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Abstract: Cyanobacteria are frequently associated with forming toxic blooms. The toxins produced
by cyanobacteria, cyanotoxins, are harmful to both humans and animals. Rising temperatures due
to global climate change are expected to increase the occurrence of cyanobacteria, and it is vital
that we protect our drinking water supplies and natural water resources. Modeling the production,
fate, and transport of these toxins is an important step in limiting exposure to them and evaluating
management strategies to mitigate their impact. The research provided here offers an overview of
some of the main cyanotoxins of concern and presents preliminary models for the transport and
fate of these toxins. Cyanotoxins can be either intracellular or extracellular, and a model for each
was developed. The models were incorporated into the two-dimensional (longitudinal and vertical)
hydrodynamic and water quality model CE-QUAL-W2. The toxin models were tested using a model
of Henry Hagg Lake (Oregon, USA). The models were able to produce similar trends as found
in published data, but since the toxin data available at Henry Hagg Lake was minimal, no direct
comparisons between model results and field data were made. Four scenarios were conducted to test
the functionality of the toxin models in CE-QUAL-W2. The predicted results from each test scenario
matched the expected outcomes based on the parameters used in each scenario. Further applications
of the toxin models to other water bodies with more consistent toxin data will help verify the accuracy
of the models. This research provides a first step at modeling cyanotoxins using CE-QUAL-W2 and
provides a framework to further develop the models through continued research of the cyanotoxins.

Keywords: cyanotoxins; cyanobacteria; hydrodynamic and water quality modeling

1. Introduction

Cyanobacteria are found throughout the world in both fresh and marine water, and
since warmer temperatures have been shown to increase cyanobacterial growth, the occur-
rence of cyanobacteria could likely increase with the rise in global temperatures brought
about by climate change [1–4]. While all bacterial and algal blooms can have harmful effects
on the environment by reducing the availability of oxygen in water bodies, cyanobacterial
blooms can also be harmful due to their ability to produce cyanotoxins, exposure to which
may cause illnesses in humans [2,5,6]. The U.S. Environmental Protection Agency (EPA)
Contaminant Candidate List 5 (CCL 5) lists cyanotoxins as contaminants in drinking water
that may require future regulation [7]. By modeling the production and movement of these
toxins, we can evaluate management strategies to mitigate their impact and help protect
our drinking water supplies and natural resources.

Four of the main cyanotoxins studied (summarized in Table 1) are microcystins (MC),
cylindrospermopsins (CYN), anatoxin-a (ATX), and saxitoxins (STX). Many publications
have been produced in the last decade that provide reviews of the various cyanobacteria
and cyanotoxins (see [5,8–14]).
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Table 1. Summary of the cyanotoxins microcystins, cylindrospermopsins, anatoxin-a, and saxitoxins
[9,11].

Toxin Microcystins Cylindrospermopsins Anatoxin-a Saxitoxins

Toxin Type Hepatotoxin Cytotoxin Neurotoxin Neurotoxin

Occurrence
Mostly found intracellularly.
Extracellular portion likely

due mainly to cell lysis.

High extracellular fractions
observed. Extracellular

portion likely due to active
release from cells in addition

to cell lysis.

Extracellular portion likely
due mainly to cell lysis.

STX congeners may
undergo reactions that can

change their toxicity.

One of the difficulties with predicting cyanotoxin concentrations is that not all toxic
cyanobacteria may produce toxins in all environments, and some species include both
toxic and nontoxic cyanobacteria strains [9,12,13]. Additionally, some strains may be
capable of producing multiple different toxins. A study by Ballot et al. [15] detected both
microcystin and anatoxin-a in one strain of Arthrospira fusiformis. The toxins can be present
as intracellular toxins (toxins bound within a cell) or extracellular toxins (dissolved in the
water). Cell lysis is one of the pathways by which cyanotoxins become extracellular, and
some studies have also suggested that release from live cells may also occur. The active
release is thought to occur for some CYN-producing species due to the high extracellular
concentrations that have been observed [16,17], whereas cell lysis is likely the main cause
of extracellular microcystins [18]. However, the overall quantity of toxins present in a water
body appears to be largely a factor in the overall abundance of the particular cyanobacteria
strains present producing the toxins [9].

