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Abstract: Global warming is raising the earth’s temperature, and resulting in increased forest fire
events, especially in tropical regions with locations that are at high risk of wild and forest fires.
Indonesia is a country in Southeast Asia that has experienced a severe number of wildfires, which
have dangerous impacts on neighboring countries due to the emission of carbon and haze to the free
air. The objective of this research is to map and plot the locations that consist of a significant number
of fire hotspots and forecast the possible forest fire disasters in Indonesia based on the collected data
of forest fires. The results of forecasting data are beneficial for the government and its policymakers
to take preventive action and countermeasures regarding this wildfire issue. The Long Short-Term
Memory (LSTM) algorithm, a deep learning method, was applied to analyze and then forecast the
number of wildfire hotspots. The wildfire hotspot dataset from the year 2010 to 2022 is derived
from the National Aeronautics and Space Administration’s (NASA) Moderate Resolution Imaging
Spectroradiometer (MODIS). The total number of collected observations is more than 700,000 wildfire
data in Indonesia. The distribution of wildfire hotspots as shown in the results is concentrated mainly
on two big islands, Kalimantan and Sumatra, Indonesia. The main issue is the peat type of land that
is prone to spreading fire. Forecasting the number of hotspots for 2023 has achieved good results
with an average error of 7%. Additionally, to prove that the proposed algorithm is working well, a
simulation has been conducted using training data from 2018 to 2022 and testing data from 2021 to
2022. The forecasting result achieved a similar pattern of the number of fire hotspots compared to the
available data in 2021 and 2022.

Keywords: wildfire hotspots; environment monitoring; LSTM algorithm; mapping and forecast-
ing; Indonesia

1. Introduction

Global wildfires have become a critical environmental issue, with far-reaching con-
sequences for ecosystems, human lives, and economies. While wildfires occur in various
regions worldwide, research efforts have been undertaken to understand and address these
challenges in specific areas. Several studies have investigated different aspects of wildfires
and their management. The research of [1,2] focused on wildfire risk forecasting using the
Weights of Evidence and Statistical Index models and explored forest fire risk forecasting
through the application of case-based reasoning, while [3,4] proposed and developed a
forest fire prediction model based on long short-term time-series networks and used deep
learning algorithm approaches with unmanned aerial vehicle (UAV) images for forest
fire smoke detection. Research conducted by [5] employed machine learning techniques
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for flexible wildfire prediction. These studies provide valuable insights into wildfire dy-
namics and contribute to the development of effective strategies for fire management and
prevention globally.

Wildfire is a major issue in tropical countries, particularly in Southeast Asian regions
that are at high risk due to increasing temperatures. Additionally, the behavior of com-
munities residing near wild and forested areas is one of the main contributing factors to
fires, including deforestation and land clearing. Indonesia, located in the Southeast Asia
region, experiences a tropical climate characterized by two seasons: rainy and dry. The
landscape of Indonesia is predominantly covered by forests with peatland, especially on
the Kalimantan and Sumatra Islands, where most of the land consists of peat, leading
to a high risk of wildfires during the dry season. These disasters typically occur in the
summertime when the dry soil conditions easily catch fire, particularly in proximity to
hotspots. The behavior of residents in suburban or rural areas with dry land and small
hotspots exacerbates the issue. Factors such as a lack of education, uncontrolled land
clearing, and deforestation further contribute to the investigation of the disaster area. The
impact of wildfires is particularly severe for communities near the fires, as the carbon
emitted creates haze and air pollution, posing risks to human health, including respiratory
illnesses. Furthermore, children and infants living in or near fire-prone areas may suffer
from serious respiratory illnesses when the wind carries pollutants into the community.
The effects of wildfires are not limited to humans; they also have detrimental impacts on
animals and plants, as their habitats are destroyed by forest fires. Moreover, wildfires
have long-term consequences such as global warming and climate change, as they strip
the land of vegetation, leading to a reduction in oxygen generation from forests and wild
trees. Figure 1 shows the wild and forest disaster in one of the states, Riau Province in
Indonesia, and its impact on the habitat around the area as well as creating air pollution
in neighbor states as well as neighboring countries. The research case is based in Riau
Province Indonesia territory, with a latitude of 0.507319 and longitude of 101.444924.
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Figure 1. Wildfire in Riau Province in Indonesia as area research case with latitude 0.507319 and
longitude 101.444924.

