An Assessment of Streambank Erosion Rates in Iowa
Abstract
:1. Introduction
2. Materials and Methods
2.1. Regional Setting
2.2. Erosion Pins
2.3. Aerial Imagery Analysis of Stream Migration
3. Results and Discussion
3.1. Erosion Pin Recession Rates
3.2. Recession Rates from Aerial Imagery
3.3. Estimating Bank Recession Rates in Iowa
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Simon, A.; Darby, S. The Nature and Significance of Incised River Channels; John Wiley and Sons Ltd.: Chichester, UK, 1999. [Google Scholar]
- Sekely, A.C.; Mulla, D.; Bauer, D. Streambank slumping and its contribution to the phosphorus and suspended sediment loads of the Blue Earth River, Minnesota. J. Soil Water Conserv. 2002, 57, 243–250. [Google Scholar]
- Wilson, C.; Kuhnle, R.; Bosch, D.; Steiner, J.; Starks, P.; Tomer, M.; Wilson, G. Quantifying relative contributions from sediment sources in Conservation Effects Assessment Project watersheds. J. Soil Water Conserv. 2008, 63, 523–532. [Google Scholar] [CrossRef]
- Miller, R.B.; Fox, G.A.; Penn, C.J.; Wilson, S.; Parnell, A.; Purvis, R.A.; Criswell, K. Estimating sediment and phosphorus loads from streambanks with and without riparian protection. Agric. Ecosyst. Environ. 2014, 189, 70–81. [Google Scholar] [CrossRef]
- Palmer, J.A.; Schilling, K.E.; Isenhart, T.M.; Schultz, R.C.; Tomer, M.D. Streambank erosion rates and loads within a single watershed: Bridging the gap between temporal and spatial scales. Geomorphology 2014, 209, 66–78. [Google Scholar] [CrossRef]
- Fox, G.A.; Purvis, R.A.; Penn, C.J. Streambanks: A net source of sediment and phosphorus to streams and rivers. J. Environ. Manag. 2016, 181, 602–614. [Google Scholar] [CrossRef]
- Bull, L.J. Magnitude and variation in the contribution of bank erosion to the suspended sediment load of the River Severn, UK. Earth Surf. Process. Landf. 1997, 22, 1109–1123. [Google Scholar] [CrossRef]
- Hamlett, J.; Baker, J.; Johnson, H. Channel morphology changes and sediment yield for a small agricultural watershed in Iowa. Trans. ASABE 1983, 26, 1390–1396. [Google Scholar] [CrossRef]
- Thoma, D.P.; Gupta, S.C.; Bauer, M.E.; Kirchoff, C. Airborne laser scanning for riverbank erosion assessment. Remote Sens. Environ. 2005, 95, 493–501. [Google Scholar] [CrossRef]
- Schilling, K.E.; Isenhart, T.M.; Palmer, J.A.; Wolter, C.F.; Spooner, J. Impacts of Land-Cover Change on Suspended Sediment Transport in Two Agricultural Watersheds. J. Am. Water Resour. Assoc. 2011, 47, 672–686. [Google Scholar] [CrossRef]
- Belmont, P.; Gran, K.B.; Schottler, S.P.; Wilcock, P.R.; Day, S.S.; Jennings, C.; Lauer, J.W.; Viparelli, E.; Willenbring, J.K.; Engstrom, D.R. Large shift in source of fine sediment in the Upper Mississippi River. Environ. Sci. Technol. 2011, 45, 8804–8810. [Google Scholar] [CrossRef]
- Willett, C.D.; Lerch, R.; Schultz, R.C.; Berges, S.A.; Peacher, R.; Isenhart, T.M. Streambank erosion in two watersheds of the Central Claypan Region of Missouri, United States. J. Soil Water Conserv. 2012, 67, 249–263. [Google Scholar] [CrossRef]
