Soil Organic Carbon Stock Assessment for Volunteer Carbon Removal Benefit: Methodological Approach in Chestnut Orchard for Fruit Production
Abstract
:1. Introduction
1.1. Land Use
1.2. Climate
1.3. Organic Carbon Forms
1.4. Soil Sampling
1.5. Aim of the Study
2. Materials and Methods
2.1. Area of the Study Case and an Example of Soil Sampling Model
2.2. Soil Organic Carbon Estimation
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dimitrov, R.S. The Paris agreement on climate change: Behind closed doors. Glob. Environ. Polit. 2016, 16, 1–11. [Google Scholar] [CrossRef]
- Eurpean Commission. 773 A Clean Planet for All—A European Long-Term Strategic Vision for a Prosperous, Modern, Competitive and Climate Neutral Economy; Eurpean Commission: Brussels, Belgium, 2018.
- Friedlingstein, P.; Jones, M.W.; Andrew, R.M.; Bakker, C.E.; Hauck, J.; Le Quéré, C.; Peters, G.P.; Pongratz, J.; Sitch, S.; Canadell, J.G.; et al. Carbon budget and trends 2021. Clemens Schwingshackl 2021, 19, 66. [Google Scholar]
- Hepburn, C.; Adlen, E.; Beddington, J.; Carter, E.A.; Fuss, S.; Mac Dowell, N.; Minx, J.C.; Smith, P.; Williams, C.K. The technological and economic prospects for CO2 utilization and removal. Nature 2019, 575, 87–97. [Google Scholar] [CrossRef] [PubMed]
- Lal, R. Soil Carbon Sequestration Impacts on Global Climate Change and Food Security. Science 2004, 304, 1623–1627. [Google Scholar] [CrossRef] [PubMed]
- Orgiazzi, A.; Ballabio, C.; Panagos, P.; Jones, A.; Fernández-Ugalde, O. LUCAS Soil, the largest expandable soil dataset for Europe: A review. Eur. J. Soil Sci. 2018, 69, 140–153. [Google Scholar] [CrossRef]
- De Brogniez, D.; Ballabio, C.; Stevens, A.; Jones, R.J.A.; Montanarella, L.; van Wesemael, B. A map of the topsoil organic carbon content of Europe generated by a generalized additive model. Eur. J. Soil Sci. 2015, 66, 121–134. [Google Scholar] [CrossRef]
- Panagos, P.; Ballabio, C.; Yigini, Y.; Dunbar, M.B. Estimating the soil organic carbon content for European NUTS2 regions based on LUCAS data collection. Sci. Total Environ. 2013, 442, 235–246. [Google Scholar] [CrossRef]
- Lugato, E.; Panagos, P.; Bampa, F.; Jones, A.; Montanarella, L. A new baseline of organic carbon stock in European agricultural soils using a modelling approach. Glob. Chang. Biol. 2014, 20, 313–326. [Google Scholar] [CrossRef]
- Rumpel, C.; Amiraslani, F.; Chenu, C.; Garcia Cardenas, M.; Kaonga, M.; Koutika, L.S.; Ladha, J.; Madari, B.; Shirato, Y.; Smith, P.; et al. The 4p1000 initiative: Opportunities, limitations and challenges for implementing soil organic carbon sequestration as a sustainable development strategy. Ambio 2020, 49, 350–360. [Google Scholar] [CrossRef]
- Lavallee, J.M.; Soong, J.L.; Cotrufo, M.F. Conceptualizing soil organic matter into particulate and mineral-associated forms to address global change in the 21st century. Glob. Chang. Biol. 2020, 26, 261–273. [Google Scholar] [CrossRef]
- Ofiti, N.O.E.; Zosso, C.U.; Soong, J.L.; Solly, E.F.; Torn, M.S.; Wiesenberg, G.L.B.; Schmidt, M.W.I. Warming promotes loss of subsoil carbon through accelerated degradation of plant-derived organic matter. Soil Biol. Biochem. 2021, 156, 108185. [Google Scholar] [CrossRef]
- Stockmann, U.; Adams, M.A.; Crawford, J.W.; Field, D.J.; Henakaarchchi, N.; Jenkins, M.; Minasny, B.; McBratney, A.B.; de Remy de Courcelles, V.; Singh, K.; et al. The knowns, known unknowns and unknowns of sequestration of soil organic carbon. Agric. Ecosyst. Environ. 2013, 164, 80–99. [Google Scholar] [CrossRef]
- Lal, R. Managing soils for negative feedback to climate change and positive impact on food and nutritional security. Soil Sci. Plant Nutr. 2020, 66, 1–9. [Google Scholar] [CrossRef]
- Abbas, F.; Hammad, H.M.; Ishaq, W.; Farooque, A.A.; Bakhat, H.F.; Zia, Z.; Fahad, S.; Farhad, W.; Cerdà, A. A review of soil carbon dynamics resulting from agricultural practices. J. Environ. Manag. 2020, 268, 110319. [Google Scholar] [CrossRef]
- Montanarella, L.; Panagos, P. The relevance of sustainable soil management within the European Green Deal. Land Use Policy 2021, 100, 104950. [Google Scholar] [CrossRef]
- Lal, R. Soil carbon sequestration to mitigate climate change. Geoderma 2004, 123, 1–22. [Google Scholar] [CrossRef]
- FAO—Food and Agriculture Organization. Manual on Integrated Soil Management and Conservation Practices; Food and Agriculture Organization: Yokohama, Japan, 2000; Volume 8, p. 214.