Numerous relevant research studies have been conducted with various proposed
techniques to alleviate or resolve the wildfire crisis as discussed in [6–8], where the wildfire
method is fire data analysis and forecasting the hotspots using machine learning tech-
niques. Additionally, the effect of climate change was influenced by the data analysis
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and characteristics of the source data of the environment to be analyzed. The process of
forecasting wildfire and the location of hotspot occurrence are related to the data from
the meteorological agency as well as other factors of change in the environment. Another
study based on the topic of forest and wildfires collected data from the data monitored
environmental indicators that compare to the ground station normally detected or built
by a special agency for disaster. The results of the analyses incorporate color codes to
differentiate each indicator of wildfire. All these proposed methods to analyze and make
predictions used simple applications as elaborated in [9,10]. The issue of wild and forest
fire has been released for some of the equipment and the use of machine learning for
prediction and location of the sources of hotspots, in addition to modeling and mapping of
the scattering of fire. Observation and comparison according to weather data to determine
the number of hotspots were simulated to achieve high-accuracy decisions in the scattering
and number of fire hotspots in a location with a high possibility of wild and forest fires.
Several groups have developed various models to observe the probability of potential
forest fire occurrence considering both the natural and anthropogenic environmental prop-
erties. Recently, a new model has been proposed for investigating forest fire zones taking
into account specific localization functions and evaluating critical fire parameters. Using
this model and observations made by instrumentation on the remote sensing platform, a
decision-making system has been proposed for the detection of areas prone to fires [11,12].

The method to analyze and identify the spread of the haze in the air due to wildfire has
been elaborated and discussed by [13–15] to determine how much the area is being polluted
by poor air quality. A deep learning algorithm called LSTM implements modeling to plot
the pattern of the fire hotspot data, but the forecasting in this work only covers a small
area or designated specific zone. The other work predicts and investigates fire datasets
to using computerized analysis as one of methods to predict fire spread. An algorithm
recurrent neural network (RNN) has the ability to analyze and integrate datasets for the
propagation and prediction of fire hotspot spreading compared to others, while the use
of RNN analyzes the dataset by the time series format. A technique to detect wild and
forest fires in low levels used a ground sensing system by installing several sensors to
detect the anomalies of environment indicators as discussed in [16–19]. Wireless sensor
network (WSN) technology detects and monitors environmental change in ground sensing,
such as temperature and humidity, due to global warming and dry seasons to obtain new
datasets for analysis. Moreover, WSN technology collects accurate data in order to solve
or overcome missing fire hotspot data, and the advantages of this technology, a direct
detecting system compared to remote sensing, are useful for collecting direct fire data.
Other results are mentioned in [20–22], which explore a method to predict the location of
forest fire hotspots using a machine learning algorithm. Environmental monitoring is a
method required to consider as an indicator to check air quality and the cleanness of the
environment from pollution. Several studies [23–26] have examined how the environment
can be monitored using multi-sensors to obtain detailed data from all the areas of forest
and wilderness that are at high risk of fire. The use of WSN to collect data from the
number of multi-sensors deployed in the forest is that each sensor has a coverage area
to collect environmental data, reported to the system and alerted when a potential fire is
detected. Remote monitoring from long distances or remote locations using a long-range
wide area network (Loran WAN) is applied to have forests and wild locations monitored.
Various sensors and different methods to detect forest fires are used because a location has a
different type of forest, contour, land field, and type of soil; various models and techniques
detect the potential of a fire event. Transmitting and reporting data to the backend system
for further analysis and forecasting is obtained for the number of data collected.

The boreal and tropical forests undergo the most anthropogenic impacts. In particular,
it has been noted that the wildfire phenomenon by lightning strike or by human actions
is crucial for the forests’ sustainability. New model simulation experiments showed that
total burning of all coniferous forests up to 42◦ N resulted in an increase in atmospheric
carbon by 21.7%, with subsequent global temperature increase by 4 ◦C. Wildfires are also
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important for CH4 emissions. In the modeling algorithms, the wildfires’ CH4 emissions
are considered as 1–5 (TgCH4/year) [27]. The issue of the atmospheric greenhouse effect
has garnered significant interest, not only in scientific publications but also in mass media.
On the one hand, there has been an undeniable overemphasis on the contribution of the
greenhouse effect to global climate change. On the other hand, this heightened attention
highlights the need to analyze the role of the greenhouse effect as a factor in climate
change. Recent years have seen remarkable progress in analyzing observational data and
the successful development of numerical climate modeling, providing a foundation for a
fresh examination of the atmospheric greenhouse effect within the context of global climate
change [28]. It has been observed that following the occurrence of forest fires, there is a
decrease in solar ultraviolet radiation reaching the ground for several days. This decrease
is attributed to the significant increase in concentrations of various air pollutants such
as carbon monoxide, nitrogen oxides, ozone, and aerosol density during the forest fire
event [29]. The application of remote sensing in environmental monitoring for sustainable
development is discussed in the paper [30].