- Laubel, A.; Kronvang, B.; Hald, A.B.; Jensen, C. Hydromorphological and biological factors influencing sediment and phosphorus loss via bank erosion in small lowland rural streams in Denmark. Hydrol. Process. 2003, 17, 3443–3463. [Google Scholar] [CrossRef]
- Kronvang, B.; Audet, J.; Baattrup-Pedersen, A.; Jensen, H.S.; Larsen, S.E. Phosphorus load to surface water from bank erosion in a Danish lowland river basin. J. Environ. Qual. 2012, 41, 304–313. [Google Scholar] [CrossRef] [PubMed]
- Purvis, R.A.; Fox, G.A. Streambank sediment loading rates at the watershed scale and the benefit of riparian protection. Earth Surf. Process. Landf. 2016, 41, 1327–1336. [Google Scholar] [CrossRef]
- Ishee, E.R.; Ross, D.S.; Garvey, K.M.; Bourgault, R.R.; Ford, C.R. Phosphorus characterization and contribution from eroding streambank soils of Vermont’s Lake Champlain Basin. J. Environ. Qual. 2015, 44, 1745–1753. [Google Scholar] [CrossRef]
- Beck, W.J.; Moore, P.L.; Schilling, K.E.; Wolter, C.F.; Isenhart, T.M.; Cole, K.J.; Tomer, M.D. Changes in lateral floodplain connectivity accompanying stream channel evolution: Implications for sediment and nutrient budgets. Sci. Tot. Environ. 2019, 660, 1015–1028. [Google Scholar] [CrossRef]
- Langendoen, E.J.; Simon, A. Modeling the evolution of incised streams. II: Streambank erosion. J. Hydraul. Eng 2008, 134, 905–915. [Google Scholar] [CrossRef]
- Zhao, K.; Coco, G.; Gong, Z.; Darby, S.E.; Lanzoni, S.; Xu, F.; Zhang, K.; Townend, I. A review on bank retreat: Mechanisms, observations, and modeling. Rev. Geophys. 2022, 60, e2021RG000761. [Google Scholar] [CrossRef]
- Wilson, C.G.; Schilling, K.E.; Papanicolaou, A.N. Evaluating the causal factors that influence the spatial and temporal variability of streambank erosion in Iowa. J. ASABE 2022, 65, 1465–1473. [Google Scholar] [CrossRef]
- Simon, A.; Collison, A.J. Quantify the mechanical and hydrologic effects of riparian vegetation on stream stability. Earth Surf. Process. Landf. 2002, 27, 527–546. [Google Scholar] [CrossRef]
- Fox, G.A.; Wilson, G.V. The role of subsurface flow in hillslope and stream bank erosion: A review. Soil Sci. Soc. Am. J. 2016, 74, 717–733. [Google Scholar] [CrossRef]
- Daly, E.R.; Fox, G.A.; Al-Madhhachi, A.S.T.; Storm, D.E. Variability of fluvial erodibility parameters for streambanks on a watershed scale. Geomorphology 2015, 231, 281–291. [Google Scholar] [CrossRef]
- Christianson, R.; Christianson, L.; Wong, C.; Helmers, M.; McIsaac, G.; Mulla, D.; McDonald, M. Beyond the nutrient strategies: Common ground to accelerate agricultural water quality improvement in the upper Midwest. J. Environ. Manag. 2018, 206, 1072–1080. [Google Scholar] [CrossRef] [PubMed]
- Williams, F.; Moore, P.; Isenhart, T.; Tomer, M. Automated measurement of eroding streambank volume from high-resolution aerial imagery and terrain analysis. Geomorphology 2020, 367, 107313. [Google Scholar] [CrossRef]