- Smith, P. Soils and climate change. Curr. Opin. Environ. Sustain. 2012, 4, 539–544. [Google Scholar] [CrossRef]
- Hjerp, P.; Volkery, A.; Lückge, H.; Medhurst, J.; Hart, K.; Medarova-Bergstrom, K.; Tröltzsch, J.; McGuinn, J.; Skinner, I.; Desbarats, J.; et al. Methodologies for Climate Proofing Investments and Measures under Cohesion and Regional Policy and the Common Agricultural Policy; Institute for European Environmental Policy: Bruxelles, Belgium, 2012; p. 279. [Google Scholar]
- Michaelowa, A.; Shishlov, I.; Brescia, D. Evolution of international carbon markets: Lessons for the Paris Agreement. Wiley Interdiscip. Rev. Clim. Chang. 2019, 10, e613. [Google Scholar] [CrossRef]
- Williams, J.R.; Peterson, J.M.; Mooney, S. The value of carbon credits—Is there a final answer. J. Soil Water Conserv. 2005, 60, 36A–40A. [Google Scholar]
- Venter, O.; Laurance, W.F.; Iwamura, T.; Wilson, K.A.; Fuller, R.A.; Possingham, H.P. Harnessing carbon payments to protect biodiversity. Science 2009, 326, 1368. [Google Scholar] [CrossRef]
- Lal, R. Sequestering carbon in soils of agro-ecosystems. Food Policy 2011, 36, S33–S39. [Google Scholar] [CrossRef]
- Davidson, E.A. Is the transactional carbon credit tail wagging the virtuous soil organic matter dog? Biogeochemistry 2022, 161, 1–8. [Google Scholar] [CrossRef]
- Perez, C.; Roncoli, C.; Neely, C.; Steiner, J.L. Can carbon sequestration markets benefit low-income producers in semi-arid Africa? Potentials and challenges. Agric. Syst. 2007, 94, 2–12. [Google Scholar] [CrossRef]
- Bellamy, P.H.; Loveland, P.J.; Bradley, R.I.; Lark, R.M.; Kirk, G.J.D. Carbon losses from all soils across England and Wales 1978–2003. Nature 2005, 437, 245–248. [Google Scholar] [CrossRef]
- Lettens, S.; Van Orshoven, J.; van Wesemael, B.; Muys, B. Soil organic and inorganic carbon contents of landscape units in Belgium derived using data from 1950 to 1970. Soil Use Manag. 2004, 20, 40–47. [Google Scholar] [CrossRef]
- Chen, S.; Martin, M.P.; Saby, N.P.A.; Walter, C.; Angers, D.A.; Arrouays, D. Fine resolution map of top- and subsoil carbon sequestration potential in France. Sci. Total Environ. 2018, 630, 389–400. [Google Scholar] [CrossRef]
- Ostle, N.J.; Levy, P.E.; Evans, C.D.; Smith, P. UK land use and soil carbon sequestration. Land Use Policy 2009, 26, S274–S283. [Google Scholar] [CrossRef]
- Soleimani, A.; Hosseini, S.M.; Massah Bavani, A.R.; Jafari, M.; Francaviglia, R. Influence of land use and land cover change on soil organic carbon and microbial activity in the forests of northern Iran. Catena 2019, 177, 227–237. [Google Scholar] [CrossRef]
- Lyons, K.; Westoby, P. Carbon colonialism and the new land grab: Plantation forestry in Uganda and its livelihood impacts. J. Rural Stud. 2014, 36, 13–21. [Google Scholar] [CrossRef]
- Thamo, T.; Pannell, D.J. Challenges in developing effective policy for soil carbon sequestration: Perspectives on additionality, leakage, and permanence. Clim. Policy 2016, 16, 973–992. [Google Scholar] [CrossRef]
- Stavi, I.; Lal, R. Agroforestry and biochar to offset climate change: A review. Agron. Sustain. Dev. 2013, 33, 81–96. [Google Scholar] [CrossRef]
- Wiesmeier, M.; Urbanski, L.; Hobley, E.; Lang, B.; von Lützow, M.; Marin-Spiotta, E.; van Wesemael, B.; Rabot, E.; Lieβ, M.; Garcia-Franco, N.; et al. Soil organic carbon storage as a key function of soils—A review of drivers and indicators at various scales. Geoderma 2019, 333, 149–162. [Google Scholar] [CrossRef]
- Garten, C.T. Comparison of forest soil carbon dynamics at five sites along a latitudinal gradient. Geoderma 2011, 167–168, 30–40. [Google Scholar] [CrossRef]
- Nottingham, A.T.; Whitaker, J.; Ostle, N.J.; Bardgett, R.D.; McNamara, N.P.; Fierer, N.; Salinas, N.; Ccahuana, A.J.Q.; Turner, B.L.; Meir, P. Microbial responses to warming enhance soil carbon loss following translocation across a tropical forest elevation gradient. Ecol. Lett. 2019, 22, 1889–1899. [Google Scholar] [CrossRef]
- Massaccesi, L.; De Feudis, M.; Leccese, A.; Agnelli, A. Altitude and vegetation affect soil organic carbon, basal respiration and microbial biomass in apennine forest soils. Forests 2020, 11, 710. [Google Scholar] [CrossRef]
- Ziegler, S.E.; Benner, R.; Billings, S.A.; Edwards, K.A.; Philben, M.; Zhu, X.; Laganière, J. Climate warming can accelerate carbon fluxes without changing soil carbon stocks. Front. Earth Sci. 2017, 5, 2. [Google Scholar] [CrossRef]