This research applied a method, namely the Long Short-Term Memory Networks
(LSTM) deep learning algorithm, for several tasks on wildfires in Indonesia, such as:

• Mapping the wildfire hotspots in Indonesian territory based on the MODIS dataset.
• Plotting the distribution of wildfires and hotspots in the Indonesia region.
• Wild and forest fire forecasting to determine the potential hotspots in the future.
• Analyze the MODIS data on the area with high potential for fires.

The available Moderate Resolution Imaging Spectroradiometer (MODIS) dataset col-
lected by NASA from 2010 to 2022 was used for this analysis to verify the model accuracy.
The use of this dataset has limitations, such as MODIS data have a moderate resolution
of 250 m and cannot detect small fires. In the analysis, the dataset is split into two cate-
gories, namely, a set of training data and a set of testing data. Data screening and filtering
were implemented before running the analysis to obtain only the valuable dataset. The
scope of this data analysis is limited to the Indonesian territory, since cases of forest fires
frequently occur on two big islands, namely, Sumatra and Kalimantan. In this research, a
new method was proposed for forecasting and mapping wildfire hotspots with the ability
to achieve highly accurate hotspots compared to the previous works discussed, wherein a
latest model of deep learning called LSTM contributes significant achievement to achieving
precise locations of hotspots. Forecasting the number of hotspots for a future time in the
specific zone, especially for Indonesian territory, is useful data for the respective agencies
to propose further action. The Python programming language, which was used for this
analysis and simulation, offers the advantage of being a high-level programming language
capable of performing efficient calculations and accurately identifying wildfire hotspots
based on the given dataset.

2. Material and Methodology

Natural disasters are a common phenomenon in the real world, according to region
and geography, so forest and wildfire are disasters that commonly occur in most tropical
countries with dense forests. Indonesia is one of the countries with a high risk of wildfire
because of the land and area, with typical peatland and dry weather potentially catching
fire. Indonesian government and community agencies supported by industry collaborate
to counter and prevent this wildfire occurrence where possible, but some areas are not
successful due to natural phenomena. Many studies have been conducted to find the main
issues and root sources of fire, and to analyze the root causes of hotspots. This investigation
uses a deep learning LSTM model for prediction and then plots prediction results to find
and determine the scattering and distribution of the fire area especially in Indonesian
territory. Earth data collected by NASA over the past 10 years are used in this analysis
to plot and forecast the number of hotspots that occur in Indonesia. Figure 2 shows burn
area data in Indonesia due to wild and forest fires in the years 2015 to 2021; 2015 is the
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highest burn area, followed by the year 2019, and the remaining years average below
500,000 hectares.
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The data reveal that the cases of wild and forest fires in Indonesia primarily occur
on Kalimantan and Sumatra islands due to the similar type of land, which is peatland,
and the extensive forest coverage on both islands, posing a high risk of fires during the
summer or dry season. The most significant case was observed in 2019, with numerous
hotspots recorded in Indonesia, particularly in Kalimantan and Sumatra. However, in
2020, in response to the outbreak of the coronavirus disease (COVID-19), the government
implemented mobility restrictions across the country, resulting in reduced activities, includ-
ing transportation. Consequently, there was a notable improvement in air quality and a
decrease in the number of wild and forest fire hotspots. Recent data from years after the
COVID-19 pandemic demonstrate a significant decline in fire incidents and hotspots due
to the restrictions on human mobility and limitations on outdoor activities. In this work,
we will discuss the data from 2023 to compare the period before and after the COVID-19
pandemic and examine the impact on air quality resulting from government-enforced
control measures and reduced pollution from transportation.