- Tufekcioglu, M.; Isenhart, T.M.; Schultz, R.C.; Bear, D.A.; Kovar, J.; Russell, J.R. Stream bank erosion as a source of sediment and phosphorus in grazed pastures of the Rathbun Lake Watershed in southern Iowa, United States. J. Soil Water Conserv. 2012, 67, 545–555. [Google Scholar] [CrossRef]
- Zaimes, G.N.; Schultz, R.C.; Isenhart, T.M. Streambank Soil and Phosphorus Losses Under Different Riparian Land-Uses in Iowa 1. J. Am. Water Resour. Assoc. 2008, 44, 935–947. [Google Scholar] [CrossRef]
- Zaimes, G.N.; Schultz, R.C. Riparian land-use impacts on bank erosion and deposition of an incised stream in north-central Iowa, USA. Catena 2015, 125, 61–73. [Google Scholar] [CrossRef]
- Zaimes, G.N.; Tufekcioglu, M.; Schultz, R.C. Riparian land-use impacts on stream bank and gully erosion in agricultural watersheds: What we have learned. Water 2019, 11, 1343. [Google Scholar] [CrossRef]
- Tomer, M.; Van Horn, J. Stream bank and sediment movement associated with 2008 flooding, South Fork Iowa River. J. Soil Water Conserv. 2018, 73, 97–106. [Google Scholar] [CrossRef]
- Yan, B.; Tomer, M.; James, D. Historical channel movement and sediment accretion along the South Fork of the Iowa River. J. Soil Water Conserv. 2010, 65, 1–8. [Google Scholar] [CrossRef]
- Kessler, A.; Gupta, S.C.; Dolliver, H.; Thoma, D. Lidar quantification of bank erosion in Blue Earth County, Minnesota. J. Environ. Qual. 2012, 41, 197–207. [Google Scholar] [CrossRef] [PubMed]
- Plenner, S.; Eichinger, W.E.; Bettis, E.A. Simple terrestrial laser scanner for measuring streambank retreat. J. Hydraul. Eng. 2016, 142, 06016015. [Google Scholar] [CrossRef]
- Papanicolaou, A.T.; Wilson, C.G.; Tsakiris, A.G.; Sutarto, T.E.; Bertrand, F.; Rinaldi, M.; Dey, S.; Langendoen, E. Understanding mass fluvial erosion along a bank profile: Using PEEP technology for quantifying retreat lengths and identifying event timing. Earth Surf. Process. Landf. 2017, 42, 1717–1732. [Google Scholar] [CrossRef]
- Elhakeem, M.; Papanicolaou, A.T.; Tsakiris, A.G. A probabilistic model for sediment entrainment: The role of bed irregularity. Int. J. Sed. Res. 2017, 32, 137–148. [Google Scholar] [CrossRef]
- Elhakeem, M.; Papanicolaou, A.N.; Paleologos, E. Integrating Hydrodynamic Models and Satellite Images to Implement Erosion Control Measures and Track Changes Along Streambanks. In Intelligent Human Systems Integration 2019, Proceedings of the 2nd International Conference on Intelligent Human Systems Integration (IHSI 2019): Integrating People and Intelligent Systems, San Diego, CA, USA, 7–10 February 2019; Springer: Berlin/Heidelberg, Germany, 2019; pp. 326–331. [Google Scholar]
- Schilling, K.E.; Wolter, C.F.; McLellan, E. Agro-hydrologic Landscapes in the Upper Mississippi and Ohio River Basins. Environ. Manag. 2015, 55, 646–656. [Google Scholar] [CrossRef]