Various models have been proposed for the production and degradation of cyanotox-
ins. For example, Harris and Graham [19] analyzed twelve different “linear and nonlinear
regression models” for their ability to predict cyanobacteria and toxin concentrations in a
reservoir in Kansas; however, the models were generally unable to predict peak concen-
trations. Mechanistic models have also been developed that relate cyanobacteria cellular
concentrations with a constant toxin production coefficient or cell quota (mass of toxin per
cell) to estimate the toxin concentration [20–23]. Table 2 shows a summary of some of these
mechanistic models of cyanotoxin production and degradation.

Table 2. Cyanotoxin models in the literature.

Equation Parameters References

dC
dt = µc Ncεc − kcC

C = cyanotoxin concentration, µgL−1

µc = cyanobacteria growth rate, day−1

Nc = cyanobacteria concentration, cell L−1

εc = cyanotoxin production coe f f icient, µg cell−1

kc = f irst order cyanotoxin decay rate, day−1

[20,21]

dM
dt = p dX

dt − dM M

M = MC concentration, fg mL−1

X = cyanobacteria concentration, cell mL−1

p = MC production coe f f icient, fg cell−1

dM = f irst order intracellular MC depletion rate, day−1

[23]

dCe
dt = q

(
dN
dt

)
− kOH,MCCeCOH

dCi
dt = q

(
− dN

dt

)
dCt
dt = dCe

dt + dCi
dt

Ce = extracellular MC concentration, µg L−1

Ci = cell − bound MC concentration,µg L−1

Ct = total MC concentration, µg L−1

q = MC cell quota, µg cell−1

kOH,MC = second order reaction rate constant between OH radical and MCs, M−1s−1

COH = OH concentration, M
N = cyanobacteria concentration o f intact cells, cell L−1

[22]

The Hazen-Adams CyanoTOX (Cyanotoxin Tool for Oxidation Kinetics) tool has also
been developed that predicts extracellular concentrations of various cyanotoxins after
exposure to different oxidants [24,25]. The Version 3.0 of the CyanoTOX tool has been
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updated to include the release of intracellular toxins through lysing or leakage using
assumed release rates (none, slow, moderate, fast, or instantaneous).

While the factors that affect cyanobacteria and cyanotoxin production are complex,
the objectives of this research were to develop a general framework to model cyanotoxin
production, distribution, and degradation in surface water bodies that could be incorpo-
rated into CE-QUAL-W2 [26,27], two-dimensional (longitudinal and vertical) hydraulic
and water quality model of rivers, lakes/reservoirs and estuaries. Even though we are
using the CE-QUAL-W2 framework to evaluate cyanotoxin production and transport, the
framework is applicable to any water quality model. CE-QUAL-W2 has been used exten-
sively to model the water quality of many different water bodies throughout the world.
CE-QUAL-W2 is suited for long and narrow water bodies under stratified conditions and
has been used in many different regions, such as those with temperate or tropical climates.
A water quality and hydrodynamic model of Henry Hagg Lake in Oregon, USA, was used
to test the cyanotoxin model framework.

2. Methods

A modeling framework was developed for cyanotoxin production and degradation
so that a predictive model could answer questions about toxic cyanobacterial blooms and
their impact on water quality. Once the algorithms were developed, they were added,
tested, and evaluated in the model CE-QUAL-W2 [26,27]. The growth and death kinetics
of cyanobacteria are treated the same as algae in CE-QUAL-W2 [27]. A simplified equation
of the sources and sinks of cyanobacteria in a batch reactor (no sources or sinks associated
with inflows and outflows, nor settling since the reactor is well-mixed) based on those used
in CE-QUAL-W2 are shown in Equation (1) [27].

da
dt

=
(
kg − kr − ke − kd

)
a (1)

where a is the concentration of cyanobacteria, kg is the growth rate, kr is respiration rate,
ke is excretion rate, and kd is the death rate. Figure 1 shows some of the hypothesized
sources and sinks of intracellular and extracellular cyanotoxins in a batch reactor based
on the general growth and death kinetics of cyanobacteria as well as processes specific to
cyanotoxins.
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Figure 1. Hypothesized sources and sinks of intracellular and extracellular cyanotoxins.

