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Abstract: Microplastics have become a ubiquitous pollutant that permeates every aspect of our
environment—from the oceans to the soil to the elementary foundations of human life. New findings
demonstrate that microplastic particles not only pose a latent threat to adult populations, but also
play a serious role even before birth during the fetal stages of human development. Exposure to
microplastics during the early childhood stages is another source of risk that is almost impossible to
prevent. This comprehensive review examines the multiple aspects associated with microplastics
during early human development, detailing the mechanisms by which these particles enter the adult
body, their bioaccumulation in tissues throughout life and the inevitable re-entry of these particles
into different ecosystems after death.
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1. Generation and Composition of Macro-, Micro- and Nanoplastic Particles

Macroplastic items like bottles, packages, toys and the like degrade through various
biotic and abiotic processes, each involving different mechanisms and resulting in specific
changes to the particles concerning size and composition [1]. Microplastics (MPs) are de-
fined as plastic particles smaller than 5 mm, and nanoplastics (NPs) are defined as particles
smaller than 1 um [2]. Both are found in diverse forms, including spheres, fragments, and
fibers with polyester being the most commonly detected polymer in humans, followed by
polyamide (PA), polyurethane (PU), polypropylene (PP) and polyacrylate (PAC), as well
as polyethylene (PE) and polyvinyl chloride (PVC) [3,4]. The two main categorizations
for plastics are thermoplastics and thermoset plastics. While thermoplastics are defined
as re-melted pellets used to assemble the final product, thermoset plastics are melted into
their final shape using heat. The vast majority (80%) of plastics are thermoplastics which
are also the major basis for primary MPs. The essential types of thermoplastics include PE,
PP and PVC [5].

Most smaller particles that can be found in the environment arise from the mechanical
deterioration of larger pieces of plastics over time, and it is estimated that such fragmenta-
tion processes could generate up to >10'* times greater numbers of micro- and nanoplastic
(MNP) particles [6]. To understand the fate and consequences of such particles in the envi-
ronment, it is pivotal to measure their full range of sizes, shapes and composition thereof,
and several reviews of MP detection methods have already been published [7,8]. The
degradation of plastics involves the breakdown of plastic particles into smaller fragments,
potentially reaching the nanoscale [9,10]. Besides mechanical and biological degradation,
photo-degradation due to sunlight oxidizing the chemical structure and minimizing the
molecular mass might even cause the polymers to become fragile and ultimately break
down into the respective monomers [11]. The different processes that contribute to the
degradation of macro- and MP particles, each influenced by environmental factors and the
chemical nature of the plastic materials themselves, are summarized below (Table 1).
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Table 1. Summary of different degradation processes for plastic materials.
Degradation Mechanism Key Factors Resulting Changes Ref.
Process Involved
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[_4 4
@) Photo-degradation f;c}lji(;i;:)f to UV oxygen, [13,17,18]
% temperature
Mechamc.al Physical forces Abrasion, friction, Ablation, p.artlcle [19,20]
degradation pressure fragmentation

2. Presence of Microplastics in the Environment

Inadequate management of plastic waste disposal procedures and poor recycling
efforts have led to increased contamination of our environments, with global plastic waste
production approaching an alarming 400 million metric tons (Mt) in 2021 [21,22]. It is
estimated that approximately 8.3 billion tons of plastic have been generated globally since
1950 [23]. The unavoidable omnipresence of MNPs throughout different ecosystems and
their potential impacts on human health have therefore raised substantial concerns [24,25].
One study suggests that up to 23 million Mt of plastic debris accumulated in the world’s
aquatic ecosystems in 2016 alone, which is equal to 11% of the worldwide plastic production
in that year [26], while other studies estimate the global plastic production in 2016 to be
as high as 335 million Mt [27]. If waste management is not optimized and current trends
continue, it is predicted that by 2030 the amount of waste accumulating in global aquatic
ecosystems could reach 90 million Mt/year [26]. Although the majority of research is
currently focused on MP pollution in marine and freshwater environments [28]—mainly
due to key analytical methods for the identification of MPs in soil still missing—several
studies suggest a significant presence of MPs in soil environments [29,30]. A study focusing
on the effect of MP on plant growth indicates that an increased concentration of these
particles in soil may have detrimental consequences for the growth of grass and crop plants
by reducing germination and altering the shoot length of the plants [31].

2.1. Drinking Water

MPs have been detected in drinking water across the globe with median concentrations
in standard water sources of 2.2 x 10° particles/m3, predominantly with particle sizes
exceeding 50 pm [32]. In addition, plastic bottles represent a significant source of MNP
exposure for humans, particularly through PP and PET plastic particles released from the
caps of such containers [33]. Individual MNP intake naturally varies greatly, depends
mainly on the choice of drinking water and lifestyle habits, and has been calculated to be
as high as 73,000 particles per year per person [34].

2.2. Food Products

A recent study shows the general exponential increase in MP accumulation in agricul-
tural soils, which is partly due to the increased use of fertilizers [35]. Therefore, it is not
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surprising that MNP contamination is also widespread in a variety of everyday agricultural
food products [36]. The diffusion of MPs in the food supply chain is naturally an area of
public concern, as their impact on human health is still largely unknown. Meat and dairy
products are of course particularly noteworthy in this context, as the intake of MPs and
their accumulation in farm animals can lead to particularly high concentrations in the final
food products [37]. For example, particle concentrations between 0.03 and 1.19 particles
per gram of meat have been reported, in unprocessed as well as processed products like
hamburgers [38,39]. Not surprisingly, MNPs have also been detected in various dairy
products such as skim-milk formulations, with average values reaching 40 particles per
liter [40,41].

