ren, G.; Yang, G.; Feng, Y.; Yuan, L. Impact of straw management on seasonal soil carbon dioxide emissions, soil water content, and temperature in a semi-arid region of China. Sci. Total Environ. 2019, 652, 471–482. [Google Scholar] [CrossRef] [PubMed]
- Leghari, S.J.; Wahocho, N.A.; Laghari, G.M.; HafeezLaghari, A.; MustafaBhabhan, G.; HussainTalpur, K.; Bhutto, T.A.; Wahocho, S.A.; Lashari, A.A. Role of nitrogen for plant growth and development: A review. Adv. Environ. Biol. 2016, 10, 209–219. [Google Scholar]
- Njira, K.O.; Nabwami, J. A review of effects of nutrient elements on crop quality. Afr. J. Food Agric. Nutr. Dev. 2015, 15, 9777–9793. [Google Scholar] [CrossRef]
- Verma, B.C.; Datta, S.P.; Rattan, R.K.; Singh, A.K. Monitoring changes in soil organic carbon pools, nitrogen, phosphorus, and sulfur under different agricultural management practices in the tropics. Environ. Monit. Assess. 2010, 171, 579–593. [Google Scholar] [CrossRef]
- Xu, S.; Liu, Y.; Wang, X.; Zhang, G. Scale effect on spatial patterns of ecosystem services and associations among them in semi-arid area: A case study in Ningxia Hui Autonomous Region, China. Sci. Total Environ. 2017, 598, 297–306. [Google Scholar] [CrossRef]
- Kumar, S.V.; Dirmeyer, P.A.; Peters-Lidard, C.D.; Bindlish, R.; Bolten, J. Information theoretic evaluation of satellite soil moisture retrievals. Remote Sens. Environ. 2018, 204, 392–400. [Google Scholar] [CrossRef]
- Visconti, F.; Jiménez, M.G.; de Paz, J.M. How do the chemical characteristics of organic matter explain differences among its determinations in calcareous soils? Geoderma 2022, 406, 115454. [Google Scholar] [CrossRef]
- McGill, W.; Figueiredo, C. Total nitrogen. In Soil Sampling and Methods of Analysis; CRC: Boca Raton, FL, USA, 1993; pp. 201–211. [Google Scholar]
- Govender, M.; Chetty, K.; Bulcock, H. A review of hyperspectral remote sensing and its application in vegetation and water resource studies. Water SA 2007, 33, 145–151. [Google Scholar] [CrossRef]
- Zhang, Y.; Migliavacca, M.; Penuelas, J.; Ju, W. Advances in hyperspectral remote sensing of vegetation traits and functions. Remote Sens. Environ. 2021, 252, 112121. [Google Scholar] [CrossRef]
- Stuart, M.B.; McGonigle, A.J.; Willmott, J.R. Hyperspectral imaging in environmental monitoring: A review of recent developments and technological advances in compact field deployable systems. Sensors 2019, 19, 3071. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Pu, H.; Sun, D.W. Hyperspectral imaging technique for evaluating food quality and safety during various processes: A review of recent applications. Trends Food Sci. Technol. 2017, 69, 25–35. [Google Scholar] [CrossRef]
- Krishna, G.; Sahoo, R.N.; Singh, P.; Bajpai, V.; Patra, H.; Kumar, S.; Dandapani, R.; Gupta, V.K.; Viswanathan, C.; Ahmad, T.; et al. Comparison of various modelling approaches for water deficit stress monitoring in rice crop through hyperspectral remote sensing. Agric. Water Manag. 2019, 213, 231–244. [Google Scholar] [CrossRef]
- Peyghambari, S.; Zhang, Y. Hyperspectral remote sensing in lithological mapping, mineral exploration, and environmental geology: An updated review. J. Appl. Remote Sens. 2021, 15, 031501. [Google Scholar] [CrossRef]