- USDA NRCS (Natural Resources Conservation Service). Land Resource Regions and Major Land Resource Areas of the United States, the Caribbean, and the Pacific Basin. In USDA Handbook 296; USDA Natural Resources Conservation Service: Washington, DC, USA, 2006. [Google Scholar]
- Prior, J.C. Landforms of Iowa; University of Iowa Press: Iowa City, IA, USA, 1991. [Google Scholar]
- Beck, W.J. Sediment and Phosphorus Dynamics within the Channel and Floodplain of Walnut Creek, Iowa. Ph.D. Dissertation, Iowa State University, Ames, IA, USA, 2018. [Google Scholar]
- Williams, F. Combining Field and Automated Methods to Estimate Bank Erosion: A Regional Estimation of Sediment and Phosphorus Loads. Master’s Thesis, Iowa State University, Ames, IA, USA, 2019. [Google Scholar]
- Beck, W.; Isenhart, T.; Moore, P.; Schilling, K.; Schultz, R.; Tomer, M. Streambank Alluvial Unit Contributions to Suspended Sediment and Total Phosphorus Loads, Walnut Creek, Iowa, USA. Water 2018, 10, 111. [Google Scholar] [CrossRef]
- Schilling, K.E.; Wolter, C.F. Application of GPS and GIS to map channel features in Walnut Creek, Iowa. J. Am. Water Resour. Assoc. 2000, 36, 1423–1434. [Google Scholar] [CrossRef]
- Zaimes, G.; Schultz, R.; Isenhart, T. Stream bank erosion adjacent to riparian forest buffers, row-crop fields, and continuously-grazed pastures along Bear Creek in central Iowa. J. Soil Water Conserv. 2004, 59, 19–27. [Google Scholar]
- Zaimes, G.N.; Schultz, R.C.; Isenhart, T.M. Riparian land uses and precipitation influences on stream bank erosion in central Iowa. J. Am. Water Resour. Assoc. 2006, 42, 83–97. [Google Scholar] [CrossRef]
- Zaimes, G.N.; Schultz, R.C.; Isenhart, T.M. Total phosphorus concentrations and compaction in riparian areas under different riparian land-uses of Iowa. Agric. Ecosyst. Environ. 2008, 127, 22–30. [Google Scholar] [CrossRef]
- Lawler, D. Process dominance in bank erosion systems. In Lowland Floodplain Rivers: Geomorphological Perspectives; Carling, P.A., Petts, G.E., Eds.; John Wiley and Sons: Chichester, UK, 1992; pp. 117–143. [Google Scholar]
- Pollen, N.; Simon, A. Estimating the mechanical effects of riparian vegetation on stream bank stability using a fiber bundle model. Water Resour. Res. 2005, W07025, 41. [Google Scholar] [CrossRef]
- Fox, G.A.; Wilson, G.V.; Simon, A.; Langendoen, E.J.; Akay, O.; Fuchs, J.W. Measuring streambank erosion due to ground water seepage: Correlation to bank pore water pressure, precipitation and stream stage. Earth Surf. Process. Landf. 2007, 32, 1558–1573. [Google Scholar] [CrossRef]
- Hooke, J.M. An analysis of the processes of river bank erosion. J. Hydrol. 1979, 42, 39–62. [Google Scholar] [CrossRef]
- Knighton, A.D. Downstream variation in stream power. Geomorphology 1999, 29, 293–306. [Google Scholar] [CrossRef]
- USDOT (U.S. Department of Transportation). Stream Stability at Highway Structures, 4th ed.; Publication No. FHWA-HIF-12-004; U.S. Department of Transportation, Federal Highway Administration: Washington, DC, USA, 2012.