MNP contamination of seafood products is another area of concern. It has been
suggested, that the main sources of plastic particles within marine systems result from the
fragmentation of bigger plastic items and the application of plastic scrubbers in cleaning
products [11]. They are also derived from household and cosmetic products entering
aquatic systems via sewage discharge [10,42]. Furthermore, air-blasting technology also
contributes to the accumulation of primary MPs [43]. The main principle of this technique
involves blasting machines, engines or ship vessels with MP scrubbers to get rid of rust and
other debris [44]. Subsequently, MNPs can pass into oceans via municipal drainage systems
as well as rivers [45,46]. One study indicates that MP concentrations have increased in
plankton samples, which were collected over a period of roughly 40 years in the northeast
Atlantic. This would coincide with the steady increase in plastic production worldwide [47].
Aquatic as well as terrestrial animals ingest a huge amount of MNPs accidentally or by
confusing plastic particles for food due to their small size [48]. Therefore, they have
been found in a number of different animal species, such as fish [49], seals [50], marine
worms [50] and seabirds [51].

2.3. Articles of Daily Use and (Leisure) Activities

MNPs are omnipresent in our environment today. We inevitably come into contact
with all kinds of plastic particles during everyday activities. We are exposed to them when
using individual and public transport vehicles, but also during various leisure activities
carried out in indoor sports facilities, when using daily hygiene products or even when
simply consuming food and liquids in general. It is now almost impossible to avoid
contact with MNPs, which shows how widespread this problem is and how easily it is
simultaneously ignored by every individual and society in general.

Concerning food intake, various packaging materials represent a rich source of plastic
particles that should not be underestimated under any circumstances, which naturally
raises concerns about the transfer of such MNPs into food and beverages. This includes,
but is of course not limited to, take-out containers, plastic coffee bags, disposable drinking
cups, and food packaging products [52-55]. Another alarming finding concerns recent
reports that MNPs can be released from breastmilk storage bags and subsequently pose
a potential health risk for infants [56]. We are also inevitably exposed to MNPs during
various sports, recreational and leisure activities. Sports facilities are a rich source of MNPs,
both in terms of the provided equipment and one’s own sports- or footwear that is used,
and high levels of indoor MNPs can be generated by abrasion [57-59]. Similarly, abrasion
testing of various consumer items that come directly into contact with mucous membranes,
such as female hygiene products and even sex toys, revealed the release of significant
amounts of MNPs [60,61].

The problem of MNP generation also plays a major role in connection with individual
road traffic, e.g., during commuting and, probably even more important, in connection
with transportation via heavy-duty vehicles. Tire wear MPs originating from synthetic
rubber tires are in the meantime among the most abundant MPs in the environment [62-65].
The particles that are released into the environment include tire wear particles, recycled
tire crumb and tire repair-polished debris. More precisely, tire wear particles are generated
as automobile tire treads wear down on roads, while recycled tire crumb is produced for
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recycling purposes. This includes the creation of rubber granules for use in artificial turf,
basketball courts and recreational areas, typically achieved by mechanically grinding or
cryogenically freezing chipped or shredded whole tires [66,67]. It is estimated that there
are approximately 21,000 full size pitches and 72,000 so-called mini pitches installed in the
EU, most of them made of synthetic turfs from recycled tires, contributing significantly to
the generation of sports-associated MINPs [66].

2.4. Leaching Chemicals and Additives

In addition to the physical presence of MNPs, the leaching of chemicals and release
of absorbed heavy metals from these particles poses significant environmental and health
concerns. Many MNPs contain additives such as Bisphenol A (BPA), phthalates and heavy
metals, which can leach into food, beverages, biological tissues and the surrounding en-
vironment [68,69]. Especially, chemicals like BPA are known to be endocrine disruptors,
which can interfere with normal hormonal functions and, therefore, potentially compro-
mise different aspects of fertility by mimicking and/or blocking natural hormones in the
body. The potential for these substances to disrupt endocrine function and negatively
impact human health underscores the urgency of addressing the issue of chemical leaching
alongside MP pollution [70,71].

3. Uptake and Accumulation of Microplastics in Human Tissues and Organs
3.1. Routes of Exposure

Living organisms are exposed to MNPs mainly through three routes, ingestion, in-
halation and dermal contact. Therefore, such particles can be taken up through polluted
water and food, by inhaling air contaminated by natural or anthropogenic sources with
particulate matter and cutaneous exposure through, e.g., clothes, as well as personal care
and hygiene items. Several tissues are especially prone to accumulation of MPs, as shown
in Figure 1. In the colon, concentrations from 7.91 MP/g [72] to 28.1 MP/g [73] have
been described. In the small intestine, 9.45 MP/g have been detected, while in lung tissue
up to 14.19 MP/g have been found [72]. In the spleen, the reported concentration was
1.1 MP/g [74], and in the liver it reached 4.6 MP/g [74]. Notably, for brain tissue, MP
accumulation of up to 8.861 ug/g was reported [75].
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Figure 1. Accumulation of MPs in different tissues. (Created in BioRender. Lang, T. (2024) https:
/ /BioRender.com/w89g368, accessed on 17 November 2024).
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3.1.1. Ingestion

Once ingested, MNPs pass through the esophagus into the stomach and can be ab-
sorbed by epithelial cells usually within 2-6 h [76]. Insoluble NPs smaller than 1.09 um
can pass through the gut epithelium and enter the bloodstream directly, while larger MPs
are typically transported to the mid- and hindgut. MPs as large as 130 um can move into
human tissues through paracellular transport via desorption [77].

3.1.2. Inhalation

Inhalation represents one of the most significant pathways of MNP entry into the
body. Airborne particles, depending on their size, can penetrate various regions in the
respiratory system. Particles larger than 10 um generally affect the upper airways, while
those smaller than 10 um can reach the bronchioles. Particles smaller than 2.5 um in size,
including ultrafine particles, are capable of penetrating down to the alveolar region [78].
It is not surprising that urban areas have a high presence of MNPs in the atmosphere, as
anthropogenic sources such as industry and traffic are one of the main sources of these
particles [79]. However, samples collected in remote areas (e.g., the alps/norther and
southern polar ice regions) have also been reported to contain significant amounts of MNPs,
highlighting the global threat of these contaminants [80,81].