- Edelman, G.J.; Gaston, E.; Van Leeuwen, T.G.; Cullen, P.; Aalders, M.C. Hyperspectral imaging for non-contact analysis of forensic traces. Forensic Sci. Int. 2012, 223, 28–39. [Google Scholar] [CrossRef]
- Suzuki, S.; Matsui, T. Remote sensing for medical and health care applications. In Remote Sensing-Applications; Boris, E., Ed.; BoD—Books on Demand: Norderstedt, Germany, 2012; pp. 479–492. [Google Scholar]
- Fei, B. Hyperspectral imaging in medical applications. In Data Handling in Science and Technology; Elsevier: Amsterdam, The Netherlands, 2020; Volume 32, pp. 523–565. [Google Scholar]
- Weber, C.; Aguejdad, R.; Briottet, X.; Avala, J.; Fabre, S.; Demuynck, J.; Zenou, E.; Deville, Y.; Karoui, M.S.; Benhalouche, F.Z.; et al. Hyperspectral imagery for environmental urban planning. In Proceedings of the IGARSS 2018—2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 1628–1631. [Google Scholar]
- Shimoni, M.; Haelterman, R.; Perneel, C. Hypersectral imaging for military and security applications: Combining myriad processing and sensing techniques. IEEE Geosci. Remote Sens. Mag. 2019, 7, 101–117. [Google Scholar] [CrossRef]
- Boubanga-Tombet, S.; Huot, A.; Vitins, I.; Heuberger, S.; Veuve, C.; Eisele, A.; Hewson, R.; Guyot, E.; Marcotte, F.; Chamberland, M. Thermal infrared hyperspectral imaging for mineralogy mapping of a mine face. Remote Sens. 2018, 10, 1518. [Google Scholar] [CrossRef]
- Majda, A.; Wietecha-Posłuszny, R.; Mendys, A.; Wójtowicz, A.; Łydżba-Kopczyńska, B. Hyperspectral imaging and multivariate analysis in the dried blood spots investigations. Appl. Phys. A 2018, 124, 1–8. [Google Scholar] [CrossRef]
- Datta, D.; Paul, M.; Murshed, M.; Teng, S.W.; Schmidtke, L. Soil Moisture, Organic Carbon, and Nitrogen Content Prediction with Hyperspectral Data Using Regression Models. Sensors 2022, 22, 7998. [Google Scholar] [CrossRef]
- Riese, F.M.; Keller, S. Introducing a framework of self-organizing maps for regression of soil moisture with hyperspectral data. In Proceedings of the IGARSS 2018—2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 6151–6154. [Google Scholar]
- Ge, X.; Ding, J.; Jin, X.; Wang, J.; Chen, X.; Li, X.; Liu, J.; Xie, B. Estimating agricultural soil moisture content through UAV-based hyperspectral images in the arid region. Remote Sens. 2021, 13, 1562. [Google Scholar] [CrossRef]
- Xu, C.; Zeng, W.; Huang, J.; Wu, J.; Van Leeuwen, W.J. Prediction of soil moisture content and soil salt concentration from hyperspectral laboratory and field data. Remote Sens. 2016, 8, 42. [Google Scholar] [CrossRef]
- Castaldi, F.; Palombo, A.; Pascucci, S.; Pignatti, S.; Santini, F.; Casa, R. Reducing the influence of soil moisture on the estimation of clay from hyperspectral data: A case study using simulated PRISMA data. Remote Sens. 2015, 7, 15561–15582. [Google Scholar] [CrossRef]
- Zhang, F.; Wu, S.; Liu, J.; Wang, C.; Guo, Z.; Xu, A.; Pan, K.; Pan, X. Predicting soil moisture content over partially vegetation covered surfaces from hyperspectral data with deep learning. Soil Sci. Soc. Am. J. 2021, 85, 989–1001. [Google Scholar] [CrossRef]