- Hooke, J.M. River meander behavior and instability: A framework for analysis. Trans. Inst. Br. Geogr. 2003, 28, 238–253. [Google Scholar] [CrossRef]
- Couper, P. Effects of silt–clay content on the susceptibility of river banks to subaerial erosion. Geomorphology 2003, 56, 95–108. [Google Scholar] [CrossRef]
- Julian, J.P.; Torres, R. Hydraulic erosion of cohesive riverbanks. Geomorphology 2006, 76, 193–206. [Google Scholar] [CrossRef]
- Schilling, K.E.; Jacobson, P.J.; Wolter, C.F. Using riparian zone scaling to optimize buffer placement and effectiveness. Land. Ecol. 2018, 33, 141–156. [Google Scholar] [CrossRef]
- Hughes, R.M.; Kaufmann, P.R.; Weber, M.H. National and regional comparisons between Strahler order and stream size. J. N. Am. Benthol. Soc. 2011, 1, 103–121. [Google Scholar] [CrossRef]
- Simon, A. The discharge of sediment in channelized alluvial streams. J. Am. Water Resour. Assoc. 1989, 25, 1177–1188. [Google Scholar] [CrossRef]
- Odgaard, A.J. Streambank erosion along two rivers in Iowa. Water Resour. Res. 1987, 23, 1225–1236. [Google Scholar] [CrossRef]
- Moustakidis, I.V.; Schilling, K.E.; Weber, L.J. Soil total phosphorus deposition and variability patterns across the floodplains of an Iowa river. Catena 2019, 174, 84–94. [Google Scholar] [CrossRef]
- Florsheim, J.L.; Mount, J.F.; Chin, A. Bank erosion as a desirable attribute of rivers. BioScience 2008, 58, 519–529. [Google Scholar] [CrossRef]
- Simon, A.; Rinaldi, M. Channel instability in the loess area of the midwestern United States. J. Am. Water Resour. Assoc. 2000, 36, 133–150. [Google Scholar] [CrossRef]
- Schilling, K.E.; Zhang, Y.K.; Drobney, P. Water table fluctuations near an incised stream, Walnut Creek, Iowa. J. Hydrol. 2004, 286, 236–248. [Google Scholar] [CrossRef]
- Garbrecht, J.D.; Nearing, M.A.; Shields, F.D.; Tomer, M.D.; Sadler, E.J.; Bonta, J.V.; Baffaut, C. Impact of weather and climate scenarios on conservation assessment outcomes. J. Soil Water Conserv. 2014, 69, 374–392. [Google Scholar] [CrossRef]
- Booth, D.B. Stream channel incision following drainage basin urbanization. J. Am. Water Resour. Assoc. 1990, 26, 407–417. [Google Scholar] [CrossRef]
- Knox, J.C. Human impacts on Wisconsin stream channels. Ann. Am. Assoc. Geogr. 1977, 7, 323–342. [Google Scholar] [CrossRef]
- Trimble, S.W. Contribution of stream channel erosion to sediment yield from an urbanizing watershed. Science 1997, 278, 1442–1444. [Google Scholar] [CrossRef]
- McKie, C.W.; Juez, C.; Plumb, B.D.; Annable, W.K.; Franca, M.J. How large immobile sediments in gravel bed rivers impact sediment transport and bed morphology. J. Hydraul. Eng. 2021, 147, 04020096. [Google Scholar] [CrossRef]
- Monsalve, A.; Yager, E.M.; Schmeeckle, M.W. Effects of bed forms and large protruding grains on near-bed flow hydraulics in low relative submergence conditions. J. Geophys. Resear. Earth Surf. 2017, 122, 1845–1866. [Google Scholar] [CrossRef]