It is assumed that during cellular respiration, when the cells release carbon dioxide [28],
the cells may use the toxin for cell processes, thereby decreasing the amount of intracellular
toxin while not adding to the amount of extracellular toxin. It is also assumed that during
excretion, when the cells release nutrients and organic carbon [28], the cells may also release
toxins to the water column, thereby adding to the extracellular toxin concentration and
decreasing the intracellular concentration. Internal decay, leakage, and active release are
other hypothesized processes that might occur. Referring to Figure 1, it is assumed that for a
specific toxin in a batch reactor, the sources and sinks of intracellular toxin concentration can
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be modeled by Equation (2), and the sources and sinks of extracellular toxin concentration
can be modeled by Equation (3)

dCintra
dt

=
(
kg − kr − ke − kd

)
aβ − kleakCintra − kdecay_intraCintra − kactiveCintra (2)

dCextra

dt
= (ke + kd)aβ + kleakCintra − kdecay_extraCextra + kactiveCintra (3)

where Cintra is intracellular toxin concentration, kgaβ is the increase in intracellular toxin
during growth, −kraβ is the loss of intracellular toxin during respiration, ±keaβ is the loss
of intracellular toxin (an increase in extracellular toxin) to cell excretion, ±kdaβ is the loss of
intracellular toxin (an increase in extracellular toxin) to death, β is the ratio of intracellular
toxin mass to the mass of dry weight organic matter, ±kleakCintra is the loss of intracellular
toxin (an increase in extracellular toxin) due to leakage from the cell, −kdecay_intraCintra is
the loss of intracellular toxin to internal decay, ±kactiveCintra is the loss of intracellular toxin
(an increase in extracellular toxin) due to active toxin release from the cell, Cextra is the
extracellular toxin concentration, and −kdecay_extraCextra is the loss of extracellular toxin
to extracellular decay. It is assumed that the value of β represents the intracellular toxin
production rate (100 percent of the production rate) and that the extracellular toxin is only
released from the intracellular toxin produced.

Since the distinction between various processes nor the rates of these different pro-
cesses are not well known or measured, many processes were combined and simplified
when applying this model to CE-QUAL-W2 as shown in Equations (4) and (5) for intracel-
lular and extracellular toxin concentrations, respectively.

Cintra =
n algal groups

∑
i=1

(CTP)Φaβ (4)

dCextra

dt
= KamΦaβ(CTP) + kreleaseCintra − kdecayCextra (5)

where Cintra is the intracellular toxin concentration (mg toxin L−1), Φa is the cyanobacteria
concentration (mg dry weight organic matter L−1), β is the ratio of intracellular toxin
mass to the mass of dry weight organic matter (mg toxin mg dry weight−1), Cextra is
the extracellular toxin concentration (mg toxin L−1), Kam is the cyanobacteria mortality
rate (day−1), krelease is the combined toxin release rate of intracellular to extracellular
representing any possible methods of excretion, leakage, and active release (day−1), kdecay

is the extracellular toxin decay rate (day−1), and CTP (from CyanoToxin Produced) is
described below. Separate toxin mass balances are used for each toxin of interest. In
contrast to Equations (2) and (3), these simplified equations assume that the intracellular
toxin concentration will not decrease as a result of toxin release (as determined by krelease),
but rather the cell will manufacture any toxin lost to keep the ratio of intracellular toxin to
dry-weight organic matter constant.

The CTP term mentioned above is the fraction of the algae group that produces the
specific toxin. CTP represents which fraction of the modeled algae groups produce a toxin.
For example, if a user selected one algae group to represent all the cyanobacteria in the
reservoir, but only half of the group consisted of predicted microcystin producers, then
CTP for Microcystin (CTP_MC) would be set to 0.5. If a group is not a toxin producer, then
the CTP values for that group would be set to zero.