- Dorji, T.; Odeh, I.O.A.; Field, D.J. Vertical distribution of soil organic carbon density in relation to land use/cover, altitude and slope aspect in the Eastern Himalayas. Land 2014, 3, 1232–1250. [Google Scholar] [CrossRef]
- Dungait, J.A.J.; Hopkins, D.W.; Gregory, A.S.; Whitmore, A.P. Soil organic matter turnover is governed by accessibility not recalcitrance. Glob. Chang. Biol. 2012, 18, 1781–1796. [Google Scholar] [CrossRef]
- Six, J.; Paustian, K. Aggregate-associated soil organic matter as an ecosystem property and a measurement tool. Soil Biol. Biochem. 2014, 68, A4. [Google Scholar] [CrossRef]
- Wissing, L.; Kölbl, A.; Schad, P.; Bräuer, T.; Cao, Z.H.; Kögel-Knabner, I. Organic carbon accumulation on soil mineral surfaces in paddy soils derived from tidal wetlands. Geoderma 2014, 228–229, 90–103. [Google Scholar] [CrossRef]
- Kaiser, K.; Guggenberger, G. Mineral surfaces and soil organic matter. Eur. J. Soil Sci. 2003, 54, 219–236. [Google Scholar] [CrossRef]
- Pulleman, M.M.; Marinissen, J.C.Y. Physical protection of mineralizable C in aggregates from long-term pasture and arable soil. Geoderma 2004, 120, 273–282. [Google Scholar] [CrossRef]
- De Feudis, M.; Cardelli, V.; Massaccesi, L.; Trumbore, S.E.; Vittori Antisari, L.; Cocco, S.; Corti, G.; Agnelli, A. Small altitudinal change and rhizosphere affect the SOM light fractions but not the heavy fraction in European beech forest soil. Catena 2019, 181, 104091. [Google Scholar] [CrossRef]
- Schrumpf, M.; Kaiser, K.; Guggenberger, G.; Persson, T.; Kögel-Knabner, I.; Schulze, E.D. Storage and stability of organic carbon in soils as related to depth, occlusion within aggregates, and attachment to minerals. Biogeosciences 2013, 10, 1675–1691. [Google Scholar] [CrossRef]
- Von Lützow, M.; Kögel-Knabner, I.; Ludwig, B.; Matzner, E.; Flessa, H.; Ekschmitt, K.; Guggenberger, G.; Marschner, B.; Kalbitz, K. Stabilization mechanisms of organic matter in four temperate soils: Development and application of a conceptual model. J. Plant Nutr. Soil Sci. 2008, 171, 111–124. [Google Scholar] [CrossRef]
- Torn, M.S.; Trumbore, S.E.; Chadwick, O.A.; Vitousek, P.M.; Hendricks, D.M. Mineral control of soil organic carbon storage and turnover. Nature 1997, 389, 170–173. [Google Scholar] [CrossRef]
- Kleber, M.; Eusterhues, K.; Keiluweit, M.; Mikutta, C.; Mikutta, R.; Nico, P.S. Mineral-organic associations: Formation, properties, and relevance in soil environments. Adv. Agron. 2015, 130, 1–140. [Google Scholar]
- Karlen, D.L.; Ditzler, C.A.; Andrews, S.S. Soil quality: Why and how? Geoderma 2003, 114, 145–156. [Google Scholar] [CrossRef]
- Berthrong, S.T.; Buckley, D.H.; Drinkwater, L.E. Agricultural management and labile carbon additions affect soil microbial community structure and interact with carbon and nitrogen cycling. Microb. Ecol. 2013, 66, 158–170. [Google Scholar] [CrossRef]
- Kalbitz, K.; Kaiser, K. Contribution of dissolved organic matter to carbon storage in forest mineral soils. J. Plant Nutr. Soil Sci. 2008, 171, 52–60. [Google Scholar] [CrossRef]
- Derrien, D.; Plain, C.; Courty, P.E.; Gelhaye, L.; Moerdijk-Poortvliet, T.C.W.; Thomas, F.; Versini, A.; Zeller, B.; Koutika, L.S.; Boschker, H.T.S.; et al. Does the addition of labile substrate destabilise old soil organic matter? Soil Biol. Biochem. 2014, 76, 149–160. [Google Scholar] [CrossRef]
- Kallenbach, C.M.; Grandy, A.S.; Frey, S.D.; Diefendorf, A.F. Microbial physiology and necromass regulate agricultural soil carbon accumulation. Soil Biol. Biochem. 2015, 91, 279–290. [Google Scholar] [CrossRef]
- Miltner, A.; Bombach, P.; Schmidt-Brücken, B.; Kästner, M. SOM genesis: Microbial biomass as a significant source. Biogeochemistry 2012, 111, 41–55. [Google Scholar] [CrossRef]
- Hobara, S.; Osono, T.; Hirose, D.; Noro, K.; Hirota, M.; Benner, R. The roles of microorganisms in litter decomposition and soil formation. Biogeochemistry 2014, 118, 471–486. [Google Scholar] [CrossRef]
- Lawrence, G.B.; Fernandez, I.J.; Richter, D.D.; Ross, D.S.; Hazlett, P.W.; Bailey, S.W.; Ouimet, R.; Warby, R.A.F.; Johnson, A.H.; Lin, H.; et al. Measuring environmental change in forest ecosystems by repeated soil sampling: A North American perspective. J. Environ. Qual. 2013, 42, 623–639. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez Martín, J.A.Y.; Álvaro-Fuentes, J.; Gabriel, J.L.; Gutiérrez, C.; Nanos, N.; Escuer, M.; Ramos-Miras, J.J.; Gil, C.; Martín-Lammerding, D.; Boluda, R. Soil organic carbon stock on the Majorca Island: Temporal change in agricultural soil over the last 10 years. Catena 2019, 181, 104087. [Google Scholar] [CrossRef]