- Schottler, S.P.; Ulrich, J.; Belmont, P.; Moore, R.; Lauer, J.W.; Engstrom, D.R.; Almendinger, J.E. Twentieth century agricultural drainage creates more erosive rivers. Hydrol. Process. 2014, 28, 1951–1961. [Google Scholar] [CrossRef]
- Dalzell, B.J.; Mulla, D.J. Perennial vegetation impacts on stream discharge and channel sources of sediment in the Minnesota River Basin. J. Soil Water Conserv. 2018, 73, 120–132. [Google Scholar] [CrossRef]
- Martínez-Fernández, J.; Sanchez, N.; Herrero-Jimenez, C.M. Recent trends in rivers with near-natural flow regime: The case of the river headwaters in Spain. Prog. Phys. Geogr. 2013, 37, 685–700. [Google Scholar] [CrossRef]
- Juez, C.; Garijo, N.; Nadal-Romero, E.; Vicente-Serrano, S.M. Wavelet analysis of hydro-climatic time-series and vegetation trends of the Upper Aragón catchment (Central Spanish Pyrenees). J. Hydrol. 2022, 614, 128584. [Google Scholar] [CrossRef]
- Lorenzo-Lacruz, J.; Morán-Tejeda, E.; Vicente-Serrano, S.M.; Hannaford, J.; García, C.; Peña-Angulo, D.; Murphy, C. Streamflow frequency changes across western Europe and interactions with North Atlantic atmospheric circulation patterns. Glob. Planet. Change 2022, 212, 103797. [Google Scholar] [CrossRef]
- Schilling, K.E.; Isenhart, T.M.; Wolter, C.F.; Streeter, M.T.; Kovar, J.L. Contribution of streambanks to phosphorus export from Iowa. J. Soil Water Conserv. 2022, 77, 103–112. [Google Scholar] [CrossRef]
- Wolter, C.F.; Schilling, K.E.; Palmer, J.A. Quantifying the extent of eroding streambanks in Iowa. J. Am. Water Resour. Assoc. 2021, 57, 391–405. [Google Scholar] [CrossRef]
Study | Region of IOWA | MLRA | Years of Monitoring | No. of Banks in Study | Recession Rate (cm yr−1) |
---|---|---|---|---|---|
Beck [42] | Southern | 108c | 2016 | 10 | 12.3 |
2017 | 10 | 6.3 | |||
2018 | 10 | 18.6 | |||
Williams [41] | Central | 103 | 2011 | 28 | −1.23 |
2012 | 35 | −0.40 | |||
2013 | 34 | 3.90 | |||
2014 | 35 | 4.63 | |||
2015 | 33 | 21.36 | |||
2017 | 25 | −0.50 | |||
2018 | 24 | 30.97 | |||
Palmer et al. [5] | Southern | 108c | 2005 | 10 | 0.4 |
2006 | 10 | −0.6 | |||
2007–2008 | 10 | 19.2 | |||
2009 | 10 | 34.2 | |||
2010 | 10 | 27.0 | |||
2011 | 10 | 13.6 | |||
Tufekcioglu et al. [26] | Southeast | 109 | 2006 | 13 | 11.7 |
2007 | 13 | 26.6 | |||
2008 | 13 | 26.3 | |||
Zaimes et al. [27] | Central | 103 | 2001 | 5 | 10.3 |
2002 | 5 | 9.5 | |||
2003 | 5 | 20.2 | |||
Northeast | 104 | 2001 | 4 | 5.8 | |
2002 | 4 | 9.2 | |||
2003 | 4 | 11.9 | |||
Southeast | 109 | 2001 | 5 | 8.6 | |
2002 | 5 | 2.2 | |||
2003 | 5 | 15.1 | |||
Average | 12.4 | ||||
St dev | 10.3 | ||||
Median | 11.0 |
Mean Rate (cm yr−1) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
MLRA | Order 3 | Order 4 | Order 5 | Order 6 | ||||||||
Mean | Std Dev | Count | Mean | Std Dev | Count | Mean | Std Dev | Count | Mean | Std Dev | Count | |
