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Abstract: The increasing demand for sustainable energy solutions has prompted a significant interest
in non-conventional energy sources, leading to the development of innovative materials that can
enhance energy conversion and storage efficiency. This review paper explores the pivotal role of
zirconium dioxide (ZrO,) in industrial applications related to non-conventional energy technologies,
highlighting its contributions to the circular economy. We discuss various synthesis methods for ZrO,,
including top-down and bottom-up approaches, elucidating how these techniques influence the
material’s properties and applicability. Furthermore, we examine the unique characteristics of nano-
ZrO, and its transformative potential in energy conversion and storage systems. By synthesizing
current research findings, this review underscores the significance of ZrO, in promoting sustainable
energy practices and its role in advancing the circular economy through material reuse and recycling
strategies. The insights provided herein aim to inform future research directions and industrial
applications, ultimately fostering a more sustainable energy landscape.
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1. Introduction

One of the primary causes of global warming is the large-scale use of fossil fuels,
which is why worldwide efforts are being made to introduce and use non-conventional
energy sources, by which pollutants can be reduced and the maintenance of the average
global temperature is possible. Energy storage technologies and conversion systems are
necessary for its efficient use [1]. Non-conventional energy sources represent an alternative
for the future, not only for a cleaner environment and economic sustainability but also for
job creation. In this way, conventional sources such as coal, oil, fuel wood, thermal power
plant, and nuclear energy could be replaced by non-conventional energy sources as solar,
wind, tidal, geothermal energy, and biomass.

Today, a distinction is made between non-conventional energy sources in terms of
green, clean, and renewable energy. Often, the terms “green” and “renewable energy” are
used interchangeably, leading to confusion. While most green energies are renewable, not
all renewables are considered green. Renewable energies refer to sustainable energies com-
ing from naturally sources that renew themselves such as wind or solar energy. However,
if carbon emissions are generated, renewable energy cannot be considered green energy.
Clean energy is energy that does not produce greenhouse gas emissions, meaning some
types of renewable energy are not clean. According to the world statistics data, hydropower
is the largest modern renewable source, followed by wind and solar power, both of which
are advancing fast as it can be seen in Figure 1 [2].
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Figure 1. Renewable energy generation by hydropower, wind, solar, and other renewables (geother-
mal, biomass, waste, wave, and tidal) according to the World Statistics Data [2].

In many contexts, renewable and non-conventional energy sources are considered
part of the same broader effort to develop cleaner and more sustainable energy systems.
The distinction often depends on the specific technologies being discussed and their level
of maturity and adoption in the energy market. To ensure the efficiency of these sources,
durable energy materials are required for energy storage and conversion.

The future of non-conventional energy depends on the production and design of
sustainable materials that are part of solar cells, combustion cells, batteries, supercapacitors,
nanocomposites, etc. These materials correspond to the concept of clean energy, helping
to reduce carbon and greenhouse gases, thus leading to a global economy free from CO,.
Generally, non-conventional energy sources obtained from the sun, wind, biomass, water,
etc. contribute to global sustainable development [3]. Current lifestyle, consumption
patterns, and industrial processes are decisive for global warming and require urgent
changes in the production, storage, and supply of energy.

In this context, adopting a circular economy and lean management for renewable
energy can reduce emissions and pressure on natural resources, chart innovative pathways
to net-zero economies, create sustainable economic growth and jobs, and diminish supply
chain risk. Considering the strong competition between industries worldwide, it is impor-
tant to ensure quality, control costs, and improve production technology, thus appearing
the concept of lean manufacturing which focuses on reducing costs while maintaining
quality, minimizing waste generation, and enhancing customer satisfaction [4].

The circular economy is a sustainable economic model that prioritizes resource ef-
ficiency by minimizing waste and promoting the reuse and recycling of materials. This
approach reduces the demand for new raw materials, which, in turn, decreases the energy
and emissions associated with their extraction and processing. By designing products
for longevity and recyclability, the circular economy significantly cuts down on waste,
lowering landfill emissions and the overall carbon footprint linked to waste management.
Additionally, it encourages the adoption of sustainable production processes that utilize
renewable energy and greener technologies, contributing further to reduced greenhouse
gas emissions.

Moreover, the circular economy fosters innovative business models, such as product-
as-a-service, which shift consumer behavior towards sustainable choices, like purchasing
second-hand goods. This not only decreases the demand for new products but also encour-
ages collaboration across industries to innovate and close material loops, driving down
emissions throughout supply chains. By integrating circular economy principles, we can
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enhance carbon sequestration through improved land use and forestry practices, ultimately
supporting the goal of achieving net-zero emissions while creating economic opportunities
and resilience in an evolving world.