3.1.3. Dermal Contact

The skin represents a fundamental barrier against most harmful substances from the
environment. However, MNPs frequently come into contact with the skin due to topical
agents such as cosmetics, hygiene products like tooth paste, pharmaceutical ointments
and also medical devices like face masks [82,83]. Subsequently, MNPs might be absorbed
in an unspecific way and ultimately accumulate in cells of the epi-/endodermal layers,
keratinocytes or immune cells [84,85].

3.2. Particle Uptake and Transport Mechanisms Across Tissue Barriers

After ingestion by swallowing, inhalation or through the skin, different cell types
can internalize particles such as MPs, fine dust and color particles in a largely unspecific
manner. This process often leads to intracellular accumulation and—subsequently—also
to the transfer of these substances to daughter cells following mitosis [86-88]. Cellular
uptake of MNPs occurs primarily through two mechanisms: endocytosis-based uptake
and direct cellular entry. Endocytosis involves several steps, beginning with specific
ligands binding to the cell surface receptors resulting in the formation of a ligand-receptor
complex. This is followed by nucleation of cytosolic proteins to form a coated pit. Next,
the plasma membrane undergoes invagination, followed by the formation of intracellular
vesicles. Finally, the coating is removed, and the endocytotic proteins are recovered from
the vesicle [89-91]. Endocytosis-based cellular uptake includes clathrin-dependent uptake,
caveolin-dependent uptake, clathrin- and caveolin-independent uptake, micropinocytosis
and phagocytosis [92]. In contrast, some particles can enter cells directly, bypassing the
need for these structured pathways, as will be discussed later in this text [92-95].

In specific tissues, the uptake processes can vary substantially. In the gut, smaller
particles (size smaller than 150 pm) can penetrate the mucus layer and are absorbed
via endocytosis by enterocytes, transcytosis through M-cells or by passing between cells
through paracellular transport [96]. Inhaled MNPs can directly pass through the alveolar
epithelium into the bloodstream [96]. Once MNPs enter the bloodstream, infiltration can
occur on almost any tissue connected to the circulatory system [97].

Recent studies have demonstrated an additional mechanism of MNP transport via
extracellular vesicles (EVs) [98]. These EVs, released by various cell types, play an im-
portant role in intercellular communication by transferring molecules such as proteins,
nucleic acids, and also PS MNPs. A recent study demonstrated that such PS-MNPs can be
encapsulated within EVs and transferred between cells through EV-mediated communi-
cation [98]. Through live-cell imaging, fusion of EVs containing PS-MNPs with recipient
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cells was described, allowing the PS-MNPs to enter new cells. This shows that EVs can
act as a transport mechanism for MNPs, facilitating their movement within tissues and
possibly even across biological barriers such as those protecting, e.g., the brain and the
placenta. This pathway could, therefore, represent a significant mean by which MNPs
are distributed in the body, alongside traditional mechanisms like endocytosis and direct
cellular entry [98].

The half-life of these particles in the circulation and therefore the uptake by cells varies
based on the size and shape of the nanoparticles. Smaller particles generally demonstrate
higher uptake efficiencies due to their ability to cross biological barriers more easily. For
instance, in mice, PS particles sized 0.1-1 pm have a half-life of 1.4-4.9 min (with smaller
particles persisting longer) [99], while acrylic particles under 1.8 um last 44-84 min, with
quicker clearance when coated in proteins like albumin [100]. In rats, polyacrylamide (PAA)
particles sized 0.2-0.3 um have a half-life of 40 min [101], whereas in rabbits, much smaller
PS particles of 0.05-0.06 um clear in just 0.9 min [102].

In addition to the previously discussed influences of size and protein coating, shape
strongly dictates uptake efficiency. Molecular dynamics simulations have shown that spher-
ical nano-sized particles typically internalize via clathrin-mediated endocytosis, while rod-
like particles more commonly utilize caveolae-mediated pathways, which bypass lysosomal
degradation and may allow more prolonged intracellular persistence [92]. Furthermore,
rod-shaped and elongated particles tend to exhibit higher cellular uptake compared to
spherical ones due to their ability to form stable adhesions on the membrane surface [92].
The lower uptake efficiency of elongated particles is likely due to the increased membrane
tension required to engulf them fully, compared to the relatively simple internalization of
spherical particles [94,95].

Additionally, the aspect ratio of rod-shaped nano-sized particles of different compo-
sitions has been shown to influence their cellular fate; particles with higher aspect ratios
tend to localize preferentially in endosomal or lysosomal compartments [95,103]. Gold
nanoparticles with sharp geometries, such as triangular or star-shaped forms, tend to pene-
trate cellular membranes more effectively. This is likely due to the ability of sharp edges
to concentrate force on the membrane, facilitating membrane disruption and subsequent
internalization [94]. Studies also suggest that non-spherical particles like nanodisks and
nanorods demonstrate enhanced circulation times and reduced clearance rates in compari-
son to spherical particles, due to differences in their surface interactions with immune cells
and serum proteins [95].

The orientation of the rod-shaped particle relative to the membrane is also important.
In general, rod-like particles typically undergo stable endocytotic states with a small and
high wrapping fraction. When the long axis of a particle aligns parallel to the membrane, it
is referred to as the “submarine mode”, a configuration common for particles with high
aspect ratios (long and thin shapes) and rounded tips. When the axis is oriented perpen-
dicular to the membrane, it is known as the “rocket mode”, typically seen in particles
with smaller aspect ratios and flat tips. Particles with a high aspect ratio often experience
a “competition” between these two modes [93]. Studies have shown that particles with
high aspect ratios (i.e., longer and thinner shapes) generally exhibit reduced uptake effi-
ciency compared to spherical particles of similar size. This complex interplay of particle
properties—such as size, shape and surface characteristics—ultimately determines how
efficiently a particle is taken up by cells and how long it remains in circulation within the
body [93].