- Grüneberg, E.; Schöning, I.; Kalko, E.K.V.; Weisser, W.W. Regional organic carbon stock variability: A comparison between depth increments and soil horizons. Geoderma 2010, 155, 426–433. [Google Scholar] [CrossRef]
- De Feudis, M.; Falsone, G.; Vianello, G.; Agnelli, A.; Vittori Antisari, L. Soil organic carbon stock assessment in forest ecosystems through pedogenic horizons and fixed depth layers sampling: What’s the best one? L. Degrad. Dev. 2022, 33, 1446–1458. [Google Scholar] [CrossRef]
- Zanella, A.; Berg, B.; Ponge, J.F.; Kemmers, R.H. Humusica 1, article 2: Essential bases—Functional considerations. Appl. Soil Ecol. 2018, 122, 22–41. [Google Scholar] [CrossRef]
- Angst, G.; Messinger, J.; Greiner, M.; Häusler, W.; Hertel, D.; Kirfel, K.; Kögel-Knabner, I.; Leuschner, C.; Rethemeyer, J.; Mueller, C.W. Soil organic carbon stocks in topsoil and subsoil controlled by parent material, carbon input in the rhizosphere, and microbial-derived compounds. Soil Biol. Biochem. 2018, 122, 19–30. [Google Scholar] [CrossRef]
- Simo, I.; Schulte, R.; O’Sullivan, L.; Creamer, R. Digging deeper: Understanding the contribution of subsoil carbon for climate mitigation, a case study of Ireland. Environ. Sci. Policy 2019, 98, 61–69. [Google Scholar] [CrossRef]
- Inagaki, T.M.; Possinger, A.R.; Schweizer, S.A.; Mueller, C.W.; Hoeschen, C.; Zachman, M.J.; Kourkoutis, L.F.; Kögel-Knabner, I.; Lehmann, J. Microscale spatial distribution and soil organic matter persistence in top and subsoil. Soil Biol. Biochem. 2023, 178, 108921. [Google Scholar] [CrossRef]
- Jandl, R.; Rodeghiero, M.; Martinez, C.; Cotrufo, M.F.; Bampa, F.; van Wesemael, B.; Harrison, R.B.; Guerrini, I.A.; Richter, D.d.B.; Rustad, L.; et al. Current status, uncertainty and future needs in soil organic carbon monitoring. Sci. Total Environ. 2014, 468–469, 376–383. [Google Scholar] [CrossRef]
- Chien, S.C.; Krumins, J.A. Natural versus urban global soil organic carbon stocks: A meta-analysis. Sci. Total Environ. 2022, 807, 150999. [Google Scholar] [CrossRef] [PubMed]
- Stockmann, U.; Padarian, J.; McBratney, A.; Minasny, B.; de Brogniez, D.; Montanarella, L.; Hong, S.Y.; Rawlins, B.G.; Field, D.J. Global soil organic carbon assessment. Glob. Food Sec. 2015, 6, 9–16. [Google Scholar] [CrossRef]
- Rumpel, C.; Kögel-Knabner, I. Deep soil organic matter-a key but poorly understood component of terrestrial C cycle. Plant Soil 2011, 338, 143–158. [Google Scholar] [CrossRef]
- De Feudis, M.; Falsone, G.; Vianello, G.; Vittori Antisari, L. The conversion of abandoned chestnut forests to managed ones does not affect the soil chemical properties and improves the soil microbial biomass activity. Forests 2020, 11, 786. [Google Scholar] [CrossRef]
- FAO. World Reference Base for Soil Resources 2014. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; FAO: Rome, Italy, 2014.
- Kamczyc, J.; Dyderski, M.K.; Horodecki, P.; Jagodziński, A.M. Temperature and precipitation affect seasonal changes in mite communities (Acari: Mesostigmata) in decomposing litter of broadleaved and coniferous temperate tree species. Ann. For. Sci. 2022, 79, 12. [Google Scholar] [CrossRef]
- Wood, T.E.; Lawrence, D.; Clark, D.A.; Chazdon, R.L. Rain forest nutrient cycling and productivity in response to large-scale litter manipulation. Ecology 2009, 90, 109–121. [Google Scholar] [CrossRef]
- Gavazov, K.S. Dynamics of alpine plant litter decomposition in a changing climate. Plant Soil 2010, 337, 19–32. [Google Scholar] [CrossRef]
- Schulte, E.E.; Hopkins, B.G. Estimation of Organic Matter by Weight Loss-on-Ignition; Soil Organic Matter: Analysis and Interpretation; SSSA Inc.: Madison, WI, USA, 1996; pp. 21–31. [Google Scholar]
- Cambardella, C.A.; Gajda, A.M.; Doran, J.W.; Wienhold, B.J.; Kettler, T.A. Estimation of particulate and total organic matter by weight loss-on-ignition. In Assessment Methods for Soil Carbon (Advances in Soil Science); CRC Press: Boca Raton, FL, USA, 2001; pp. 349–359. [Google Scholar]
- European Comission. European Green Deal: Commission Proposes Certification of Carbon Removals to Help Reach Net Zero Emissions; Press Release; Eurpean Commission: Brussels, Belgium, 2022.