2.1. LSTM Algorithm

Currently, many techniques and algorithms are developed with good results and
faster processing time. One of the popular deep learning algorithms is LSTM, which is the
development of deep learning, a Recurrent Neural Network (RNN), initiated by Hochreiter
and Schmidhuber [31]. The LSTM algorithm can analyze time series datasets to address
the problem. This algorithm is also capable of learning long-term dependencies datasets
and remembering the information for prolonged periods as a default. Figure 3 shows a
basic architecture of an RNN-LSTM model, consisting of several main blocks called cells
such as the input gate, output gate, and forget gate. The LSTM algorithm consists of two
parts which, in the hidden state memory cell in the RNNs, the parts are Ct and the ht work
memory. Both memory cells are responsible for the retention of the sequence features. The
sequence of the previous memory was controlled by the forgetting gate in the working
memory, which is f, while ht use is for the output, O is the control portion of the output
gate, and Ct is current memory to be written as an input. The control portion of i for the
state information of ht−1 and current input Xt is to write into the memory cell. All the
types with three gates are not in a static condition, and the information in previous state as
write ht−1 and current input of Xt are similarly determined as the nonlinear activation after
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linear combination. LSTM has been successfully utilized in various applications, including
brain sciences and the environment [3,32].
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The LSTM algorithm is a well-known deep learning technique that is capable of
analyzing and addressing long-term dependencies in RNN by considering the historical
data. On the other hand, other methods may have limitations in achieving accurate results
when dealing with a long history of data or a large variety of data. Consequently, when there
is a high volume and variety of data, along with a long history, these normal algorithms
may not perform well in determining results. In such cases, the utilization of the LSTM
algorithm, which effectively stores and utilizes information in long-term memory, provides
more precise forecasting of the latest information. Implementing the LSTM algorithm as a
fundamental method allows for the retention of information in the long-term stage, making
it a commonly used technique for processing, analyzing, forecasting, and classifying basic
time-series data [33].

The forecasting method to calculate the prediction number of wildfire hotspots used in
the LSTM algorithm required further analysis and error justification to check the accuracy
of the results. There are three blocks commonly explain in the LSTM structure which
inside the block with dotted border which shows ft, it, and Ot means for the forget, input
and output gate. Many techniques can be used to check errors in forecasting analysis; for
example, mean average error (MAE) to calculate average error, mean square error (MSE)
to check errors in square, R2 error analysis, a technique showing the proportion of the
variant if forecasting number of dataset, and others as common error checking forecasting
of dataset. These methods can be expressed as Equations (1)–(3) for MAE, MSE, and R2,
respectively:

MAE =
∑N

1
∣∣yi− y′i

∣∣
N

(1)

MSE =
∑N

1
(
yi− y′i

)2

N
(2)

R2 = 1− ∑N
1
(
yi− y′i

)2

∑N
1
(
yi− yavg

)2 (3)

where yi is the number of fire hotspot datasets in actual time i, y′i is the prediction number
of hotspots in time ith, and yavg is the quantity of training dataset as the sample in analysis
that check the number of errors; a metric regression model is used in this wildfire hotspot
forecasting. All models may have different results from each other to calculate error
percentage and error; hence, the model was applied to find the minimum error results
in the forecasting of hotspots used as the best performance of dataset prediction. Error
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calculation is very important in forecasting analysis to determine the performance level
and accuracy prediction of an algorithm. If the error is too high above the threshold, then
there is a need to check and calibrate the algorithm until the error percentage is within the
acceptance level. Table 1 shows part of the dataset used in this forecasting with a full set,
as, for example, the coordinate of the hotspot (latitude and longitude), date of incident, and
total number of hotspots that occur.

2.2. Fire Dataset

The dataset of wildfire hotspots in this analysis was obtained from NASA’s MODIS
hotspot in Indonesia. Indicators in the dataset consist of 15 variables, and all the indicators
are valuable for the analysis. The NASA Earth dataset is collected based on the image from
the satellite to detect the active hotspot from the satellite station, because of the distance,
whereas in some cases the quality of the image may have low quality and the hotspot is
not counted in the number and is also affected by the total number of fire hotspots to be
analyzed and forecasted. Then again, some sets of data that are missing due to complex
parameters of earth data then strategize to overcome and complete the set of data by using
the algorithm and predicting the missing database on training from the previous dataset. In
this analysis and forecasting, only complete data achieve accurate prediction and determine
the hotspot’s location. Hotspot data in Indonesia—with a total of more than 11,000, as
shown in Table 1—result in a highly accurate decision because of a high number of set
data. The total data were collected in 10 years, from 2010 to 2022, and forecasted for the
year 2023 [22]. Table 2 presents a set of NASA earth data after filtering, selecting only four
parameters from 2010 to 2022 for analysis.