The intracellular toxin is calculated based on the concentration of cyanobacteria present
in a model cell and the fraction of cyanobacteria producing that toxin. The intracellular
concentration is summed for all the cyanobacteria groups that produce that toxin. There
are no decay or other rates associated with the intracellular toxin concentration other
than the scaling with the biomass algae concentration. The extracellular rate equation is a



Environments 2023, 10, 122 5 of 15

function of the mortality rate of cyanobacteria, the release rate of intracellular toxin, and
the extracellular decay.

Table 3 shows the literature values for dry weight ratios (toxin mass per dry weight
biomass), toxin cell quotas (mass of toxin per cell), ratios of toxin to chlorophyll a, and
percent of toxin as extracellular for specific species producing each of the four toxins. See
Buratti et al. [8], Chorus and Welker [9], Cirés and Ballot [10], and Testai et al. [14] for
similar tables with additional values. Table 4 shows the degradation rates of cyanotoxins
exposed to various conditions. The taxonomy of some of the cyanobacteria species in
Table 3 has been revised [9].

Table 3. Literature values for species producing cyanotoxins.

Species
Ratio of Toxin to

Dry Weight
(µg Toxin g−1 DW)

Cell Quota
(fg Toxin Cell−1)

Ratio of Toxin to
Chlorophyll a

(µg Toxin µg−1 chl a)

Percent
Extracellular of

Total Toxin
(Intracellular +
Extracellular)

References

Microcystins

Anabaena 1300–3900 [29]

Microcystis aeruginosa 1180–6470 0.59 [30]

Microcystis aeruginosa 18–24 0.70–0.81 a 21–47 [31]

Microcystis aeruginosa 1500–9500 b 56–165 [32]

Microcystis aeruginosa 555–1113 [33]

Planktothrix agardhii 1170–4460 44–343 0–62 [34]

Planktothrix rubescens 320–4510 27–857 0–23 [34]

Cylindrospermopsins

Aphanizomenon flos-aquae 2300–6600 [35]

Aphanizomenon flos-aquae 8–58 [17]

Aphanizomenon ovalisporum 90–6370 2–191 0.01–0.53 23–64 [36]

Cylindrospermopsis raciborskii 10–25 b 14–50 [37]

Anatoxin-a

Anabaena circinalis 1396 [38]

Anabaena flos-aquae 1107–13,013 [38]

Aphanizomenon sp. 1562 [38]

Aphanizomenon issatschenkoi 100 21–39 [39]

Aphanizomenon issatschenkoi 6–1683 3–47 [40]

Oscillatoria sp. 4000 [41]

Oscillatoria sp. 2713 [38]

Saxitoxins

Anabaena circinalis 1580 c [42]

Anabaena circinalis 7–2553 c <1–1105 c [43]

Anabaena circinalis 36–38 d [44]

Cylindrospermopsis raciborskii 53–63 d [44]

DW, dry weight. a Value obtained by dividing toxin cell quota by chlorophyll a cell quota. b Value estimated from
figure in the cited reference. c Total saxitoxins (paralytic shellfish poisoning toxins). d Saxitoxin congener only,
value estimated from ratio of intracellular to extracellular toxins.
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Table 4. Influences of different parameters on cyanotoxin degradation.

Parameter Toxin Degradation Rates a References

Microcystins

Sunlight and range of water-extractable pigment
concentrations from 0–5 mg mL−1

0.006–0.159 day−1 (1–85% left after 29 days as estimated from
figure in the cited reference)

[45]

Artificial equivalence to approximately 20 days of
natural sunlight in surface water

0.071 day−1 (24% left after 144 h of light, equivalent to 20 days
of natural sunlight)

[46]

254 nm UV light at 250 W m−2 in surface water 1326 day−1 (1% left after 5 min) [46]

Chlorination by 3.0 mg L−1 NaOCl in surface water 798 day−1 (33% left after 2 min) [46]