- IPCC. Good Practice Guidance for Land Use, Land-Use Change and Forestry; IPCC: Geneva, Switzerland, 2006; p. 590.
- Borrelli, P.; Panagos, P.; Märker, M.; Modugno, S.; Schütt, B. Assessment of the impacts of clear-cutting on soil loss by water erosion in Italian forests: First comprehensive monitoring and modelling approach. Catena 2017, 149, 770–781. [Google Scholar] [CrossRef]
- Brunner, A.C.; Park, S.J.; Ruecker, G.R.; Vlek, P.L.G. Erosion modelling approach to simulate the effect of land management options on soil loss by considering catenary soil development and farmers perception. L. Degrad. Dev. 2008, 19, 623–635. [Google Scholar] [CrossRef]
- Olson, K.R.; Al-Kaisi, M.; Lal, R.; Cihacek, L. Impact of soil erosion on soil organic carbon stocks. J. Soil Water Conserv. 2016, 71, 61A–67A. [Google Scholar] [CrossRef]
- Mishra, G.; Sarkar, A.; Giri, K.; Nath, A.J.; Lal, R.; Francaviglia, R. Changes in soil carbon stocks under plantation systems and natural forests in Northeast India. Ecol. Modell. 2021, 446, 109500. [Google Scholar] [CrossRef]
- Wellock, M.L.; Rafique, R.; La Perle, C.M.; Peichl, M.; Kiely, G. Changes in ecosystem carbon stocks in a grassland ash (Fraxinus excelsior) afforestation chronosequence in Ireland. J. Plant Ecol. 2014, 7, 429–438. [Google Scholar] [CrossRef]
- Justine, M.F.; Yang, W.; Wu, F.; Khan, M.N. Dynamics of biomass and carbon sequestration across a chronosequence of masson pine plantations. J. Geophys. Res. Biogeosci. 2017, 122, 578–591. [Google Scholar] [CrossRef]
- Abegaz, A.; Tamene, L.; Abera, W.; Yaekob, T.; Hailu, H.; Nyawira, S.S.; Silva, M.D.; Sommer, R. Soil organic carbon dynamics along chrono-sequence land-use systems in the highlands of Ethiopia. Agric. Ecosyst. Environ. 2020, 300, 106997. [Google Scholar] [CrossRef]
- Lozano-García, B.; Francaviglia, R.; Renzi, G.; Doro, L.; Ledda, L.; Benítez, C.; González-Rosado, M.; Parras-Alcántara, L. Land use change effects on soil organic carbon store. An opportunity to soils regeneration in Mediterranean areas: Implications in the 4p1000 notion. Ecol. Indic. 2020, 119, 106831. [Google Scholar] [CrossRef]
- Minasny, B.; Malone, B.P.; McBratney, A.B.; Angers, D.A.; Arrouays, D.; Chambers, A.; Chaplot, V.; Chen, Z.S.; Cheng, K.; Das, B.S.; et al. Soil carbon 4 per mille. Geoderma 2017, 292, 59–86. [Google Scholar] [CrossRef]
- Smal, H.; Ligęza, S.; Pranagal, J.; Urban, D.; Pietruczyk-Popławska, D. Changes in the stocks of soil organic carbon, total nitrogen and phosphorus following afforestation of post-arable soils: A chronosequence study. For. Ecol. Manage. 2019, 451, 117536. [Google Scholar] [CrossRef]
- Kunlanit, B.; Butnan, S.; Vityakon, P. Land-use changes influencing C sequestration and quality in topsoil and subsoil. Agronomy 2019, 9, 520. [Google Scholar] [CrossRef]
- Wattel-Koekkoek, E.J.W.; Buurman, P.; Van Der Plicht, J.; Wattel, E.; Van Breemen, N. Mean residence time of soil organic matter associated with kaolinite and smectite. Eur. J. Soil Sci. 2003, 54, 269–278. [Google Scholar] [CrossRef]
- Baraket, F.; González-Rosado, M.; Brahim, N.; Roca, N.; Mbarek, H.B.; Świtoniak, M.; Chaker, R.; Sánchez-Bellón, Á.; Rigane, H.; Gargouri, K.; et al. Short and long-term effect of land use and management on soil organic carbon stock in semi-desert areas of North Africa-Tunisia. Agriculture 2021, 11, 1267. [Google Scholar] [CrossRef]
- Hobley, E.; Baldock, J.; Hua, Q.; Wilson, B. Land-use contrasts reveal instability of subsoil organic carbon. Glob. Chang. Biol. 2017, 23, 955–965. [Google Scholar] [CrossRef]
- González-Rosado, M.; Parras-Alcántara, L.; Aguilera-Huertas, J.; Benítez, C.; Lozano-García, B. Effects of land management change on soil aggregates and organic carbon in Mediterranean olive groves. Catena 2020, 195, 104840. [Google Scholar] [CrossRef]