4. Physiological Consequences of Microplastics Exposure During Human Development
4.1. Critical Stages During Early Human Development Affected by Microplastics

The potential health effects of MNPs during embryonal development are an emerging
area of research, and while studies are still limited, there is growing concern about the
possible far-reaching impact. The early development of all mammals, including humans,
involves several critical stages where environmental influences by a multitude of different
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factors and chemicals can have lasting impacts on health. Therefore, we have summarized
possible effects during the fetal stage, the neonatal stage, and the prepubertal stage in more
detail (see Figure 1). Each of these periods are characterized by rapid tissue growth, cellular
differentiation, and critical biological processes that establish the foundation for future
health and also disease susceptibility [104].

4.1.1. Fetal Exposure to Microplastic Particles via the Placental Route

During the fetal stage, development is highly sensitive to environmental influences, as
this is when most tissues differentiate (including immune system cells) and cells are still
in great plasticity. The blood—placenta barrier (BPB) is a vital structure in pregnancy that
helps protect the developing fetus by controlling the exchange of substances between the
maternal and fetal bloodstreams. However, recent research has indicated that MPs can cross
this barrier, potentially affecting fetal development. For instance, a 2021 study detected
MPs in human placentas, suggesting that these particles can be present in the womb and
possibly affect embryonal development [105]. MPs can cause inflammation and trigger
an immune response in tissues [106-108]. If MPs reach the embryonic environment, they
could induce local inflammation, potentially disrupting normal development [104,109,110].
The potential health risks associated with such MNP exposure, coupled with the increased
vulnerability of fetal development to environmental agents, highlight the critical need to
study the maternal-to-fetal transfer of such particles via the placental route. While the
placenta is responsible for facilitating the exchange of essential nutrients, gases and waste
products for the fetus, it is not completely impermeable to environmental toxicants. The
placental barrier is composed of the syncytiotrophoblast layer, cytotrophoblast cells and the
endothelial cell layer of the fetal capillaries [111]. There are different ways of transplacental
transfer: passive transfer, facilitated diffusion and active transport [112]; Grafmueller et al.
stated that the transportation of nanoparticles such as nanoplastics is likely to involve
an active, energy-dependent transport [111]. A recent study described MNP fragments
with multiple shapes in human placental tissue. MNPs have been found in these samples
either on the maternal side, the fetal side or on the chorioamniotic membranes [105]. This
finding is significant because the placental barrier serves as a critical interface between the
fetus and the external environment, ensuring safe conditions for embryonic development.
Using an ex vivo human placenta perfusion model revealed that NPs up to 240 nm were
taken up by the placenta and were able to cross the placental barrier without affecting the
viability of the placental explant, being transported from the fetal to the maternal blood
circulation [113]. This was further corroborated by animal studies that directly fed MP
particles to pregnant mice, revealing that these particles were efficiently transported to
embryonic tissues, significantly reducing their growth [114]. Additionally, an accumulation
of PS beads was also observed in the syncytiotrophoblast layer of placental tissue using an
ex vivo human placental perfusion model [111].

The maternal pulmonary exposure (intratracheal instillation) to nano-PS led to the
translocation of such particles to placental and fetal tissues in pregnant Sprague Dawley
rats making the fetoplacental unit susceptible to adverse effects. These particles were
found in the maternal lung, heart and spleen as well as fetal liver, lungs, heart, kidneys
and brain. Furthermore, 24 h after maternal exposure, fetal and placental weights were
significantly lower (7% and 8%, respectively) compared to control groups [115]. Exposure
to harmful substances during this time can disrupt cellular functions and epigenetic pro-
gramming, potentially leading to long-term health issues. MNPs are considered potent
vectors for other environmental pollutants such as heavy metals, organic pollutants and
microorganisms, including pathogens and antibiotic-resistant bacteria, due to their adsorp-
tion properties. Heavy metals like arsenic, cadmium, chromium, copper, lead, nickel and
zinc have been detected on MP surfaces [116]. The adverse effects of these pollutants are
wide-ranging, including carcinogenicity, teratogenicity, genotoxicity, immunotoxicity, and
neurotoxicity [68,117,118]. For example, research has shown that exposure to environmen-
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tal contaminants during the fetal period can result in epigenetic modifications, affecting
gene expression and increasing disease susceptibility later in life [104,110].

4.1.2. Microplastics and the Neonatal Stage

The neonatal stage, immediately following birth, is another window of heightened
vulnerability. Newborns can be exposed to MNPs through various sources, similar to adults
but with some specific considerations due to their unique environment and activities. After
birth, infants continue to be exposed to plastic particles through various sources such as
breast milk, toys, baby bottles, formula and household dust (see Table 2). As a consequence,
the estimated daily exposure of MNPs by infants up to 12 months old ranges from 14,600
to 4,550,000 particles/d per infant [119].

Table 2. Routes of exposure during the neonatal stage. (Abbreviations: PP, Polypropylene; PC, Poly-
carbonate; BPA, Bisphenol A; TDI, Tolerable daily intake; PE, Polyethylene; PU, Polyurethane; PA,
Polyacrylamide; PS, Polystyrene; MPs, Microplastic particles; MNPs, Micro-/Nanoplastic particles; PAH,
Polycyclic aromatic hydrocarbon; BBzP, Butyl benzyl phthalate; DEHP, Bis(2-ethylhexyl) phthalate).