- Haijun, Q.; Xiu, J.; Liu, Z.; Maxime, D.I.; Shaowen, L. Predicting sandy soil moisture content with hyperspectral imaging. Int. J. Agric. Biol. Eng. 2017, 10, 175–183. [Google Scholar] [CrossRef]
- Wu, T.; Yu, J.; Lu, J.; Zou, X.; Zhang, W. Research on inversion model of cultivated soil moisture content based on hyperspectral imaging analysis. Agriculture 2020, 10, 292. [Google Scholar] [CrossRef]
- Yuan, J.; Wang, X.; Yan, C.x.; Wang, S.r.; Ju, X.p.; Li, Y. Soil moisture retrieval model for remote sensing using reflected hyperspectral information. Remote Sens. 2019, 11, 366. [Google Scholar] [CrossRef]
- Nocita, M.; Stevens, A.; Toth, G.; Panagos, P.; van Wesemael, B.; Montanarella, L. Prediction of soil organic carbon content by diffuse reflectance spectroscopy using a local partial least square regression approach. Soil Biol. Biochem. 2014, 68, 337–347. [Google Scholar] [CrossRef]
- Steinberg, A.; Chabrillat, S.; Stevens, A.; Segl, K.; Foerster, S. Prediction of common surface soil properties based on Vis-NIR airborne and simulated EnMAP imaging spectroscopy data: Prediction accuracy and influence of spatial resolution. Remote Sens. 2016, 8, 613. [Google Scholar] [CrossRef]
- Hou, L.; Zheng, Y.; Liu, M.; Li, X.; Lin, X.; Yin, G.; Gao, J.; Deng, F.; Chen, F.; Jiang, X. Anaerobic ammonium oxidation and its contribution to nitrogen removal in China’s coastal wetlands. Sci. Rep. 2015, 5, 15621. [Google Scholar] [CrossRef]
- Xu, S.; Wang, M.; Shi, X.; Yu, Q.; Zhang, Z. Integrating hyperspectral imaging with machine learning techniques for the high-resolution mapping of soil nitrogen fractions in soil profiles. Sci. Total Environ. 2021, 754, 142135. [Google Scholar] [CrossRef] [PubMed]
- Pechanec, V.; Mráz, A.; Rozkošnỳ, L.; Vyvlečka, P. Usage of airborne hyperspectral imaging data for identifying spatial variability of soil nitrogen content. ISPRS Int. J. Geo-Inf. 2021, 10, 355. [Google Scholar] [CrossRef]
- Coops, N.C.; Smith, M.L.; Martin, M.E.; Ollinger, S.V. Prediction of eucalypt foliage nitrogen content from satellite-derived hyperspectral data. IEEE Trans. Geosci. Remote Sens. 2003, 41, 1338–1346. [Google Scholar] [CrossRef]
- Vohland, M.; Ludwig, M.; Thiele-Bruhn, S.; Ludwig, B. Quantification of soil properties with hyperspectral data: Selecting spectral variables with different methods to improve accuracies and analyze prediction mechanisms. Remote Sens. 2017, 9, 1103. [Google Scholar] [CrossRef]
- Pudełko, A.; Chodak, M.; Roemer, J.; Uhl, T. Application of FT-NIR spectroscopy and NIR hyperspectral imaging to predict nitrogen and organic carbon contents in mine soils. Measurement 2020, 164, 108117. [Google Scholar] [CrossRef]
- Pan, T.; Wu, Z.-T.; Chen, H. Waveband optimization for near-infrared spectroscopic analysis of total nitrogen in soil. Chin. J. Anal. Chem. 2012, 40, 920–924. [Google Scholar] [CrossRef]
- Kuang, B.; Mouazen, A.M. Non-biased prediction of soil organic carbon and total nitrogen with vis–NIR spectroscopy, as affected by soil moisture content and texture. Biosyst. Eng. 2013, 114, 249–258. [Google Scholar] [CrossRef]