Biodegradation in water samples 0.039–0.173 day−1 (half-lives of 4–18 days) [47]

Cylindrospermopsins

Natural sunlight

4.2–11.1 day−1 (half-lives of 1.5 and 4 h for algal
extract solutions)

0.046–0.063 day−1 (half-lives of 11 and 15 days for natural
water samples)

[48]

Range of artificial light from 9–42 µE m−2 s−1 with
initial toxin concentrations of 1 and 4 mg L−1 0.005–0.025 day−1 (42–84% left after 5 weeks) [48]

Range of pH values from 4–10 with initial toxin
concentrations of 1 and 4 mg L−1 0.004–0.005 day−1 (75–81% left after 8 weeks) [48]

Range of temperatures from 4–35 ◦C with initial toxin
concentrations of 1 and 4 mg L−1 0.008–0.019 day−1 (77–89% left after 14 days) [48]

257 nm UV light at 300 mW m−2 10.3 day−1 (concentration decreased from 1.5 to 1.3 mg L−1

after 20 min)
[48]

257 nm UV light at 400 mW m−2 0.924 day−1 (half-life of 18 h) [48]

Artificial equivalence to approximately 20 days of
natural sunlight in surface water

0.032 day−1 (53% left after 144 h of light, equivalent to 20 days
of natural sunlight)

[46]

254 nm UV light at 250 W m−2 in surface water 27 day−1 (1% left after 250 min) [46]

Chlorination by 3.0 mg L−1 NaOCl in surface water 2318 day−1 (4% left after 2 min) [46]

Anatoxin-a

Normal pH conditions and microbes 0.139 day−1 (half-life of 5 days) [49]

Natural sunlight at pH range of 6–12 in aqueous toxin
solution 3.0–10.4 day−1 (half-lives ranging between 96 and 330 min) [50]

Natural sunlight at pH of 9 in algal lysate solution 1.4 day−1 (half-life of 690 min) [50]

Headspace purged with nitrogen at pH of 9 0.069 day−1 (half-life of 10 days) [50]

Headspace purged with oxygen at pH of 9 0.139 day−1 (half-life of 5 days) [50]

Saxitoxins

Temperature of 20 ◦C and pH values of 7 or 9 in sterile
water 0.011 day−1 (total saxitoxins) [51]

Temperature of 30 ◦C and pH value of 7 in sterile water 0.022 day−1 (total saxitoxins) [51]

Temperature of 20 ◦C in culture medium under
different sterilization and deproteinization conditions 0.089–0.240 day−1 (total saxitoxins) [51]

Sterile water at 25 ◦C 0.015–0.033 day−1 (individual congeners) [52]

Irrigation drain water at 25 ◦C 0.025–0.075 day−1 (individual congeners) [52]

a Unless provided directly, the decay rate was estimated using the first-order decay equation c = c0e−kt, where c is
the toxin concentration after time (t), c0 is the initial toxin concentration, and k is the decay rate [28].

Table 5 lists suggested ranges of values to use for each parameter from Equations (4)
and (5) based on the literature values and model tests. CTP has been described previously,
CTB (from CyanoToxin Biomass) represents the β term, CTR (from CyanoToxin Release)
represents the krelease term and CTD (from CyanoToxin Decay) represents the kdecay term.
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Table 5. Suggested model parameter ranges for CE-QUAL-W2 toxin models.

Parameter MC CYN ATX STX

CTP, fraction of cyanobacteria
concentration producing toxin Water body dependent, determined by species present

CTB, ratio of intracellular toxin to dry
weight biomass (mg-toxin mg-DW−1) 0.0005–0.01 0.0001–0.01 0.0001–0.015 0.0001–0.005

CTR, release rate day−1 Approx. 0–1 times
excretion rate

Approx. 0–2 times
excretion rate

Approx. 0–1 times
excretion rate

Approx. 0–1 times
excretion rate

CTD, extracellular decay day−1 0.01–0.2 0.001–0.1 0.05–1.0 0.01–0.1

DW, dry weight.