Refer to Tables 1 and 2 for the distribution of the fire hotspot dataset, which represents
the daily occurrences of hotspots detected by satellites. On specific days, a higher number
of hotspots are detected, requiring the data to be grouped and scaled into a single day
to determine the total number of hotspots for each day. After the grouping process, the
total number of datasets decreases significantly to only 4725 sets, compared to the previous
count of up to 11,000 sets. These datasets represent a substantial amount of data collected
over a span of 13 years, from 2010 to 2022. The purpose of this grouping and scaling is to
optimize the forecasting and analysis of hotspot data. The data are presented in a line graph
for informative analysis, showcasing the minimum and maximum occurrences of hotspots,
as well as the average number over specific time intervals, allowing for conclusions to be
drawn based on the plotted data. Moreover, to enable detailed analysis and forecasting, the
data are further analyzed to provide monthly result values. Table 3 displays the optimized
fire hotspot data, organized into three sets: the number of hotspot occurrences, the data
itself, and the total number of hotspots in a single day. This optimization process enables a
comprehensive assessment of the daily event data, allowing for meaningful comparisons
on a monthly basis.
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Table 1. Fire hotspot datasheet in Indonesia region from 2010 to 2022.

Latitude Longitude Brightness Scan Track Acq_Date Acq_Time Satellite Instrument Confidence Version Bright_T31 Frp Daynight Type

0 0.0211 116.87390 315.30 1.10 1.10 1 January 2023 251 Terra MOOIS 42 6.2 295.60 8.70 D 0.0
1 0.48080 116.08060 312.30 1.00 1.00 1 January 2023 251 Terra MOOIS 66 6.2 295.00 6.90 D 0.0

11 2.15090 117.49680 320.60 1.00 1.00 1 January 2023 550 Aqua MOOIS 0 6.2 297.50 10.60 D 0.0
10 −8.10890 118.07430 319.30 1.00 1.00 1 January 2023 547 Aqua MOOIS 0 6.2 300.80 9.10 D 0.0
8 −8.15960 117.58570 319.60 1.00 1.00 1 January 2023 547 Aqua MOOIS 43 6.2 297.70 9.10 D 0.0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
11,236 0.46716 108.99780 311.05 2.00 1.38 1 January 2023 319 Terra MODIS 63 6.1NRT 295.90 15.66 D NaN
11,235 −0.26051 109.49670 320.38 2.25 1.45 1 January 2023 319 Terra MODIS 77 6.1NRT 294.89 41.98 D NaN
11,250 −0.75817 101.51504 303.17 1.33 1.14 1 January 2023 1539 Terra MODIS 54 6.1NRT 282.84 7.48 N NaN
11,241 0.78876 110.72703 317.27 1.92 1.35 1 January 2023 557 Aqua MODIS 73 6.1NRT 296.40 26.22 D NaN
11,249 −0.75883 101.52123 301.76 1.33 1.14 1 January 2023 1539 Terra MODIS 44 6.1NRT 283.03 6.28 N NaN
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Table 2. Fire hotspot used dataset in years 2010–2022.

No. Latitude Longitude Date Total

0 0.02110 116.87390 1 January 2010 42
1 0.48080 116.08060 1 January 2010 66
11 2.15090 117.49680 1 January 2010 0
10 −8.10890 118.07430 1 January 2010 0
8 −8.15960 117.58570 1 January 2010 43
. . . . .

11,236 0.46716 108.99780 31 December 2022 63
11,235 −0.26051 109.49670 31 December 2022 77
11,250 −0.75817 101.51504 31 December 2022 54
11,241 0.78876 110.72703 31 December 2022 73
11,249 −0.75883 101.52123 31 December 2022 44

Table 3. Daily number of hotspot data within years 2010–2022.

No. Date Total

0 1 January 2010 12
1 2 January 2010 12
2 3 January 2010 5
3 4 January 2010 14
4 5 January 2010 36
. . .

4721 25 December 2022 7
4722 27 December 2022 6
4723 29 December 2022 5
4724 30 December 2022 2
4725 31 December 2022 16

3. Fire Data Forecasting

The LSTM algorithm, a type of deep learning technique in computer programming, is
highly regarded for its ability to analyze large volumes of data, particularly in the context
of data analysis and time series forecasting. It falls under the RNN network type and is
known for its efficient handling of long-term dependencies and memory retention. The
LSTM model offers several advantages for data analysis, including its capacity to predict
future events based on extensive historical data. With its four distinct layers and effective
communication processing techniques, the LSTM algorithm organizes the model in a chain
structure, enabling efficient data analysis. Figure 4 illustrates the block diagram of the data
analysis scenarios used for forecasting wildfire hotspots in the future. The training and
testing data are separated into individual blocks and undergo a rigorous process. Once the
training data have demonstrated satisfactory performance, the testing data are utilized to
forecast the number of hotspot occurrences in the future.