Source Chemical Amount Detection via Ref.
14,600-4,550,000 particles per
person per day
PP Or Water incubated in [119]
Baby bottles 16.2 million particles per liter baby bottles
especially after heating in
microwave
0.8 to 23.8% of their safe TDI of Ethanol/water mixture
PC/BPA BPA by using plastic bottles in baby bottles [120]
PP, PE Not specified Formula preparations 1)
Baby formula in plastic bottles
mostly PU 17.3 particles/g Infant formula [121]
Household dust —
crawling /hand-to-mouth PA, PS 20-60 particles/ m3 Indoor air sampling [122]
activities
Environmental dust n.a. 15 MPs per day via inhalation Street dust [123]
By friction, heat or light, MNPs
may be released directly onto the
Toys na hands, mouths and noses of [34]
children
Breastmilk Various, mostly PU 20.2 particles/g Breastmilk [121]
. 75% of breastmilk samples .
Breastmilk BPA 0.4-14 pg/L Breastmilk [124]
Diverse sources Various, mostly PA 18.0 particles/g Placenta [121]
Football pitches and PAH, phthalates,
playgrounds adipates 991 ug/g Rubber samples [125]
Children’s toys Bromine and antimony Toy Samples [126]
. . 23.9 ng/m3 BBzP in air samples .
Vinyl Flooring BBzP, DEHP (compared to 10.6 ng /md) Indoor Air Sample [127]
Pacifiers BPA Below LOD—0.33 ug/L 11 Toy and Pacifier [128]

Toys

Samples




Environments 2024, 11, 263

9 of 24

During this period, the infant’s immune system is still developing, specific tissues are
differentiating and the body undergoes crucial physiological adaptations to the external
environment. The ingestion or inhalation of MNPs during this time could interfere with
these processes, exacerbating the risk of immune system dysfunction or other develop-
mental disorders. Considerable numbers of MNPs have been detected in this respect,
highlighting the potential dangers of accumulation during early childhood development
(see Table 3). Exposure to irregular MNPs shed from baby bottles was described to activate
the ROS/NLRP3/Caspase-1 signaling pathway, causing intestinal inflammation [129]. Stud-
ies have demonstrated that neonatal exposure to environmental toxins can alter immune
responses, increasing the likelihood of developing allergies or autoimmune diseases [130].
In addition, the commonly used stabilizer BPA as well as antioxidants in plastics have been
shown to cause proliferation toxicity in human Caco-2 cells, highlighting the danger that is
associated with MNP exposure [131].

Table 3. Composition of plastic particles detected in infants. (Abbreviations: PA, Polyacrylamide;
MPs, Microplastic particles; BPA, Bisphenol A; MbzP, Monobenzyl phthalate).

Chemical Amount Detection via Ref.

Various, mostly PA 54.1 particles/g Meconium [121]
. 26.6 particles/g

Various, mostly PA Correlation of exposure to plastic toys Infant feces [121]

MPs with 11 out of 15 plastic =~ 1.2-3.3 pug/L

ingredients traced

In 93% of urine samples Children (age 3-17) urine and blood samples  [132]

Infant urine (3—-15 months) without known

BPA 1.2-4.4 pg/L BPA exposure [124]
MB2P 32.6 ng/mL Urinary MBzP Urine metabolites from children living in [127]
z (compared to 18.3 ng/mL) homes with vinyl flooring

4.1.3. The Prepubertal Stage

Finally, the prepubertal stage is marked by continued growth and hormonal changes
that prepare the body for adolescence and adulthood. The organs are maturing, and there is
significant plasticity in specific hormone dependent tissues. Exposure to MNPs during this
stage can disrupt endocrine functions, as first described in 1936 by Dodds et al. [133], which
is critical for normal growth and reproductive health. Given that MNPs and associated
chemicals have been found to possess endocrine-disrupting properties, their presence in
the environment could pose significant risks during this sensitive developmental window.
Research indicates that endocrine disruptors can interfere with hormone signaling during
prepubertal development, leading to reproductive issues and increased cancer risk later in
life [134,135].

However, while definitive evidence in humans is still emerging, the potential risks as-
sociated with plastic particle exposure during embryonal development and early childhood
warrant further investigation. Given the critical nature of this developmental period and
the known effects of related environmental toxins, understanding and mitigating exposure
to MNPs is crucial for safeguarding fetal and maternal health (see Figure 2).
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Figure 2. Microplastics uptake during different stages of human development. (Created in BioRender.
Lang, T. (2024) https:/ /BioRender.com/d17c062, accessed on 15 November 2024).

4.2. The Problem of Lifetime Accumulation of Microplastic Particles
4.2.1. Accumulation of Microplastics in Different Tissues of the Human Body

The potential for MNPs to affect critical periods of development raises concerns about
long-term health effects, such as developmental disorders, reduced fertility and increased
susceptibility to chronic diseases (see Table 4). The exposure to and accumulation of plastic
particles in the human body begins early and continues throughout life. After MNPs
enter the human body; it is a priority to understand the distribution of these particles in
different tissues (see Table 4). Pristine MNPs, particularly those of ultrafine sizes, have the
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potential to accumulate in various tissues and organs, leading to histological and biological
changes [97]. The accumulation of MNPs in various tissues and organs, including lung,
liver, spleen and even the brain, has been documented in several studies. For instance,
significant accumulation of PS MPs with a size of 5 um has been shown in the guts of rats
with an average residence time of about 17 days [136].

Table 4. Distribution and consequences of plastic particle accumulation in different tissues.

Category

Affected

Organs/Tissues Key Findings Ref.

Accumulation in tissues

Significant accumulation documented in
animal studies; translocation to distant [72-74,97,137-139]
organs observed

Lung, spleen, liver, brain,
intestine, etc.

Pathophysiology /toxicity and

Induces oxidative stress, inflammation

inflammation Various tissues and cytotoxicity; exacerbated by [140-144]
additives like BPA
Carcinogenic potential Breast, lung, liver, cervical, C.hr.omc exposure linked to cancer risk [97,145-172]
prostate, colon, blood via inflammation and genotoxicity

Cardiovascular system

Accumulation leads to oxidative stress,

Heart heart fibrosis and heart damage

[173-176]

Nervous system

Brain Lead.s .to neu1.‘o.1nﬂammat10n and [94,98,177-182]
cognitive deficits

Reproductive health

DNA damage, reduced fertility rates and

impaired sperm and oocyte quality [185-191]

Testes, ovaries

PS MNPs have also been shown to translocate to distant organs; Eyles et al. [137]
demonstrated that such particles (0.87 um) could move from the gastrointestinal tract to
the stomach in rats, and subsequent research by Eyles et al. (2001) indicated that PS spheres
(1.5 pm) could reach the liver and spleen in mice [138]. Notably, cylindrical MPs with
diameters of 2.56 and 5.56 um show higher deposition rates, whereas 1.6 pm cylindrical
particles have lower deposition rates at a flow rate of 7.5 L/min. Spherical and tetrahedral
MPs exhibit similar deposition rates at this flow rate. However, the overall deposition
efficiency at 7.5 L/min is higher than at 30 L/min for all MNP sizes. This difference arises
due to the longer residence time at lower flow rates, which affects the passage of MPs
through the upper airway region. Factors such as gravitational sedimentation and Brownian
diffusion are crucial, with Brownian diffusion being more significant at lower flow rates
and decreasing as flow rates increase [139]. Human consumption of MPs is estimated to be
39,000-52,000 particles per year, potentially increasing to 74,000-121,000 particles per year
when inhalation is included [77].