3. Results and Discussion

The CE-QUAL-W2 model with the toxin code was applied to a previously developed
and calibrated model of Henry Hagg Lake in Oregon, USA [53]. The model simulated eight
years of continuous water quality from 1 January 2013 through 31 December 2020, and the
model was calibrated to temperature, nutrient, chlorophyll a, and organic matter data from
this time period. The first two years of the model simulation (2013 and 2014) were used in
this paper to show annual trends. The climate of Oregon near Henry Hagg Lake shows
distinct seasonal patterns with hot and dry (summer) weather typically from July through
September and cold and wet (winter) weather typically from December through February.

There were minimal toxin data available at the lake, so the model was only used to
test the proof of concept of the toxin equations within the code. Two toxins (MC and CYN)
were included in the model simulations to test the model’s ability to predict multiple toxin
concentrations and to test the toxin dynamics between MC and CYN. The model was set
up using three algal groups where group 1 represented cooler temperature algal species
(diatoms), group 2 represented warmer temperature algal species (greens), and group 3
represented cyanobacteria.

Four model scenarios were conducted to test the functionality of the code updates. The
first model scenario tested the toxin decay in the reservoir without any toxin production by the
algal or cyanobacterial groups within the lake. This was achieved by adding an initial toxin to
the lake and setting all the CTP (fraction of group producing a toxin) values to zero for all the
groups. The second model scenario tested toxin decay and production by cyanobacteria death
only and for only one group (group 3). The third scenario tested toxin decay and production
by cyanobacteria death and release for only group 3. The fourth scenario tested toxin decay
and production with all three groups set as toxin producers to test the ability of the model
to add together intracellular toxins for multiple groups. The third scenario was chosen as a
representative model that would likely be used in further applications of the CE-QUAL-W2
model, and additional results are provided for this scenario. This scenario was chosen because
it modeled all four of the toxin parameters for two toxins typically of concern in lakes and
from only the cyanobacteria group. Table 6 summarizes the control file parameters chosen for
each scenario based on Equations (4) and (5).

Table 6. Summary of toxin model test scenarios for Henry Hagg Lake.

Parameter Scenario 1 Scenario 2 Scenario 3 Scenario 4

MC CYN MC CYN MC CYN MC CYN

CTP, fraction of cyanobacteria producing
toxin, fraction 0 0 0.1 0.3 0.1 0.3 0.1 0.3

CTB, ratio of intracellular toxin to dry weight
biomass, fraction 0 0 0.01 0.005 0.01 0.005 0.01 0.005

CTR, release rate, day−1 0 0 0 0 0.01 0.03 0.01 0.03

CTD, extracellular decay rate, day−1 0.1 0.05 0.1 0.05 0.1 0.05 0.1 0.05

Initial concentration 10 ng mL−1 0 ng mL−1 0 ng mL−1 0 ng mL−1
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Total toxin concentrations, as predicted by CE-QUAL-W2, at the surface of the lake for
each of the four scenarios are shown in Figures 2–5.
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Figure 5. CE-QUAL-W2 toxin and algae predictions for scenario 4 at the surface of Henry Hagg Lake.
Microcystins: MC, Cylindrospermopsins: CYN, cooler temperature algal species: Group1, warmer
temperature algal species: Group2, cyanobacteria: Group3.