Non-conventional energies are based on durable materials whose properties prove
their efficiency in applications. For these materials, strength and durability must be high,
to present exceptional mechanical properties, including high fracture toughness and wear
resistance. Thus, the manufactured products will have a long lifespan, reducing the need for
frequent replacements and thus minimizing waste, an aspect that aligns with the principles
of the circular economy and lean manufacturing. In addition, to ensure the longevity and
reliability of the products, the materials used must show chemical stability and be inert,
allowing them to be used in harsh environments, without degradation.

Materials used in the structure of energy storage devices can accumulate more en-
ergy from the environment than they consume, allowing for sustainable operation. This
advantage has led to the creation of portable energy collection systems that can contain, for
example, 2D materials, which have a high surface-to-volume ratio [5]. Recently reported
sustainable materials that go into energy storage are hemp-derived electrodes [6] and
honeydew peel-derived carbon [7]. Among the different energy conversion and storage
systems, ceramic materials represent an alternative in the design of these systems due
to their high-power density, excellent thermal stability, long lifespan, and environmental
friendliness [8].

Zirconia is a polymorphic material occurring in three temperature-dependent crys-
tallographic arrangements: the monoclinic phase (m), thermodynamically stable from
room temperature to 1170 °C; the tetragonal phase (t), stable from 1170 to 2370 °C; and the
cubic phase (c), stable from 2370 °C to the melting point [9]. The most important phases
for engineering are the tetragonal and cubic phases [10]. These phases can be achieved
through high-temperature heat treatment, incorporation of lower-valence dopant metals
into the crystal lattice, like CaO, magnesia (MgO), and yttria (Y,O3) [11], or by increasing
the surface energy of nanoparticles [12]. The alloying induces the formation of oxygen
vacancies or reduces the crystallite size [13]. Stabilizing the tetragonal phase at room
temperature is crucial to harness its transformation toughening properties [14]. Without
stabilization, the phase would revert to being monoclinic, leading to potential failure under
stress and thermal degradation. When ZrO; contains a mixture of both tetragonal and
mono-clinic phases within its matrix, it is referred to as partially stabilized zirconia (PSZ).
In contrast, if ZrO, is primarily composed of the tetragonal phase, it is called tetrago-
nal zirconia polycrystals (TZP) [13]. During cooling from high processing temperatures
to room temperature, a spontaneous stress-induced martensitic transformation from the
tetragonal (t) to monoclinic (m) phase can occur, which restricts the use of pure ZrO, as
an advanced structural material. It is well established that controlling the crystal phase
is essential to meet the optical requirements of zirconia applications. Fujii et al. [10] suc-
cessfully developed genetic algorithm optimized potentials (GAOPs), which accurately
reproduce the stability of various ZrO, structures, including monoclinic, tetragonal, cubic,
orthorhombic I and II, as well as other hypothetical phases. To serve as a high-performance
ceramic material, ZrO, needs to maintain its high-temperature cubic phase at room tem-
perature [15]. The cubic phase zirconia is a promising material for applications as solid
oxide fuel cells (SOFC), electrochemical capacitor electrodes, and oxygen sensors [16] due
to the high electrical conductivity [13]. Cubic zirconia, in particular, has evolved as a viable
alternative to diamonds (which are extremely expensive). Aside from its durability and
strong aesthetic similarity to diamond, cubic zirconia produces cuts unlike diamonds and
has optical flawlessness that appears completely colorless to the naked eye [17].

In this materials class, zirconia (zirconium dioxide, ZrO,) has gained a special interest
in the last period, considering its versatility and durability as a material with applications
in non-conventional energy. Due to its advanced properties, ZrO, has various applications
where its sustainability has been proven.

The main properties and applications of ZrO; are illustrated in Figure 2.
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Figure 2. Properties and applications of ZrO, materials.

For example, zirconia’s biocompatibility and durability make it a preferred material
for dental crowns [18], catalysis [19,20], coatings as thermal barriers [21,22], and in display
and photonic devices [23,24] owing to its short-wavelength luminescence properties. These
medical applications benefit from ZrO,’s long lifespan, reducing the frequency of medical
procedures and associated waste [25]. ZrO is also used in high-performance components
in the automotive and aerospace industries due to its high-temperature stability and
wear resistance. These applications contribute to the efficiency and longevity of engines
and other critical systems [26]. Additionally, ZrO; is used in catalysts and membranes
for environmental applications, including air and water purification. Its role in these
applications helps to reduce pollution and improve environmental quality [27-30]. In the
energy sector, ZrO, is used in solid oxide fuel cells (SOFCs) and thermal barrier coatings
for turbines [31-33]. These applications enhance energy efficiency and contribute to the
development of cleaner energy technologies. The use of ZrO, in high-temperature and
high-stress environments further enhances energy efficiency and extends the longevity of
industrial processes and equipment [34].