- Fathololoumi, S.; Vaezi, A.R.; Alavipanah, S.K.; Ghorbani, A.; Saurette, D.; Biswas, A. Effect of multi-temporal satellite images on soil moisture prediction using a digital soil mapping approach. Geoderma 2021, 385, 114901. [Google Scholar] [CrossRef]
- Drusch, M. Initializing numerical weather prediction models with satellite-derived surface soil moisture: Data assimilation experiments with ECMWF’s Integrated Forecast System and the TMI soil moisture data set. J. Geophys. Res. Atmos. 2007, 112, 3102. [Google Scholar] [CrossRef]
- Baldwin, D.; Manfreda, S.; Keller, K.; Smithwick, E. Predicting root zone soil moisture with soil properties and satellite near-surface moisture data across the conterminous United States. J. Hydrol. 2017, 546, 393–404. [Google Scholar] [CrossRef]
- Laiolo, P.; Gabellani, S.; Campo, L.; Silvestro, F.; Delogu, F.; Rudari, R.; Pulvirenti, L.; Boni, G.; Fascetti, F.; Pierdicca, N.; et al. Impact of different satellite soil moisture products on the predictions of a continuous distributed hydrological model. Int. J. Appl. Earth Obs. Geoinf. 2016, 48, 131–145. [Google Scholar] [CrossRef]
- Pinnington, E.; Amezcua, J.; Cooper, E.; Dadson, S.; Ellis, R.; Peng, J.; Robinson, E.; Morrison, R.; Osborne, S.; Quaife, T. Improving soil moisture prediction of a high-resolution land surface model by parameterising pedotransfer functions through assimilation of SMAP satellite data. Hydrol. Earth Syst. Sci. 2021, 25, 1617–1641. [Google Scholar] [CrossRef]
- Tiwari, S.K.; Saha, S.K.; Kumar, S. Prediction modeling and mapping of soil carbon content using artificial neural network, hyperspectral satellite data and field spectroscopy. Adv. Remote Sens. 2015, 4, 63. [Google Scholar] [CrossRef]
- Meng, X.; Bao, Y.; Liu, J.; Liu, H.; Zhang, X.; Zhang, Y.; Wang, P.; Tang, H.; Kong, F. Regional soil organic carbon prediction model based on a discrete wavelet analysis of hyperspectral satellite data. Int. J. Appl. Earth Obs. Geoinf. 2020, 89, 102111. [Google Scholar] [CrossRef]
- Dou, X.; Wang, X.; Liu, H.; Zhang, X.; Meng, L.; Pan, Y.; Yu, Z.; Cui, Y. Prediction of soil organic matter using multi-temporal satellite images in the Songnen Plain, China. Geoderma 2019, 356, 113896. [Google Scholar] [CrossRef]
- Zhou, T.; Geng, Y.; Ji, C.; Xu, X.; Wang, H.; Pan, J.; Bumberger, J.; Haase, D.; Lausch, A. Prediction of soil organic carbon and the C: N ratio on a national scale using machine learning and satellite data: A comparison between Sentinel-2, Sentinel-3 and Landsat-8 images. Sci. Total Environ. 2021, 755, 142661. [Google Scholar] [CrossRef]
- Wang, S.; Zhuang, Q.; Jin, X.; Yang, Z.; Liu, H. Predicting soil organic carbon and soil nitrogen stocks in topsoil of forest ecosystems in northeastern china using remote sensing data. Remote Sens. 2020, 12, 1115. [Google Scholar] [CrossRef]
- Pande, C.B.; Kadam, S.A.; Jayaraman, R.; Gorantiwar, S.; Shinde, M. Prediction of soil chemical properties using multispectral satellite images and wavelet transforms methods. J. Saudi Soc. Agric. Sci. 2022, 21, 21–28. [Google Scholar] [CrossRef]