The first process in predicting and forecasting fire hotspot data is to build an LSTM
algorithm model and then identify the input information. Unnecessary data in the filtering
process can be ignored in the cell of the existing step. The identification process excludes
the decoded data using the function of the sigmoid, taking the output model of the last
part in LSTM unit ht−1 at the time t− 1 and the current input Xt at time t. In addition, the
function of sigmoid determines which parts of the previous old output should be removed.
The forgetting gate is indicated by ft, in which f is the vector value scale from 0 to 1,
represents each number in cell state Ct−1 as written in Equations (2)–(4).
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Referring to the collected dataset of more than 11,000 fire hotspots from the year 2010
to 2022, the first process is data filtering and normalization, deleting incomplete datasets or
normalizing data to achieve a complete dataset. The grouping process resulted in total data
to become 4213 datasets, as presented in Table 2, for the further machine learning process
in data mapping and forecasting. The training data has a massive portion compared to the
testing data, accounting for 80% of the total data used for training and then only 20% for
testing data, as shown in Figure 2. The amount of training data is greater than the testing
data in order to achieve high-accuracy decisions using the machine learning process. To
evaluate the process and results obtained and then enhance the performance as well as the
accuracy of forecasting data by minimizing the error in the results, an error calculation is
used to check the percentage, to ensure that the error is below 10% as a normal indicator
for data analysis error.

The LSTM algorithm is a type of recurrent neural network (RNN) architecture that
is specifically designed to address the challenge of capturing and utilizing long-term
dependencies in sequential data. Unlike traditional RNNs, which struggle with preserving
and propagating information over long sequences, LSTM introduces specialized memory
cells and gating mechanisms to selectively retain or discard information as needed. The key
components of an LSTM network are the input gate, forget gate, memory cell, and output
gate. These gates regulate the flow of information within the LSTM units. The input gate
determines which portions of the input are important and should be stored in the memory
cell. The forget gate decides which information from the previous time step should be
discarded from the memory cell. The memory cell retains and updates information over
time, allowing the network to remember long-term dependencies. Finally, the output gate
determines the relevant information to be outputted from the memory cell.

The LSTM algorithm’s ability to capture long-term dependencies makes it particu-
larly well-suited for tasks involving sequential data, such as natural language processing,
speech recognition, and time series analysis. It has demonstrated superior performance
in various applications were preserving and utilizing information over long sequences is
critical. By effectively handling the vanishing or exploding gradient problem, LSTM has
revolutionized the field of deep learning and has become one of the most widely used
techniques for modeling sequential data. Its architectural design allows for the efficient
processing and analysis of long-term dependencies, making it a powerful tool in the realm
of sequential data modeling and prediction. Figure 5 illustrates the neuron process of the
LSTM model [34].
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The final process calculates the error of the currently available dataset to forecasting
results to check the percentage of error. Many techniques can be used to calculate the error.
For example, Root Mean Square Error (RMSE) is a technique based on statistics normally
used as a comparison between forecasting and real values of data. RMSE is often used
to estimate how accurately the forecasting results match to history and reference values
data on the relative scale of the dataset. Equation (4) elaborates that Xi and X′i are the
actual fire hotspot dataset compared to the forecasting dataset at time t, Xi is the mean of
real values of fire hotspot dataset, and N is the total amount of data. When the value of
RMSE starts from a small number to zero, this implies that the LSTM algorithm produces
reliable results.

RMSE =

√
1
N ∑N

i=1(Xi − X′i)2 (4)

On the other hand, the other method used to evaluate the forecasting results is mean
absolute error (MAE), where M is the volume of observation dataset, Xi is the real values,
and X′i is forecasting values. MAE is the standard of absolute errors as shown in Equation
(5), which may well suggest the accuracy of the prediction error value.

MAE =
∑N

i=1|Xi − X′i|
N

(5)

Another method applied to calculate the error of forecasting data is the mean absolute
percentage error (MAPE). MAPE represents the ratio of error compared to the real value in
percent. Equation (6) depicts the formula to calculate MAPE error percentage in forecasting
data of fire hotspots.

MAPE =
1
N ∑N

i=1
|Xi − X′i|

pa
× 100% (6)

R-squared (R2) is a technique used to verify whether a forecasting model is achieved
and reflects the deviation of real dataset, normally in the range of [0, 1]. If R2 is equal to 0,
then the model fits poorly. If R2 is equal to 1, then the model has no errors, as shown in
Equation (7).