The results from each scenario matched the predicted outcomes based on the toxin
parameters chosen for each scenario. The results for the first scenario showed a faster
decay for MC than CYN, which agrees with the higher decay rate for MC chosen than CYN.
The results for the second scenario showed peaks of extracellular concentrations in the
summer, with concentrations close to zero in the winter months. CYN was given a larger
CTP value and a slower decay rate which resulted in higher CYN concentrations than MC
concentrations. The results for the third scenario showed peaks at similar time periods to
the second scenario, but the overall concentrations were higher. Since both toxins in the
third scenario had release rates, the concentrations in this scenario were higher than in the
second scenario. The fourth scenario showed an even greater increase in concentrations for
both toxins compared to the other scenarios since all three groups were turned on as toxin
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producers. Figure 6 shows the concentration and percent of intracellular and extracellular
MC, and Figure 7 shows the concentration and percent of intracellular and extracellular
CYN for the third scenario.
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The model results showed peak MC concentrations of about 0.4 ng mL−1 in the sum-
mer months and peak CYN concentrations of about 1 ng mL−1 in the summer months.
The relative fractions of the intracellular and extracellular components of each toxin were
similar to the literature values reported for microcystins and cylindrospermopsins. The
intracellular fraction of MC is often found at a higher percentage than the extracellular
fraction. Figure 6 shows that the model predicted approximately equal fractions of intra-
cellular and extracellular MC during the summer months and predicted the intracellular
toxin to be about 90 percent of the total toxin concentration during the winter months. In
contrast to MC, CYN is often found at higher extracellular concentrations than intracellular
concentrations. Figure 7 shows that the model predicted extracellular CYN to be about
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70 percent of the total toxin concentration in the summer and fall. This agrees with CYN
being found at high extracellular concentrations. The model predicted that most of the
toxin would be present as the intracellular toxin in the winter for both MC and CYN. This
is likely due to increased flows and more mixing in the winter that led to the dilution and
removal of the extracellular toxin that exceeded the amount of toxin being produced during
those months.

Toxin data were available at Henry Hagg Lake in the spring of 2019 for microcystin and
cylindrospermopsin [54]. All the recorded values for CYN were classified as non-detects, and
all but three measurements for MC were recorded as non-detects (0.15, 0.2, and 0.43 ng mL−1).
The model results showed peak MC concentrations of about 0.4 ng mL−1 in the summer
months and peak CYN concentrations of about 1 ng mL−1 in the summer months. The peak
microcystin concentrations, as predicted by the model, were in the approximate range of
those measured in the lake, but since there was minimal field data, it is difficult to adequately
compare these values. Even though no cylindrospermopsin concentrations were detected
in the lake, the toxin was still included in the model simulations to test the model’s ability
to predict multiple toxin concentrations and to test how the dynamics vary between MC
and CYN.

4. Conclusions

The goals of this research were to develop models for the transport and fate of cyan-
otoxins in surface water bodies and to incorporate the models into the two-dimensional
(longitudinal and vertical) hydrodynamic and water quality model CE-QUAL-W2. The
models were developed with various parameters that can be adjusted depending on the
type of toxin being produced or the species producing the toxin, such as the leakage and
loss rates, decay rates, and the ratio of intracellular toxin to dry-weight organic matter
(β). These parameters allow for flexibility in applying the model to different cyanobacteria
species and different toxins. While the model allows for flexibility in choosing values for
each parameter, the values are fixed for each toxin. Future research could help to develop
each of the model parameters as functions of changing environmental conditions such
as light, temperature, and pH; however, as mentioned previously, the quantity of toxins
present in a water body is due mainly to the abundance of toxin-producing strains.

The toxin models were incorporated into the CE-QUAL-W2 code and tested on a
previously developed model of Henry Hagg Lake. Four scenarios were used to test the
functionality of the toxin models in CE-QUAL-W2. The model results from each scenario
matched the predicted outcomes based on the toxin parameters chosen for each scenario.
There were limited field data available for the toxins, so the model was only used to test
the proof of concept of the toxin equations within the code, and no direct comparisons
between model results and field data were made. The model results of the relative fractions
of intracellular and extracellular microcystin and cylindrospermopsin concentrations were
similar to what would be expected based on the literature data for these two toxins. The
model results showed that intracellular concentrations of both toxins were higher than the
extracellular concentrations in the winter months. This is likely due to higher flows and
more mixing in the winter leading to dilution of the extracellular concentration. Further
applications of the model to water bodies with more consistent toxin data will help verify
the accuracy of the CE-QUAL-W2 model in predicting toxin concentrations. The toxin
models developed as part of this project are a first step in modeling toxin fate and transport
in surface water bodies using CE-QUAL-W2.
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