4.2.2. Pathophysiological Consequences of Microplastics Exposure

The primary focus of current research on MNPs’ potential consequences includes
two main areas: the intrinsic toxicity of MNPs and the risks posed by their associated
co-contaminants. Pristine MNPs have been shown to cause inflammation and cytotoxic
effects [140,141]. Additionally, when plastic additives or surface-adsorbed pollutants are
released into the human body, they may lead to more severe health outcomes. The interac-
tions between MNPs and other pollutants are complex, influenced by the characteristics of
the MNPs themselves and the environmental conditions, which can significantly impact
their combined toxicity [117]. However, there remains a lack of consensus regarding the
toxic effects of plastic particles and their co-contaminants, indicating a clear need for further
investigation. Similarly, a study by Deng et al. found that exposure to pristine PS MPs
(5 pm and 20 um) in mice led to disruptions in energy and lipid metabolism, oxidative
stress and neurotransmission, as well as inflammation in the liver [142]. Another in vitro
study on human cerebral and epithelial cells showed that exposure to PS MPs (3-16 um)
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at concentrations of 0.05-10 mg/L could lead to increased oxidative stress, a mechanism
associated with cytotoxicity [140]. Additionally, positive-charged PS with a particle size
of 60 nm was found to be highly toxic to macrophages as well as lung epithelial cells,
inducing autophagic cell death [143]. Polyethylene (PE) MPs (10-45 um) on the other hand
did not cause cytotoxicity directly, but were found to induce genomic instability in human
peripheral lymphocytes [144].

Apart from the intrinsic risks of pristine MNPs, the chemical additives incorporated
during plastic production, along with environmental pollutants that can absorb these parti-
cles pose significant additional health risks. Common plastic additives include plasticizers,
stabilizers, antioxidants, and flame-retardants, to name a few. Phthalate esters (PAEs),
widely used as plasticizers to enhance the flexibility, durability, and stretchability of plas-
tics, have already been detected in various organisms, suggesting potential release from
MPs over time [142]. This was corroborated by the fact that mice can bioaccumulate PAEs
in their gut and liver after being exposed to PAEs and MPs for 30 days [192]. The chemical
effects of MPs can arise from several factors, including their composition, the leaching of
unbound chemicals and residual monomers and the desorption of hydrophobic organic
contaminants (HOCs). Many HOCs are priority pollutants with established human health
risks. The cellular uptake of MPs could, therefore, facilitate the entry of these contaminants
into cells [193].

4.2.3. Types of Cancer Linked to Microplastic Particles and Associated Chemicals

The bio-persistence of MPs may trigger various biological responses such as inflamma-
tion, genotoxicity, oxidative stress, apoptosis and necrosis [145,146]. Prolonged exposure to
these conditions can result in tissue damage, fibrosis, and potentially lead to carcinogenesis
(see [97] and references therein). Recent studies have highlighted the alarming link between
chronic MP exposure and the development of various types of cancer [97].

e  Breast Cancer

Breast tissues are highly sensitive to steroid hormones such as estrogens, which play
a crucial role in regulating cell proliferation in the mammary glands. BPA, a common
component of MNPs, can mimic estrogen and has been shown to enhance the proliferation
of mammary gland cells, increasing the risk of breast cancer [147]. BPA exposure has been
linked to increased ductal density in mammary glands and the activation of oncogenic
pathways, such as STAT3, PI3K/AKT and MAPK, which are known to contribute to tumor
development [148]. Additionally, irregularly shaped polypropylene MPs have been found
to alter the expression of genes related to the cell cycle in human breast cancer cell lines and
to promote the secretion of pro-inflammatory cytokines like IL-6, further fueling cancer
progression [149].

e  Lung Cancer

One of the primary routes for how MNPs can enter the human body is through in-
halation, making the lungs particularly vulnerable [150]. Studies have identified various
particles, including PE and PP, in human lung tissues, and these particles have been found
to accumulate more frequently in the lungs of cancer patients compared to healthy indi-
viduals [4]. The inhalation of PS MPs has been shown to induce significant morphological
changes and alter cell proliferation in lung epithelial cells [151]. Furthermore, BPA exposure
has been implicated in the upregulation of matrix metalloproteinases (MMPs), which are
enzymes that facilitate cancer cell invasion and metastasis, thereby increasing the risk of
lung cancer [152].

e  Hepatocellular Carcinoma

Liver cancer, specifically hepatocellular carcinoma (HCC), can develop from chronic
liver diseases such as cirrhosis, which may be exacerbated by MNP exposure. In this
respect, particularly PS particles have been shown to induce oxidative stress and alter lipid
metabolism in vitro in liver cells and organoids [153,154]. Studies have reported higher
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concentrations of MPs in cirrhotic liver tissues compared to healthy liver tissues, suggesting
a role for MPs in liver fibrosis and cancer. Additionally, MNPs have been linked to the
overexpression of hepatic enzymes like CYP2E1, which are associated with the progression
of liver disease and the development of HCC [154,155].