- Jenikinson, D.S.; Coleman, K. The turnover of organic carbon in subsoils. Part 2. Modelling carbon turnover. Eur. J. Soil Sci. 2008, 59, 400–413. [Google Scholar] [CrossRef]
- Haynes, R.J. Labile organic matter fractions as central components of the quality of agricultural soils: An overview. Adv. Agron. 2005, 85, 221–268. [Google Scholar] [CrossRef]
- Angst, G.; Mueller, K.E.; Kögel-Knabner, I.; Freeman, K.H.; Mueller, C.W. Aggregation controls the stability of lignin and lipids in clay-sized particulate and mineral associated organic matter. Biogeochemistry 2017, 132, 307–324. [Google Scholar] [CrossRef]
- Shrestha, B.M.; Singh, B.R.; Forte, C.; Certini, G. Long-term effects of tillage, nutrient application and crop rotation on soil organic matter quality assessed by NMR spectroscopy. Soil Use Manag. 2015, 31, 358–366. [Google Scholar] [CrossRef]
- Muñoz-Romero, V.; Lopez-Bellido, R.J.; Fernandez-Garcia, P.; Redondo, R.; Murillo, S.; Lopez-Bellido, L. Effects of tillage, crop rotation and N application rate on labile and recalcitrant soil carbon in a Mediterranean Vertisol. Soil Tillage Res. 2017, 169, 118–123. [Google Scholar] [CrossRef]
- Hemingway, J.D.; Rothman, D.H.; Grant, K.E.; Rosengard, S.Z.; Eglinton, T.I.; Derry, L.A.; Galy, V.V. Mineral protection regulates long-term global preservation of natural organic carbon. Nature 2019, 570, 228–231. [Google Scholar] [CrossRef]
- Newcomb, C.J.; Qafoku, N.P.; Grate, J.W.; Bailey, V.L.; De Yoreo, J.J. Developing a molecular picture of soil organic matter-mineral interactions by quantifying organo-mineral binding. Nat. Commun. 2017, 8, 396. [Google Scholar] [CrossRef] [PubMed]
- Kögel-Knabner, I.; Guggenberger, G.; Kleber, M.; Kandeler, E.; Kalbitz, K.; Scheu, S.; Eusterhues, K.; Leinweber, P. Organo-mineral associations in temperate soils: Integrating biology, mineralogy, and organic matter chemistry. J. Plant Nutr. Soil Sci. 2008, 171, 61–82. [Google Scholar] [CrossRef]
- Zhou, J.; Wen, Y.; Shi, L.; Marshall, M.R.; Kuzyakov, Y.; Blagodatskaya, E.; Zang, H. Strong priming of soil organic matter induced by frequent input of labile carbon. Soil Biol. Biochem. 2021, 152, 108069. [Google Scholar] [CrossRef]
- Jílková, V.; Jandová, K.; Cajthaml, T.; Devetter, M.; Kukla, J.; Starý, J.; Vacířová, A. Organic matter decomposition and carbon content in soil fractions as affected by a gradient of labile carbon input to a temperate forest soil. Biol. Fertil. Soils 2020, 56, 411–421. [Google Scholar] [CrossRef]
- Zheng, J.Y.; Wang, L.; Zhao, J.S.; Niu, Y.H.; Xiao, H.B.; Wang, Z.; Yu, S.X.; Shi, Z.H. Forty-year-old orchards promote carbon storage by changing aggregate-associated enzyme activities and microbial communities. Catena 2022, 213, 106195. [Google Scholar] [CrossRef]
- Cardinael, R.; Chevallier, T.; Cambou, A.; Béral, C.; Barthès, B.G.; Dupraz, C.; Durand, C.; Kouakoua, E.; Chenu, C. Increased soil organic carbon stocks under agroforestry: A survey of six different sites in France. Agric. Ecosyst. Environ. 2017, 236, 243–255. [Google Scholar] [CrossRef]
- Zanotelli, D.; Vendrame, N.; López-Bernal, Á.; Caruso, G. Carbon sequestration in orchards and vineyards. Italus Hortus 2018, 25, 13–28. [Google Scholar] [CrossRef]
- Ramesh, T.; Bolan, N.S.; Kirkham, M.B.; Wijesekara, H.; Kanchikerimath, M.; Srinivasa Rao, C.; Sandeep, S.; Rinklebe, J.; Ok, Y.S.; Choudhury, B.U.; et al. Soil organic carbon dynamics: Impact of land use changes and management practices: A review. Adv. Agron. 2019, 156, 1–107. [Google Scholar] [CrossRef]
- Babu, S.; Mohapatra, K.P.; Yadav, G.S.; Lal, R.; Singh, R.; Avasthe, R.K.; Das, A.; Chandra, P.; Gudade, B.A.; Kumar, A. Soil carbon dynamics in diverse organic land use systems in North Eastern Himalayan ecosystem of India. Catena 2020, 194, 104785. [Google Scholar] [CrossRef]