R2 = 1− ∑N
i=1(Xi − X′i)2

∑N
i=1
(
Xi − X

)2 (7)

Among all those methods used to evaluate prediction and forecasting errors, the
RMSE and MAE evaluate based on the short term, i.e., hourly forecast. However, the
MAPE method may have a calculation problem using a small denominator, as well as
evaluating daily forecast basis. R2 is one of the methods with detailed evaluation in a
square calculation of all the datasets. The use of the LSTM algorithm for this process in
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forecasting and mapping with a pseudo-code is shown in Algorithm 1. While X is the input
dataset of hotspots from 2010 to 2022, O is the output data after forecasting results for the
next future year; and in this scenario the future year is 2023 [35]. The process to obtain the
results of the mapping and prediction of wild and forest fire specially in Indonesia region
by computer simulation with analysis based on algorithm 1 as follow.

Algorithm 1: FORE-LSTM

Input: data stream X = {x1, x2, . . . , xi, . . .}, xi ∈ R, epoch I,
number of iterations K, error parameters σ, cycle index N,
Number of decompositions m, White noise data W.

Output: Forecasting Result O.
1: X ← x1, x2, . . . , xi, . . . , xi ∈ R // Input data
2: O← { } // Output data
3: for each I ∈ N do
4: H+

i ← x + W+
i ; H−i ← x + W−i

5: for j ∈ I do
6: H+

ij ← FORE
(

H+
i
)
; H−ij ← FORE

(
H−i
)

7: end for
8: end for
9: for j ∈ m do
10: O← ∑

(
LSTM

(
IMFj

))
11: end for

4. Results and Discussion

The mapping and forecasting results of fire hotspots, as referred to NASA Earth data,
started in the year 2010, complete with coordinates (latitude and longitude), date and time,
the confidence level of the hotspot, and other indicators detected as previously shown in
Table 1. In this research, analysis of only four indicators is used for further processing,
namely, the acquisition date (acq date), the coordinates, and the confidence level. The
spreading of hotspot levels is classified into five categories or levels of confidence. This
method is implemented to verify which fire hotspot has a high-risk occurrence of forest fires
and which among them is at low risk without much impact. The five levels of classification
from the top level are as follows: 81–100, indicated as red dots; 61–80, indicated as orange
dots; 41–60, indicated as yellow dots; 21–40, indicated as green dots; and 0–20, indicated as
blue dots. Figure 6 represents the results of mapping the distribution of fire hotspots in
Indonesia for the year 2022 and year 2010 to 2021 as in Appendix A. Overall, the hotspots
are more concentrated in Sumatra and Kalimantan. As a result, these islands present a
higher risk of forest fires because of their geography and land type. Ultimately, the best
strategy is to conduct a prediction based on the current history data along with forecasting
to alert the government, respective institutions, and communities. The dotted shows in the
map consist of 5 types which from green color for the lower risk of fire to the blue, yellow,
pink and red color indicate the highest potential of forest fire risk with percentage from 80
to 100.

The total number of hotspots detected is categorized into five levels for specific
evaluation; all the fire hotspots refer to earth data in Indonesia that have counted thousands
of hotspots in accumulated time over a 10-year period. In this work, all the hotspot data are
plotted onto a graph annually for a detailed presentation indicated by level, starting from
January until December every year. Figure 7 shows the monthly distribution of hotspots
for every level for the year 2022 and the years 2010 to 2021 as in Appendix B, where the
black line represents the total number of hotspots. In general, the pattern and distribution
of hotspot incidents are similar for most of the year and increase at the end of the year from
September to December due to summer or the dry season, while earlier on, the number of
hotspots looks normal. The maximum number of hotspots detected is between 600 and
700 for the peak season at the end of the year. The study is in the location of Indonesian
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territory with borders in latitude 5.980133, 94.964324 and −10.537824, 94.964324 on the
west and in the east with 5.980133, 141.105341 and −10.537824, 141.105341.
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Machine learning is used in this case for data analysis and training, wherein the
history of fire hotspot data is divided into (1) testing and (2) training datasets. Normally,
the quantity of the training data is larger than the testing data to achieve a high accuracy
of the decision. Figure 8 shows a set of training data with a total number of more than
4000 days compared to testing data for forecasting, distributed from the year 2010 to 2022.
Referring to data, the year 2019 shows the highest training data, as shown in Figure 9.
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The results of the LSTM algorithm used for forecasting fire hotspots in Indonesia
tested and compared the real available data for the years 2021 and 2022. Early results of
forecasting data from 2018 to 2022 were analyzed for forecasting in the years 2021 and
2022. Figure 9 shows the actual fire hotspots data compared to the achieved forecasting for
both the years 2021 and 2022. Figure 10a shows the comparison between forecasting and
actual data for the year 2021, and Figure 10b shows comparison data for the year 2022. The
results show a similar trend and pattern for both results, i.e., actual and forecasting, with
an RMSE for the year 2021 of 4.56% and 9.31% for year 2022 and an overall comparison for
2 years with an average is 6.94%. This method was used to check and demonstrate that the
proposed algorithm is working fine with a minimum error of less than 10%. Implementation
and application of the LSTM algorithm is different from other methods in its ability for
deep analysis for the many datasets of fire hotspots, as well as data in time series, as
shown previously.