e  Cervical Cancer

Cervical cancer is another malignancy that has been associated with plastic particle
exposure, particularly due to the influence of endocrine-disrupting chemicals like BPA [156].
MNPs can trigger oxidative stress and alter the balance of antioxidants in cervical tissues,
potentially leading to carcinogenesis. In vitro studies have shown that PS MNPs can invade
cervical cancer cell lines, promoting cellular stress and inflammatory responses that may
contribute to tumor development [157,159].

e  Prostate Cancer

Prostate cancer is hormonally driven, similar to breast cancer, and has been linked
to environmental pollutants carried by MPs [158]. BPA and other endocrine disruptors
found in MPs can interfere with androgen and estrogen receptors in the prostate, leading
to abnormal cell growth and an increased risk of cancer [160,161]. Studies have shown that
exposure to low doses of BPA can disrupt the normal development of prostate cells, increase
the risk of neoplastic changes and contribute to the progression of prostate cancer [162-164].

e Leukemia

Leukemia, a cancer of the blood-forming tissues, has also been connected to MP expo-
sure [165]. MPs, particularly those made of PE and PS, can accumulate in the circulatory
system, leading to hematotoxicity and disruptions in white blood cell counts [166]. BPA
exposure has been shown to exacerbate the proliferation of leukemia cells and reduce the
effectiveness of chemotherapy treatments, highlighting the potential role of MPs in the
development and progression of blood cancers [167,168].

e  Ovarian Cancer

Ovarian cancer, often diagnosed at a late stage, may be influenced by exposure to MPs
and their associated chemicals, such as BPA and phthalates. These chemicals can disrupt
normal ovarian function, leading to altered hormone levels, irregular menstrual cycles
and increased cancer risk. BPA exposure has been shown to upregulate genes involved in
cell cycle progression and to activate signaling pathways that promote tumor growth in
ovarian cells [169,170].

e  Colon Cancer

Colon cancer is one of the most common types of cancer worldwide and has been
linked to MNP exposure through ingestion. On the one hand, particles can disturb the
gut microbiota, leading to inflammation and altered immune responses in the colon [171].
On the other hand, associated chemicals like BPA and phthalates found in MPs have been
described to interfere with normal colon cell function, directly promoting carcinogenesis.
Additionally, MP exposure has been associated with the downregulation of protective
genes like Muc2, which is crucial for maintaining gut integrity and preventing early-onset
colorectal cancer [172].

4.2.4. Microplastics and Cardiovascular Diseases

Oxidative stress and inflammation induced by MNP exposure can also impact cardio-
vascular health, potentially leading to an increased risk of conditions like hypertension,
atherosclerosis and heart disease [173,174]. Studies have already described the detection of
MNPs in cardiomyocytes, indicating a translocation route to the heart via the circulatory
system [175]. Additionally, extensive apoptosis of myocardial tissue at doses of 5 and
50 mg/L of PS-MPs has been described. This was evidenced by elevated levels of my-
ocardial creatine-kinase MB and cardiac troponin I, both critical markers of heart damage.
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Moreover, the activation of the Wnt/ 3-catenin signaling pathway, triggered by oxidative
stress, contributed to heart fibrosis and ultimately led to cardiac dysfunction [176].

4.2.5. Microplastics and the Nervous System

The blood-brain barrier (BBB) is a protective shield that helps prevent harmful sub-
stances in the bloodstream from entering brain tissue. It is composed of endothelial cells
that are tightly joined by junctions that form a selective barrier, allowing only certain
molecules to pass through. However, recent research has shown that MNPs can directly
breach this barrier due to their size and/or geometry or via exosomal transport, raising
concerns about their impact on neurological health [94,98,177]. Once MNPs enter the
brain, they can cause alterations in tissue structure, damage to the blood-brain barrier and
impaired neurological function. These effects may contribute to the onset of neurodevelop-
mental disorders and neurodegenerative diseases. A study observed behavioral changes
in Daphnia fish after being fed 52 nm PS particles, noting alterations in activity levels
and feeding time. However, these effects were size-dependent. Fish that received 180 nm
particles displayed the fastest feeding rates and the highest activity levels. Additionally,
MNP particles were found in all fish that had been fed PS, while no MNPs were detected in
the brains of the control group [179]. In studies on mice, PS-MPs of varying diameters were
detected in the brain following oral exposure. This exposure resulted in a disruption of the
BBB, increased dendritic spine density and an inflammatory response in the hippocampus.
Moreover, the mice displayed cognitive and memory deficits, which were found to be
dependent on the concentration of the MPs rather than their size [180]. These findings are
underscored by recent research on the influence of environmentally relevant levels of micro-
and nanoplastics particles and their influence on ROS-dependent degeneration of human
neurons and neurodegeneration in general during amyotrophic lateral sclerosis [180-182].

4.2.6. Microplastics and Reproductive Health—Fertility Issues

When MPs enter the bloodstream, they can be transported to reproductive organs,
raising concerns about their potential impact on fertility. Especially, chemicals associated
with plastic particles are known to be endocrine disruptors, which can interfere with
hormonal functions and potentially compromise fertility by mimicking or blocking natural
hormones in the body. Infertility rates and the number of couples facing unfulfilled desires
to have children are steadily increasing [183]. Primary infertility is defined as the inability
of a couple, after being in a relationship without using contraceptives for more than five
years, to achieve a live birth. In contrast, secondary infertility refers to couples who have
not had a live birth in the same time period, following a previous successful pregnancy.
A cross-sectional study highlighted the rising prevalence of primary infertility in men,
showing an increase from 287.1 4= 100.0 cases per 100,000 people in 1993 to 291.9 + 111.9 in
2017 across Central and Eastern Europe, as well as Central Asia (slope 5.4). In women, the
rates rose from 348.8 & 115.9 to 347.3 & 125.3 in the same regions (slope 3.0). The highest
increase occurred in South Asia, where female infertility rates climbed from 798.4 & 197.4
per 100,000 in 1993 to 960.4 £ 254.5 in 2017 (slope 40.9). For secondary infertility, the most
significant increase was observed in North Africa and the Middle East, where rates rose
from 1031.7 £ 329.4 per 100,000 people in 1993 to 1544.2 4 451.3 in 2017 [184]. Despite
the increasing prevalence of infertility, research exploring potential links between MNPs
and reproductive health remains limited. However, emerging evidence suggests that such
particles and their associated chemicals could have a significant impact on both male and
female fertility, making this an area of growing concern.