- Hajjar, C.S.; Hajjar, C.; Esta, M.; Chamoun, Y.G. Machine learning methods for soil moisture prediction in vineyards using digital images. E3s Web Conf. 2020, 167, 02004. [Google Scholar] [CrossRef]
- Gorthi, S.; Swetha, R.; Chakraborty, S.; Li, B.; Weindorf, D.C.; Dutta, S.; Banerjee, H.; Das, K.; Majumdar, K. Soil organic matter prediction using smartphone-captured digital images: Use of reflectance image and image perturbation. Biosyst. Eng. 2021, 209, 154–169. [Google Scholar] [CrossRef]
- Taneja, P.; Vasava, H.K.; Daggupati, P.; Biswas, A. Multi-algorithm comparison to predict soil organic matter and soil moisture content from cell phone images. Geoderma 2021, 385, 114863. [Google Scholar] [CrossRef]
- Swetha, R.; Bende, P.; Singh, K.; Gorthi, S.; Biswas, A.; Li, B.; Weindorf, D.C.; Chakraborty, S. Predicting soil texture from smartphone-captured digital images and an application. Geoderma 2020, 376, 114562. [Google Scholar] [CrossRef]
- de Oliveira Morais, P.A.; de Souza, D.M.; de Melo Carvalho, M.T.; Madari, B.E.; de Oliveira, A.E. Predicting soil texture using image analysis. Microchem. J. 2019, 146, 455–463. [Google Scholar] [CrossRef]
- Pendleton, R.L.; Nickerson, D. Soil colors and special Munsell soil color charts. Soil Sci. 1951, 71, 35–44. [Google Scholar] [CrossRef]
- Wills, S.A.; Burras, C.L.; Sandor, J.A. Prediction of soil organic carbon content using field and laboratory measurements of soil color. Soil Sci. Soc. Am. J. 2007, 71, 380–388. [Google Scholar] [CrossRef]
- Liles, G.C.; Beaudette, D.E.; O’Geen, A.T.; Horwath, W.R. Developing predictive soil C models for soils using quantitative color measurements. Soil Sci. Soc. Am. J. 2013, 77, 2173–2181. [Google Scholar] [CrossRef]
- Minasny, B.; McBratney, A.B.; Mendonça-Santos, M.; Odeh, I.; Guyon, B. Prediction and digital mapping of soil carbon storage in the Lower Namoi Valley. Soil Res. 2006, 44, 233–244. [Google Scholar] [CrossRef]
- Li, F.; Frosio, I.; Timofte, R.; Zhu, C. Spectral reflectance reconstruction from RGB images. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Washington, DC, USA, 23–28 June 2013; pp. 2626–2633. [Google Scholar]
- Bailoni, J.; Waske, B.; Benediktsson, J.A.; Ressel, R. Spectral imaging with a consumer camera: A comparison to a scientific camera and opportunities for citizen science. J. Appl. Remote Sens. 2017, 11, 026015. [Google Scholar]
- Tan, R.T.; Kong, H.K.; Quan, L. Visibility in bad weather from a single image. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Anchorage, AK, USA, 23–28 June 2008; pp. 1–8. [Google Scholar]
- Islam, M.R.; Paul, M.; Antolovich, M.; Kabir, A. Sports Highlights Generation using Decomposed Audio Information. In Proceedings of the 2019 IEEE International Conference on Multimedia & Expo Workshops (ICMEW), Shanghai, China, 8–12 July 2019; pp. 579–584. [Google Scholar]
- Riese, F.M.; Keller, S. Hyperspectral benchmark dataset on soil moisture. In Proceedings of the 2018 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Valencia, Spain, 22–27 July 2018; p. 1227837. [Google Scholar] [CrossRef]
- Orgiazzi, A.; Ballabio, C.; Panagos, P.; Jones, A.; Fernández-Ugalde, O. LUCAS Soil, the largest expandable soil dataset for Europe: A review. Eur. J. Soil Sci. 2018, 69, 140–153. [Google Scholar] [CrossRef]