The final results achieved for the forecasted fire hotspot for the coming year 2023 show
reliable agreement between forecasting and real data. The process of data forecasting is
based on distribution data training more than 4000 datasets like 80% of total data, while the
rest is testing data about 20%. The results, as shown in Figure 10, with the real data in the
years 2020 to 2022 and then forecasted for the year 2023, obtain a similar pattern and trend
as well as the distribution of data and rise at the end of the year. In the year 2022, the trend
decreased, and a small number of fire hotspots were detected due to the environmental
effect of cool weather and the rainy season, thus reducing the number of fire hotspots. The
overall trend and fire event is similar with an increasing number at the end of the year
starting in August to September.

The LSTM model in the RNN algorithm has been applied in this analysis, and the
results achieve a minimum error in time series of data. The proposed algorithm works
fine in predicting and forecasting fire hotspot data for the future, i.e., in 2023. The actual
data plotted as a graph in Figure 9 show that the behavior and pattern of data occurrence
are similar. With reference to the results, the error bears a low percentage, and the mean
proposed algorithm matches to the case in forecasting forest fire hotspots. The result of
the forecasting shows a similar pattern to the previous fire hotspots number and trend as
well as the monthly distribution. The use of this model yields high accuracy with an error
rate of less than 10% compared to other traditional methods. Furthermore, this forest fire
analysis and forecasting in the Indonesian region engages only a few researchers and the
case categories occupy a specific case, as in tropical regions, as well as the typical land and
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contour. Future research will seek to identify and verify the achieved results and compare
them with the uncontrolled external factors in this decision. Other parameters that may
influence the decision of the system may be considered as well to achieve high accuracy
and fast processing of the results.
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Wildfires pose a significant threat to the ecosystems and communities of Southeast
Asia. The region experiences a high occurrence of wild and forest fires, particularly in
countries like Indonesia, due to various factors, including climate conditions and natural
parameters. Parameters such as climate, wind patterns, and temperature play a crucial
role in triggering and exacerbating wildfires in the region. The combination of dry seasons,
high temperatures, and strong winds can create favorable conditions for the rapid spread
of fires, especially in areas with abundant vegetation and flammable materials. The dry
climate contributes to increased vegetation dryness, making it highly susceptible to ignition.
Additionally, wind patterns can carry fire embers over vast distances, leading to the rapid
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expansion of fire fronts and the ignition of new areas. The interplay of these parameters
increases the severity and extent of wildfires, posing significant challenges to firefighting
efforts and causing ecological damage, air pollution, and threats to human health. Un-
derstanding the impact of these parameters and their interaction is crucial for developing
effective strategies for wildfire prevention, early detection, and mitigation in Southeast
Asia. The results of this study show the scattering and volume of wildfires in Indonesia,
along with forecasting for future years, serving as an alert for the potential occurrence
of fires. The work carried out in this study demonstrates an improved understanding
of the location and frequency of fire hotspots, particularly in the Indonesia region. The
informative graphical representation and future forecasts provided by this study offer
valuable insights for addressing wildfire risks.
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5. Conclusions

This research discusses the mapping, forecasting, and analysis of fire hotspots in
Indonesia. The data have been mapped, revealing that hotspots are concentrated on
two major islands, namely Sumatra and Kalimantan. Forecasting has been conducted
using NASA’s MODIS data, specifically for the Indonesia region, encompassing over
700,000 datasets from 2010 to 2022. The analysis employs the LSTM algorithm, with the
data divided into training and testing sets, accounting for 80% and 20%, respectively.
The results present a mapping of fire hotspot categories into five levels, differentiating
the potential of hotspots to ignite fires. The graph displaying the number of hotspots
demonstrates an increasing distribution toward the end of the year, particularly from
September to December, coinciding with the dry season or summer. The LSTM algorithm
is used for forecasting the year 2023, exhibiting high-performance accuracy with a more
than 90% success rate or a mere 6.94% error percentage. In the future, it is crucial to focus
on reducing the error percentage by improving the algorithm’s training data performance
and downsizing the forecasted area to specific states or districts.
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