- Repullo-Ruibérriz de Torres, M.A.; Carbonell-Bojollo, R.M.; Moreno-García, M.; Ordóñez-Fernández, R.; Rodríquez-Lizana, A. Soil organic matter and nutrient improvement through cover crops in a Mediterranean olive orchard. Soil Tillage Res. 2021, 210, 104977. [Google Scholar] [CrossRef]
- Ball, K.R.; Baldock, J.A.; Penfold, C.; Power, S.A.; Woodin, S.J.; Smith, P.; Pendall, E. Soil organic carbon and nitrogen pools are increased by mixed grass and legume cover crops in vineyard agroecosystems: Detecting short-term management effects using infrared spectroscopy. Geoderma 2020, 379, 114619. [Google Scholar] [CrossRef]
- Seddaiu, G.; Porcu, G.; Ledda, L.; Roggero, P.P.; Agnelli, A.; Corti, G. Soil organic matter content and composition as influenced by soil management in a semi-arid Mediterranean agro-silvo-pastoral system. Agric. Ecosyst. Environ. 2013, 167, 1–11. [Google Scholar] [CrossRef]
- Mayer, M.; Prescott, C.E.; Abaker, W.E.A.; Augusto, L.; Cécillon, L.; Ferreira, G.W.D.; James, J.; Jandl, R.; Katzensteiner, K.; Laclau, J.P.; et al. Influence of forest management activities on soil organic carbon stocks: A knowledge synthesis. For. Ecol. Manag. 2020, 466, 118127. [Google Scholar] [CrossRef]
- De Feudis, M.; Falsone, G.; Vittori Antisari, L. Mid-term (30 years) changes of soil properties under chestnut stands due to organic residues management: An integrated study. Catena 2021, 198, 105021. [Google Scholar] [CrossRef]
- Asare, E.; Segarra, E. Adoption and extent of adoption of georeferenced grid soil sampling technology by cotton producers in the southern US. Precis. Agric. 2018, 19, 992–1010. [Google Scholar] [CrossRef]
- Nanni, M.R.; Povh, F.P.; Demattê, J.A.M.; Oliveira, R.B.d.; Chicati, M.L.; Cezar, E. Optimum size in grid soil sampling for variable rate application in site-specific management. Sci. Agric. 2011, 68, 386–392. [Google Scholar] [CrossRef]
- John, K.; Isong, I.A.; Kebonye, N.M.; Ayito, E.O.; Agyeman, P.C.; Afu, S.M. Using machine learning algorithms to estimate soil organic carbon variability with environmental variables and soil nutrient indicators in an alluvial soil. Land 2020, 9, 487. [Google Scholar] [CrossRef]
- Panday, D.; Ojha, R.B.; Chalise, D.; Das, S.; Twanabasu, B. Spatial variability of soil properties under different land use in the Dang district of Nepal. Cogent Food Agric. 2019, 5, 1600460. [Google Scholar] [CrossRef]
- Silvero, N.E.Q.; Demattê, J.A.M.; Amorim, M.T.A.; Santos, N.V.d.; Rizzo, R.; Safanelli, J.L.; Poppiel, R.R.; Mendes, W.d.S.; Bonfatti, B.R. Soil variability and quantification based on Sentinel-2 and Landsat-8 bare soil images: A comparison. Remote Sens. Environ. 2021, 252, 112117. [Google Scholar] [CrossRef]
- Dung, B.X.; Thi, D.; Thanh, K. Runoff and soil erosion response to clear cutting period of acacia plantation in a Headwater Mountain of Vietnam. Appl. Res. Sci. Technol. 2021, 1, 12–25. [Google Scholar]
- Gharibreza, M.; Zaman, M.; Porto, P.; Fulajtar, E.; Parsaei, L.; Eisaei, H. Assessment of deforestation impact on soil erosion in loess formation using 137Cs method (case study: Golestan Province, Iran). Int. Soil Water Conserv. Res. 2020, 8, 393–405. [Google Scholar] [CrossRef]
- Robinson, D.A.; Lebron, I.; Vereecken, H. On the definition of the natural capital of soils: A framework for description, evaluation, and monitoring. Soil Sci. Soc. Am. J. 2009, 73, 1904–1911. [Google Scholar] [CrossRef]
- Costantini, E.A.C.; Mocali, S. Soil health, soil genetic horizons and biodiversity. J. Plant Nutr. Soil Sci. 2022, 185, 24–34. [Google Scholar] [CrossRef]
- Vittori Antisari, L.; Trenti, W.; Buscaroli, A.; Falsone, G.; Vianello, G.; De Feudis, M. Pedodiversity and organic matter stock of soils developed on sandstone formations in the Northern Apennines (Italy). Land 2023, 12, 79. [Google Scholar] [CrossRef]
Site | Year | Horizon | Thickness | Organic C |