The above considerations allow ZrO, to be a sustainable material due to its use in
applications that contribute to environmental protection, energy efficiency, and long-term
reliability. Additionally, its recyclability and relatively low environmental impact reduce
the need for the extraction and processing of raw materials.

2. Synthesis Methods

Nano-ZrO; finds widespread application across numerous industries and research
fields, and it can be synthesized through various methods. Each synthesis approach can
be tailored to produce nano-ZrO, with specific performance characteristics. Obtaining
nano-ZrO; is based on two alternatives: top-down and bottom-up approaches, as presented
in Figure 3.
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Figure 3. Number of publications in Web of Science core collection regarding ZrO, preparation
methods: (a) top-down approaches, (b) bottom-up approaches.

The top-down approach involves using bulk material to obtain crystallites by con-
trolling the processing parameters through physical methods. However, this can produce
intermediates, and achieving a nanometric size can be more difficult compared to the
bottom-up approach [35]. Through the bottom-up approach, using physical and chemical
methods is effective, but can be ecologically polluting. In contrast, biological methods that
use plants, fungi, algae, and bacteria offer ecological benefits and sustainability [36,37].
The methods used to obtain ZrO; usually involve work protocols that include chemical
synthesis and, thus, a risk for the environment, so the biological methods applied in manu-
facturing nano-ZrO, for solar cells must become a viable solution for the future [38]. This
section provides a detailed comparison of the different synthesis methods used to fabricate
nano-ZrO,. Over the past 20 years, ZrO, has been studied for various applications, from
bone implants to catalysts and fuel cells, due to its biocompatibility, corrosion resistance,
temperature stability, and hardness. Nano-ZrO, exhibits improved physico-chemical prop-
erties due to its reduced particle size and increased specific surface area. Recent innovations
in the synthesis of nano-ZrO, have led to new applications with superior performance and
a wide range of morphologies controlled by synthesis parameters such as temperature,
pH, and reaction time. In addition, recent green and large-scale synthetic processes have
gained attention, with an emphasis on cost-effective and environmentally friendly synthetic
routes utilizing alcohols. Studies have demonstrated that nano-ZrO, with varied mor-
phologies and sizes can be synthesized using several methods. These morphologies include
nanoparticles, nanorods, nanotubes, nanowires, nanosheets, and mesoporous structures,
all of which can be controlled by varying the working parameters, such as temperature,
pH, and reaction time [39]. This progress in the synthesis of nano-ZrO; is highly relevant
to researchers in various fields, including materials science and chemistry, and enables the
industrial production of high-quality and low-cost nano-ZrO,.

2.1. Top-Down Approaches
2.1.1. Ball Milling Method

Several methods are used for the preparation of ZrO,-based materials, like sol-gel,
precipitation, hydrothermal, and ball milling. Compared to the other methods, ball milling
does not require the use of solvents, high temperatures, or long-term reaction times [40].
This method is fast and can be done at ambient temperature, allowing good control over
the microstructure (shape, size, etc.), leading to homogenous materials with a high-purity
crystalline phase [41]. The literature reports promising results from grinding with a ball
mill to obtain t-ZrO; from m-ZrO,, with the transition to the tetragonal form reaching
about 45% in 50 h. Both tetragonal and monoclinic crystallites are about 10 nm in size. As
a rule, to increase the transition to the solid phase, doping with Y,03, Fe;O3 and CoO
oxides (6-10% by weight) is employed [42]. The use of a high-energy planetary ball mill
can lead to the disintegration of the particles into crystallites as small as 20 nm, facilitating
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a rapid transition to the solid phase. Macan et al. [43] reported the performance difference
between Al,O3 doped Y;0j; stabilized ZrO; prepared by two methods: ball milling and
sol-gel. They found that the ball milling method yielded materials with homogenous
morphology, whereas the samples prepared by the sol-gel method presented a tetragonal
phase. This correlates with previous findings that demonstrate mechanical ball milling
leads to materials with improved shape and dispersion.