e  Male Fertility

Studies reported that chronic as well as short-term oral exposure to MPs led to accumu-
lation in testicular tissue causing testicular inflammation, blood—testis barrier disruption
and impaired spermatogenesis. Jin et al. [185] discovered in a mouse model that the
blood-testis barrier (BTB), found in the seminiferous epithelium and formed by a layer
of Sertoli cells, plays a crucial role in supporting spermatogenesis. Mechanistically, MPs
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disrupt the organization of F-actin and lower the levels of tight junction proteins in the
BTB [185]. Another mechanism describes a decrease in the BTB-associated proteins occlud-
ing, connecin-43 and N-cadherin resulting in a decline in sperm quantity and quality. This
study, therefore, provides experimental support for the direct adverse effect of PS-MPs on
male reproduction [186]. Another study, performed by Hou et al. [187], administered PS in
drinking water to mice for 35 days. After the exposure to MP, the ratio of live sperm in the
epididymis to the total number of sperm was significantly lower compared to not-exposed
mice. Furthermore, the SPZ were morphologically analyzed. The germinal epithelium
within the testis revealed cell damage, a reduced number of spermatids, detached cells
from the germinal epithelium, pyknosis and nucleus rupture. Analysis of expression levels
revealed increased levels of genes involved in inflammatory responses such as NFkBp65
and p-NF-kBp65, Interleukin-1 3 (IL-1f3), IL-6 and tumor necrosis factor (TNF«x) and de-
creased levels of critical transcriptional factors in the antioxidant defense system and related
downstream target such as Nrf2 and HO-1 protein. An increased Bax-to-Bcl2 ratio and
apoptosis were observed [187].

On the other hand, spermatozoa not only carry the genomic information of a haploid
nucleus into the egg cell but also play a crucial role in early embryo development and the
health of the offspring through their epigenetic signature. These epigenetic modifications
are highly sensitive to environmental factors, such as endocrine-disrupting chemicals often
associated with plastic particles [188]. In summary, although research in mammals is still
limited, early findings suggest that MPs may pose a significant risk to male fertility.

e  Female Fertility

Several studies indicated that MNP exposure is highly correlated to reproductive prob-
lems in females. Oral PE administration (10-150 um, 40 mg/kg/day) over a 30-day period
resulted in DNA damage, apoptosis, oxidative stress, and mitochondrial dysfunction in the
oocytes of Kunming mice. These cellular injuries in germ cells were followed by reduced
oocyte maturation, lower fertilization rates, and impaired embryonic development [189].
Furthermore, after 35 days of continuous exposure to PS-MPs, a reduction in the first polar
body extrusion rate and a lower survival rate of superovulated oocytes were observed
in the ovaries of mice. This study also led to indications of ovarian inflammation [190].
Another study showed decreased concentrations of 173-estradiol (E2) and testosterone in
the plasma of female Oryzias melastigma after sixty days of PS-MP exposure [191].

5. Microplastic Particles Do Not Disappear After the End of Biological Life

After death, tissue and cell degradation processes, along with environmental inter-
actions, influence the fate of MINPs in human and animal bodies. Bacteria, enzymes and
microorganisms promote organic degradation, but synthetic polymer particles are largely
resistant to biodegradation. As organic matter decays, MNPs are gradually released into
the environment, with the specific pathway depending on burial or cremation practices. In
burial, MNPs may be transferred into the soil, potentially contaminating groundwater or
being absorbed by plants and animals, re-entering the ecosystem. Due to their persistence,
MNPs can remain in the environment long after complete decomposition, perpetuating
cycles of pollution. It is generally accepted that incineration at high temperatures represents
a way to permanently eliminate plastic waste. Nonetheless, during incineration, where
typical temperatures range between 760 and 980 °C (1400-1800 °F), there are reports that
MNPs may not fully combust and unburned material still exists in the bottom ash, i.e.,
the solid residue from such furnaces [194]. Unlike pyrolysis, which converts plastics into
smaller compounds under oxygen-free conditions, cremation of deceased people using
traditional wood pyres can therefore be expected to allow MNPs to be released into the at-
mosphere or remain in the ashes [195,196]. Therefore, MNPs will undoubtedly continue to
persistent environmental contamination. The resistance of plastic particles from biological
waste material to naturally degraded has far-reaching ecological consequences, including
soil and water contamination, food chain disruption and potential human health affects via
bioaccumulation. This underscores the urgency of reducing plastic consumption, improv-
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ing waste management, and limiting the spread of MNPs. The life cycle of plastics does not
end with death; their release during decomposition or cremation sustains environmental
contamination, posing long-term risks to ecosystems and future generations.

6. Conclusions

MNPs represent an inescapable threat that begins as early as fetal development and
continues throughout life, culminating in a return to the environment after death. The
exposure of fetuses and infants to these particles is particularly alarming, given their vulner-
ability during critical stages of development. The accumulation of MPs in the human body,
combined with their potential to cause chronic diseases and disrupt biological processes,
underscores the urgent need for comprehensive strategies to mitigate this global threat.
Despite the obvious problems, there are still limitations that restrict further action to reduce
the risk of MP exposure. Firstly, the different detection methods and the data obtained
with them make it difficult to carry out comparative studies quickly and to the extent
necessary. The number of particles and their composition as well as the structure can lead
to very different pathophysiological results in this context. Plastic has nowadays perme-
ated all aspects of our lives, and it is practically no longer possible to reduce contact with
MNPs in a simple way, let alone avoid it completely. Addressing MNP pollution requires,
therefore, coordinated efforts to protect human health and ensure a safer environment for
future generations.
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