- Panagos, P.; Van Liedekerke, M.; Jones, A.; Montanarella, L. European Soil Data Centre: Response to European policy support and public data requirements. Land Use Policy 2012, 29, 329–338. [Google Scholar] [CrossRef]
- Tóth, G.; Jones, A.; Montanarella, L. The LUCAS topsoil database and derived information on the regional variability of cropland topsoil properties in the European Union. Environ. Monit. Assess. 2013, 185, 7409–7425. [Google Scholar] [CrossRef] [PubMed]
- Ballabio, C.; Panagos, P.; Monatanarella, L. Mapping topsoil physical properties at European scale using the LUCAS database. Geoderma 2016, 261, 110–123. [Google Scholar] [CrossRef]
- Apaydin, H.; Sibtain, M. A multivariate streamflow forecasting model by integrating improved complete ensemble empirical mode decomposition with additive noise, sample entropy, Gini index and sequence-to-sequence approaches. J. Hydrol. 2021, 603, 126831. [Google Scholar] [CrossRef]
- Lawrence, N.; Hyvärinen, A. Probabilistic non-linear principal component analysis with Gaussian process latent variable models. J. Mach. Learn. Res. 2005, 6, 1783–1816. [Google Scholar]
- Liu, Y.; Wang, Y.; Zhang, J. New machine learning algorithm: Random forest. In Proceedings of the International Conference on Information Computing and Applications, Chengde, China, 14–16 September 2012; pp. 246–252. [Google Scholar]
- Myles, A.J.; Feudale, R.N.; Liu, Y.; Woody, N.A.; Brown, S.D. An introduction to decision tree modeling. J. Chemom. J. Chemom. Soc. 2004, 18, 275–285. [Google Scholar] [CrossRef]
- Bentéjac, C.; Csörgő, A.; Martínez-Muñoz, G. A comparative analysis of gradient boosting algorithms. Artif. Intell. Rev. 2021, 54, 1937–1967. [Google Scholar] [CrossRef]
- Zhang, Z. Introduction to machine learning: K-nearest neighbors. Ann. Transl. Med. 2016, 4, 218. [Google Scholar] [CrossRef]
- Kukreja, H.; Bharath, N.; Siddesh, C.; Kuldeep, S. An introduction to artificial neural network. Int. J. Adv. Res. Innov. Ideas Educ. 2016, 1, 27–30. [Google Scholar]
- Awad, M.; Khanna, R. Support vector regression. In Efficient Learning Machines; Springer: Berlin/Heidelberg, Germany, 2015; pp. 67–80. [Google Scholar]
- Wu, C.; Jiang, P.; Ding, C.; Feng, F.; Chen, T. Intelligent fault diagnosis of rotating machinery based on one-dimensional convolutional neural network. Comput. Ind. 2019, 108, 53–61. [Google Scholar] [CrossRef]
- Sauer, P.; Cootes, T.F.; Taylor, C.J. Accurate Regression Procedures for Active Appearance Models. In Proceedings of the BMVC, Dundee, UK, 29 August–2 September 2011; pp. 1–11. [Google Scholar]
- Xu, M.; Watanachaturaporn, P.; Varshney, P.K.; Arora, M.K. Decision tree regression for soft classification of remote sensing data. Remote Sens. Environ. 2005, 97, 322–336. [Google Scholar] [CrossRef]
- Friedman, J.H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 2001, 29, 1189–1232. [Google Scholar] [CrossRef]
- Purbasari, I.; Puspaningrum, E.; Putra, A. Using self-organizing map (SOM) for clustering and visualization of new students based on grades. J. Phys. Conf. Ser. 2020, 1569, 022037. [Google Scholar] [CrossRef]