While ball milling presents several advantages, it also has some limitations, for exam-
ple, the equipment can be heavy and cumbersome, leading to handling challenges, while
the process consumes considerable energy due to wear, friction, and heat generation [44].
Furthermore, it can generate contamination and noise, complicating the maintenance of
material purity and workplace comfort. Thus, while ball milling is a powerful technique in
material processing, these drawbacks must be carefully considered in its application.

2.1.2. Sputtering Method

Sputtering is a physical process known as physical vapor deposition (PVD), which
is characteristic for the fabrication of thin films. Spraying takes place in a vacuum and
is suitable for metals, textiles, or other materials where control regarding the thickness
of the layer is essential. An elementary target is used in a gaseous atmosphere to form
the desired compound, and the deposition rate depends on the gas flow rate and partial
pressure [45]. ZrO; films, which can be approx. 75-nm thick, can be deposited on silicon
and quartz substrates via the reactive Direct-Current (DC) magnetron sputtering of the
zirconium target [46]. In a study by Verma et al., nano-ZrO, was prepared by the reactive
magnetron sputtering technique using various sputtering power [47]. The NPs obtained
presented a tetragonal structure with an increased average crystallite size from 3 nm to
8 nm, with an increase in sputtering power from 40 W to 100 W, as can be seen in Figure 4.

-

Figure 4. TEM images of ZrO, nanoparticles synthesized at (a) 40 W, (b) 60 W, (c) 80 W, and (d) 100 W
sputtering power. Reprinted with permission from [47].

Patel et al. suggested that Ar partial pressure influences the band gap and refractive
index of ZrO, thin films [48]. They found that, with the increase in Ar partial pressure, the
thickness of the ZrO, films decreased from 433 nm to 385 nm, leading to an increase in band
gap from 4.28 eV to 4.46 eV. Also, the average crystallite size increased from 19 nm to 25 nm.
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Some of the advantages of this method include low operating temperatures, providing
a stable, long-lived vaporization source, and it can coat large areas more uniformly. How-
ever, it also presents some limitations, like lower deposition rates compared to thermal
evaporation, lower material purity, and the high cost of the necessary equipment [44].

2.1.3. Chemical Etching Method

One of the top-down approaches is chemical etching that is applied for ZrO,. This
method presents a challenge due to the wet etching resistance of ZrO,. As a rule, diluted HF
is used, along with HSO4, HCI, and H3POj, for the wet etching of semiconductors based on
metal oxides to remove the dielectric in the open source and drain regions [49]. HF remains
most efficient at concentrations between 0.1 and 0.5%, but its effectiveness decreases
when the formed fillets are subjected to heat treatment [50]. For high efficiency, the onset
temperature of crystallization is important, which, as it increases, causes a transformation
from tetragonal to monoclinic phases in the films. The addition of fluorine or neutral
species such as silicon can increase the effectiveness and selectivity of wet chemical etching,
making it the most feasible way to obtain improved burn speeds. The trend in metal oxide
semiconductors is to use SiO; with high-k dielectrics (high dielectric constant), such as TiO,,
TapOs, ZrOy, Y203, LayOs, HfO,, aluminates, and silicates. A method for the wet chemical
etching of hafnium and zirconium oxides to obtain a layer of Hf or Zr oxide material over a
silicon dioxide layer is described in the literature. This involves the use of a wet etching
solution consisting of a solvent mixture (H,O, HCIOy, alcohol, tetrahydrofuran (THE),
sulfuric acid (HpSO4) and dimethyl sulfoxide (DMSO)) and a halogen-containing acid (HF,
HBr, HI, and HCIOy). The purpose is to achieve an etch rate relative to the material layer of
about 2.5 times higher than an etch rate of silicon dioxide [51].

2.1.4. Laser Ablation Method

Laser ablation is an efficient method for thin film deposition and the micromachining of
metals, ceramics, and polymers. One advantage is the possibility of high-speed heating and
quenching of materials, leading to the form of metastable phases in the target. For example,
metastable cubic ZrO, can be formed by an ultraviolet laser ablation reaction occurring
from zirconium atoms in an oxygen atmosphere at room temperature and 1.5 mbar [52].
Many studies have reported the use of the laser ablation method in the preparation of ZrO,
materials. The synthesis of single phase (cubic) ZrO; in ammonia and mixed phases of
71O, (monoclinic and tetragonal) using pulsed laser ablation (PLA) in water was reported
by Tan et al. [53].