103 | 12.8 | 8.3 | 74 | 16.2 | 7.7 | 81 | 36.5 | 32.6 | 64 | 42.7 | 38.5 | 30 |
104 | 15.9 | 11.5 | 84 | 22.9 | 12.5 | 81 | 24.5 | 16.0 | 61 | 37.2 | 21.9 | 39 |
105 | 16.7 | 9.1 | 83 | 21.7 | 13.1 | 87 | 37.4 | 24.2 | 64 | 100.8 | 101.1 | 47 |
107a | 11.2 | 12.6 | 89 | 25.2 | 21.4 | 82 | 47.9 | 38.4 | 55 | 58.1 | 31.4 | 34 |
107b | 11.1 | 5.8 | 82 | 17.4 | 11.9 | 88 | 36.5 | 41.8 | 66 | 74.7 | 77.9 | 44 |
108c | 9.0 | 4.0 | 83 | 13.0 | 6.6 | 81 | 19.9 | 12.8 | 64 | 33.2 | 20.4 | 44 |
108d | 11.1 | 4.6 | 73 | 13.7 | 8.3 | 72 | 31.0 | 27.7 | 59 | 50.5 | 42.9 | 42 |
109 | 11.3 | 6.0 | 79 | 14.8 | 11.7 | 79 | 21.3 | 13.7 | 63 | 33.1 | 28.8 | 37 |
average | 12.4 | 7.7 | 18.1 | 11.6 | 31.9 | 25.9 | 62 | 53.8 | 45.4 | |||
Maximum Rate (cm yr−1) | ||||||||||||
MLRA | Order 3 | Order 4 | Order 5 | Order 6 | ||||||||
Mean | Std Dev | Count | Mean | Std Dev | Count | Mean | Std Dev | Count | Mean | Std Dev | Count | |
103 | 53.3 | 38.8 | 74 | 62.0 | 35.4 | 81 | 156.5 | 130.0 | 64 | 178.8 | 162.0 | 30 |
104 | 67.9 | 52.2 | 84 | 87.7 | 43.3 | 81 | 123.5 | 101.7 | 61 | 179.2 | 141.6 | 39 |
105 | 49.7 | 23.6 | 83 | 77.0 | 53.1 | 87 | 148.9 | 109.1 | 64 | 497.8 | 522.0 | 47 |
107a | 37.3 | 36.4 | 89 | 84.0 | 64.9 | 82 | 183.3 | 137.6 | 55 | 299.0 | 195.7 | 34 |
107b | 37.9 | 17.8 | 82 | 58.5 | 44.2 | 88 | 126.6 | 121.1 | 66 | 268.3 | 217.8 | 44 |
108c | 33.5 | 16.9 | 83 | 50.3 | 33.1 | 81 | 77.7 | 67.7 | 64 | 165.3 | 131.7 | 44 |
108d | 43.0 | 20.1 | 73 | 49.6 | 32.8 | 72 | 113.4 | 94.3 | 59 | 184.2 | 148.5 | 42 |
109 | 44.5 | 25.5 | 79 | 56.9 | 45.6 | 79 | 95.2 | 73.4 | 63 | 119.1 | 90.3 | 37 |
average | 45.9 | 28.9 | 65.8 | 44.1 | 128.1 | 104.4 | 236.5 | 201.2 |
Stream Order | Bankfull Width (m) [57] | Mean Erosion Rate (cm/yr) (This Study) | Width-Normalized Erosion Rate (1/yr) |
---|---|---|---|
3 | 10.4 | 12.4 | 0.0119 |
4 | 11.3 | 18.1 | 0.0160 |
5 | 24.6 | 31.9 | 0.0130 |
6 | 44.0 | 53.8 | 0.0122 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schilling, K.E.; Wolter, C.F.; Palmer, J.A.; Beck, W.J.; Williams, F.F.; Moore, P.L.; Isenhart, T.M. An Assessment of Streambank Erosion Rates in Iowa. Environments 2023, 10, 84. https://doi.org/10.3390/environments10050084
Schilling KE, Wolter CF, Palmer JA, Beck WJ, Williams FF, Moore PL, Isenhart TM. An Assessment of Streambank Erosion Rates in Iowa. Environments. 2023; 10(5):84. https://doi.org/10.3390/environments10050084
Chicago/Turabian StyleSchilling, Keith E., Calvin F. Wolter, Jason A. Palmer, William J. Beck, Forrest F. Williams, Peter L. Moore, and Thomas M. Isenhart. 2023. "An Assessment of Streambank Erosion Rates in Iowa" Environments 10, no. 5: 84. https://doi.org/10.3390/environments10050084
APA StyleSchilling, K. E., Wolter, C. F., Palmer, J. A., Beck, W. J., Williams, F. F., Moore, P. L., & Isenhart, T. M. (2023). An Assessment of Streambank Erosion Rates in Iowa. Environments, 10(5), 84. https://doi.org/10.3390/environments10050084