- Larose, D.T.; Larose, C.D. k-Nearest Neighbor Algorithm. Wiley Data and Cybersecurity. 2014. Available online: https://ieeexplore.ieee.org/abstract/document/10066854 (accessed on 24 March 2023).
- Agatonovic-Kustrin, S.; Beresford, R. Basic concepts of artificial neural network (ANN) modeling and its application in pharmaceutical research. J. Pharm. Biomed. Anal. 2000, 22, 717–727. [Google Scholar] [CrossRef] [PubMed]
- Datta, D.; Sarkar, N.I. Deep Learning Frameworks for Internet of Things. In Artificial Intelligence-Based Internet of Things Systems; Springer: Cham, Switzerland, 2022; pp. 137–161. [Google Scholar]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Alexander, D.L.; Tropsha, A.; Winkler, D.A. Beware of R 2: Simple, unambiguous assessment of the prediction accuracy of QSAR and QSPR models. J. Chem. Inf. Model. 2015, 55, 1316–1322. [Google Scholar] [CrossRef]
Model | Library | Hyperparameter |
---|---|---|
RF | scikit-learn | n_estimators = 100, n_jobs = −1 |
DT | scikit-learn | – |
GB | scikit-learn | – |
n_rows = 35, n_columns = 35, | ||
SOM | susi | n_iter_unsupervised = 10,000, |
n_iter_supervised = 10,000 | ||
KNN | scikit-learn | n_neighbors = 5, algorithm = auto, |
ANN | scikit-learn | hidden_layer_sizes = (20, 20, 20) |
SVR | scikit-learn | C = np.logspace(−8, 8, 17), |
= np.logspace(−8, 8, 17) | ||
activation = LeakyRelu(), | ||
1dCNN | PyTorch | optimiser = Adam, learning rate = 0.01 |
batch size = 1000, epochs = 500 |
Model | AHSB 1 [26] | RGB 2 | VB 3 | PCA (VB) | EMD + VB | PCA (EMD + VB) |
---|---|---|---|---|---|---|
RF | 92.35%, 0.61, 1.02 | 84.83%, 0.86, 1.37 | 91.47%, 0.63, 0.98 | 95.51%, 0.53, 0.88 | 90.73%, 0.70, 1.04 | 92.68%, 0.60, 1.04 |
DT | 88.48%, 0.66, 1.34 | 78.75%, 0.87, 1.65 | 81.32%, 0.81, 1.64 | 94.44%, 0.57, 1.17 | 84.15%, 0.72, 1.41 | 87.32%, 0.72, 1.44 |
GB | 92.27%, 0.64, 1.09 | 81.19%, 0.95, 1.51 | 91.71%, 0.63, 1.03 | 95.42%, 0.52, 0.81 | 91.96%, 0.66, 1.04 | 93.56%, 0.58, 0.87 |
SOM | 89.81%, 0.72, 1.10 | 86.85%, 0.85, 1.27 | 90.67%, 0.70, 1.06 | 92.36%, 0.61, 0.92 | 81.81%, 1.00, 1.47 | 82.39%, 0.92, 1.38 |
KNN | 90.95%, 0.68, 1.08 | 82.29%, 0.93, 1.46 | 90.72%, 0.70, 1.11 | 91.14%, 0.62, 1.06 | 76.11%, 1.08, 1.63 | 79.68%, 0.96, 1.57 |
ANN | 64.93%, 1.42, 2.07 | 46.12%, 1.91, 2.58 | 49.60%, 1.74, 2.38 | 90.94%, 0.70, 0.95 | 53.55%, 1.71, 2.34 | 88.15%, 0.91, 1.21 |
SVR | 95.43%, 0.49, 0.80 | 73.43%, 1.29, 1.85 | 93.89%, 0.57, 0.94 | 91.29%, 0.62, 1.01 | 84.81%, 0.83, 1.33 | 89.13%, 0.77, 1.15 |
1dCNN | - | 72.87%, 0.12, 0.20 | 79.95%, 0.07, 0.09 | - | 79.96%, 0.07, 0.09 | - |
Model | AHSB 1 [26] | RGB 2 | VB 3 | PCA (VB) | EMD + VB | PCA (EMD + VB) |
---|---|---|---|---|---|---|
RF | 83.93%, 35.13, 62.46 | 73.47%, 43.72, 76.79 | 79.34%, 38.34, 67.80 | 82.91%, 36.45, 62.71 | 79.63%, 38.59, 68.04 | 82.97%, 36.34, 62.46 |
DT | 67.43%, 42.94, 77.95 | 52.30%, 55.82, 103.11 | 65.73%, 47.97, 86.04 | 68.23%, 49.24, 88.01 | 66.09%, 47.52, 86.54 | 64.77%, 52.14, 91.95 |
GB | 81.56%, 36.08, 64.15 | 73.77%, 43.22, 76.08 | 79.33%, 37.99, 67.59 | 81.61%, 37.89, 65.82 | 79.38%, 38.45, 67.69 | 80.70%, 37.64, 64.44 |