---|---|---|---|---|
cm | g kg−1 | |||
CO | 2005 | Oi | 0.3 | 369 |
Oe | 0.5 | 196 | ||
2010 | Oi | 0.5 | 380 | |
Oe | 1.0 | 160 | ||
2015 | Oi | 0.9 | 388 | |
Oe | 0.5 | 212 | ||
2020 | Oi | 1.2 | 396 | |
Oe | 1.6 | 207 | ||
CC | 2005 | Oi | 1.9 | 404 |
Oe | 3.0 | 112 | ||
2020 | Oi | 2.0 | 409 | |
Oe | 2.5 | 118 |
Site | Year | Horizon | Thickness | BD | SOC | ROC | SOCstock | ROCstock |
---|---|---|---|---|---|---|---|---|
cm | g cm−3 | g kg−1 | g kg−1 | Mg ha−1 | Mg ha−1 | |||
CO | 2005 | A | 2.3 | 1.007 | 73.9 ± 2.1 | 0.46 ± 0.07 | 16.7 ± 0.5 | 0.11 ± 0.02 |
AC | 6.0 | 1.022 | 32.5 ± 1.7 | 0.41 ± 0.06 | 19.9 ± 1.0 | 0.25 ± 0.04 | ||
C | 21.7 | 0.998 | 20.3 ± 1.6 | 0.74 ± 0.11 | 44.2 ± 3.4 | 1.61 ± 0.24 | ||
2010 | A | 4.7 | 1.018 | 75.2 ± 10.3 | 0.77 ± 0.09 | 35.8 ± 4.8 | 0.37 ± 0.04 | |
AC | 4.3 | 1.015 | 43.8 ± 9.8 | 0.67 ± 0.04 | 19.2 ± 4.4 | 0.29 ± 0.02 | ||
C | 21.0 | 0.999 | 33.0 ± 7.6 | 0.85 ± 0.08 | 69.2 ± 2.5 | 1.78 ± 0.17 | ||
2015 | A | 3.3 | 1.024 | 86.6 ± 2.9 | 0.87 ± 0.09 | 29.3 ± 0.9 | 0.29 ± 0.03 | |
AC | 5.5 | 1.016 | 46.6 ± 9.7 | 0.89 ± 0.11 | 26.0 ± 3.9 | 0.50 ± 0.06 | ||
C | 21.2 | 0.987 | 37.2 ± 8.8 | 0.94 ± 0.17 | 77.8 ± 18.5 | 1.97 ± 0.36 | ||
2020 | A | 4.7 | 1.018 | 94.8 ± 9.9 | 0.98 ± 0.05 | 45.4 ± 4.7 | 0.47 ± 0.02 | |
AC | 6.7 | 1.019 | 62.1 ± 5.3 | 1.08 ± 0.13 | 42.4 ± 3.6 | 0.74 ± 0.09 | ||
C | 18.6 | 0.979 | 43.1 ± 8.3 | 1.66 ± 0.31 | 78.9 ± 15.2 | 3.04 ± 0.57 | ||
CC | 2005 | A1 | 6.0 | 1.005 | 76.3 ± 6.2 | 0.52 ± 0.09 | 47.0 ± 1.8 | 0.16 ± 0.03 |
A2 | 9.0 | 1.003 | 22.4 ± 5.3 | 0.66 ± 0.07 | 37.9 ± 3.0 | 0.40 ± 0.04 | ||
CB | 6.0 | 0.990 | 12.7 ± 4.4 | 0.69 ± 0.11 | 12.5 ± 4.8 | 0.82 ± 0.13 | ||
C | 9.0 | 0.991 | 10.9 ± 2.2 | 0.94 ± 0.16 | 11.6 ± 1.8 | 0.84 ± 0.14 | ||
2020 | A1 | 6.0 | 0.987 | 67.2 ± 7.7 | 0.74 ± 0.08 | 45.6 ± 2.8 | 0.26 ± 0.03 | |
A2 | 8.0 | 0.994 | 32.2 ± 7.5 | 0.77 ± 0.07 | 32.6 ± 4.0 | 0.38 ± 0.04 | ||
BC | 8.0 | 1.005 | 14.8 ± 2.1 | 0.94 ± 0.10 | 16.9 ± 2.6 | 1.23 ± 0.03 | ||
C | 8.0 | 1.002 | 11.3 ± 1.4 | 0.98 ± 0.09 | 10.4 ± 0.9 | 0.83 ± 0.01 |
Site | Year | Thickness | BD | SOC | ROC | SOCstock | ROCstock |
---|---|---|---|---|---|---|---|
cm | g cm−3 | g kg−1 | g kg−1 | Mg ha−1 | Mg ha−1 | ||
CO | 2005 | 30.0 | 1.007 | 26.9 ± 1.8 | 0.66 ± 0.08 | 80.8 ± 4.9 | 1.97 ± 0.30 |
2010 | 30.0 | 1.004 | 41.2 ± 9.2 | 0.81 ± 0.07 | 124.2 ± 11.7 | 2.44 ± 0.23 | |
2015 | 30.0 | 0.996 | 44.4 ± 7.1 | 0.92 ± 0.12 | 133.1 ± 23.3 | 2.76 ± 0.45 | |
2020 | 30.0 | 0.997 | 55.6 ± 7.8 | 1.43 ± 0.16 | 166.7 ± 23.5 | 4.25 ± 0.68 | |
CC | 2005 | 30.0 | 0.997 | 27.8 ± 4.5 | 0.72 ± 0.11 | 109,0 ± 11.4 | 2.22 ± 0.34 |
2020 | 30.0 | 0.997 | 29.0 ± 4.7 | 0.87 ± 0.09 | 105.5 ± 10.3 | 2.70 ± 0.11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Feudis, M.; Vianello, G.; Vittori Antisari, L. Soil Organic Carbon Stock Assessment for Volunteer Carbon Removal Benefit: Methodological Approach in Chestnut Orchard for Fruit Production. Environments 2023, 10, 83. https://doi.org/10.3390/environments10050083
De Feudis M, Vianello G, Vittori Antisari L. Soil Organic Carbon Stock Assessment for Volunteer Carbon Removal Benefit: Methodological Approach in Chestnut Orchard for Fruit Production. Environments. 2023; 10(5):83. https://doi.org/10.3390/environments10050083
Chicago/Turabian StyleDe Feudis, Mauro, Gilmo Vianello, and Livia Vittori Antisari. 2023. "Soil Organic Carbon Stock Assessment for Volunteer Carbon Removal Benefit: Methodological Approach in Chestnut Orchard for Fruit Production" Environments 10, no. 5: 83. https://doi.org/10.3390/environments10050083
APA StyleDe Feudis, M., Vianello, G., & Vittori Antisari, L. (2023). Soil Organic Carbon Stock Assessment for Volunteer Carbon Removal Benefit: Methodological Approach in Chestnut Orchard for Fruit Production. Environments, 10(5), 83. https://doi.org/10.3390/environments10050083