SOM | 78.97%, 41.02, 67.07 | 75.97%, 43.64, 74.78 | 76.02%, 40.64, 69.76 | 77.23%, 42.23, 71.96 | 77.10%, 41.13, 71.42 | 76.56%, 42.89, 72.32 |
KNN | 83.08%, 35.92, 60.92 | 73.96%, 43.02, 75.82 | 77.44%, 39.30, 69.60 | 77.04%, 39.67, 70.05 | 77.44%, 39.30, 69.60 | 83.56%, 35.76, 61.50 |
ANN | 80.33%, 38.58, 62.58 | 71.12%, 48.49, 81.99 | 79.58%, 42.95, 71.64 | 85.31%, 33.17, 55.42 | 74.88%, 40.21, 68.38 | 85.91%, 32.19, 53.19 |
SVR | 78.94%, 48.06, 67.39 | 79.48%, 39.75, 65.72 | 82.74%, 33.50, 64.14 | 85.77%, 33.12, 55.38 | 81.76%, 36.58, 64.27 | 85.97%, 32.93, 56.80 |
1dCNN | - | 76.84%, 0.10, 0.14 | 78.22%, 0.07, 0.12 | - | 77.80%, 0.07, 0.13 | - |
Model | AHSB 1 [26] | RGB 2 | VB 3 | PCA (VB) | EMD + VB | PCA (EMD + VB) |
---|---|---|---|---|---|---|
RF | 73.98%, 1.80, 3.03 | 67.84%, 2.03, 3,37 | 71.53%, 1.93, 3.29 | 75.09%, 1.75, 2.90 | 70.86%, 1.98, 3.29 | 76.69%, 1.72, 2.84 |
DT | 56.60%, 2.29, 3.89 | 49.61%, 2.72, 4.57 | 55.49%, 2.46, 4.17 | 52.87%, 2.26, 3.95 | 54.66%, 2.48, 4.24 | 53.98%, 2.29, 3.80 |
GB | 71.91%, 1.80, 3.01 | 68.15%, 2.12, 3.52 | 72.21%, 1.96, 3.26 | 76.43%, 1.80, 2.91 | 72.77%, 1.95, 3.28 | 76.88%, 1.78, 2.85 |
SOM | 74.71%, 1.87, 3.01 | 70.54%, 1.99, 3.40 | 70.41%, 1.93, 3.24 | 71.07%, 1.96, 3.33 | 70.61%, 1.88, 3.20 | 70.89%, 1.94, 3.26 |
KNN | 73.96%, 1.83, 2.95 | 67.39%, 2.02, 3.38 | 71.61%, 1.96, 3.27 | 71.16%, 1.96, 3.26 | 71.61%, 1.96, 3.27 | 70.82%, 1.94, 3.22 |
ANN | 74.30%, 1.80, 2.80 | 70.64%, 2.04. 3.41 | 68.33%, 1.99, 3.18 | 77.20%, 1.76, 2.79 | 68.72%, 2.17, 3.25 | 78.54%, 1.78, 2.89 |
SVR | 71.64%, 2.09, 2.99 | 72.43%, 1.90, 3.23 | 79.61%, 1.59, 2.75 | 68.75%, 2.23, 3.40 | 75.86%, 1.76, 2.99 | 78.74%, 1.64, 2.82 |
1dCNN | - | 70.23%, 0.05, 0.10 | 74.74%, 0.04, 0.08 | - | 73.59%, 0.05, 0.08 | - |
Soil Property | Best Model (RGB) | Accuracy (RGB) () | Best Feature & Model | Best Result () |
---|---|---|---|---|
Soil Moisture | SOM | 86.85% | PCA (VB), RF | 95.51% |
Organic Carbon | SVR | 79.48% | PCA (EMD + VB), SVR | 85.97% |
Nitrogen Content | SVR | 72.43% | PCA (EMD + VB), SVR | 78.74% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Datta, D.; Paul, M.; Murshed, M.; Teng, S.W.; Schmidtke, L. Comparative Analysis of Machine and Deep Learning Models for Soil Properties Prediction from Hyperspectral Visual Band. Environments 2023, 10, 77. https://doi.org/10.3390/environments10050077
Datta D, Paul M, Murshed M, Teng SW, Schmidtke L. Comparative Analysis of Machine and Deep Learning Models for Soil Properties Prediction from Hyperspectral Visual Band. Environments. 2023; 10(5):77. https://doi.org/10.3390/environments10050077
Chicago/Turabian StyleDatta, Dristi, Manoranjan Paul, Manzur Murshed, Shyh Wei Teng, and Leigh Schmidtke. 2023. "Comparative Analysis of Machine and Deep Learning Models for Soil Properties Prediction from Hyperspectral Visual Band" Environments 10, no. 5: 77. https://doi.org/10.3390/environments10050077
APA StyleDatta, D., Paul, M., Murshed, M., Teng, S. W., & Schmidtke, L. (2023). Comparative Analysis of Machine and Deep Learning Models for Soil Properties Prediction from Hyperspectral Visual Band. Environments, 10(5), 77. https://doi.org/10.3390/environments10050077