Laser ablation in an oxygen reactive atmosphere (10~3-0.1 mbar) was employed for
the formation of ZrO; thin films with a thickness of 200-500 nm [54]. The study showed
that the optimal surface morphology was obtained by ablation of a Zr target at a fluency of
6 J/cm? in an O, atmosphere at a pressure of 5 x 102 mbar. The dielectric constant was
measured to be between 12 and 24 across a broad range of frequencies (20 Hz to 2 MHz)
and temperatures (20 to 150 °C).

Some of the major advantages of the laser ablation method are lower energy loss and
the generation of ligand-free NPs in a range of solvents [55]. This method also presents
some drawbacks, like the ablation effectiveness drops with increased ablation duration,
and on an industrial scale the most dispersed laser sources are incapable of creating NPs.

2.2. Bottom-Up Approaches
2.2.1. Hydrothermal Method

The hydrothermal method is extensively employed for synthesizing nano-ZrO, be-
cause it enables precise control over synthesis parameters, resulting in nano-ZrO, with
tailored properties. The synthesis methods and thermal treatment decide the crystallinity
and properties of nano-ZrO; [56]. This technique integrates physical parameters like pres-
sure, temperature, and time with chemical reactions involved in nanoparticle formation.
Commonly used for synthesizing ceramic powders, it operates under high temperatures
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and pressures within a liquid medium. Furthermore, the method facilitates the incor-
poration of dopants, modifiers, and surfactants, making it excellent for the large-scale
production of nano-ZrO, [39].

Hydrothermal synthesis is based on chemical reactions in aqueous or organo-aqueous
solutions, which take place at temperatures above 100 °C and pressures above 1 atm, in
an alkaline or acid environment with a pseudo-catalytic role [57]. The advantage of this
method is the possibility to control the particle size and obtain pure compounds at low
temperatures through various reactions including hydrolysis, coprecipitation, oxidation,
and decomposition [57]. With regard to the size control, ZrO, particles resulted in an
average size of 15-30 nm, and could have about 72% cubic or tetragonal phases, and a 28%
monoclinic phase. The cubic phase allows high oxygen ionic conductivity and stability in
nano-ZrO,, offering the potential for different applications such as oxygen sensors, solid
oxide fuel cells, and catalysts [57].

2.2.2. Solvothermal Method

The solvothermal method is similar to the hydrothermal method, with the difference
that the reaction medium is a solvent, rather than water, while maintaining the same
temperature and pressure conditions. It is considered a physico-chemical method that
ensures a good solubility of the precursors and allowing rapid homogeneous reactions [39].
Some of the main issues of solvothermal synthesis are crystal structure, crystallinity, shape
control and arrangement, and particle size distribution [58]. The process can lead to
different particle morphologies such as spherical, nanofilms, nanorods, nanosheets, and
nanowires [59]. Recent advancements in the field have demonstrated that integrating
external fields such as microwaves, ultrasound, or mechanical stirring into the solvother-
mal process can significantly enhance the quality of nanoparticles produced [60]. For
example, a microwave-solvothermal method was used by Mishra et al. to produce t-ZrO,
nanoparticles with the size of 10 nm, using ZrO(NOs3), and 1,4-butanediol [61]. In another
study, ZrO, NPs with a diameter of 4 nm were synthesized using the microwave-assisted
decomposition of zirconium acetate in the ethoxyethanol [62].

Another crucial element in the solvothermal method is the chemical environment.
The morphology and stability of the final NPs can be influenced by a number of variables,
including the reaction medium’s pH, the precursors’ chemical composition, and the ad-
ditive selection [63]. In order to control particle growth and achieve the desired qualities,
additives—which might include biomolecules, surfactants, and polymers—act as capping
agents or structure-directing agents.

In terms of precursors, both organic and inorganic options are utilized in solvothermal
synthesis. Organic precursors like zirconium acetate and zirconium alkoxide, alongside
inorganic ones like zirconyl chloride and zirconyl nitrate, can lead to the formation of different
ZrO, phases under similar conditions [64]. Research has confirmed that varying the precursor
type can result in distinct crystal structures, such as cubic or monoclinic zirconia, further
highlighting the versatility of the solvothermal approach. Keukeleere et al. [65] proved in
their study that monoclinic ZrO, was synthesized from ethoxide, while cubic ZrO, can be
obtained via acetate, ethoxide, or propoxide precursors. Ionic liquids have also emerged
as promising media for solvothermal synthesis, owing to their unique physicochemical
properties [66]. These liquids can provide excellent solubility for precursors and exhibit
good thermal stability, making them suitable for producing inorganic and hybrid materials.
For instance, researchers have successfully synthesized zirconia nanowires using zirconium
tetra-n-propoxide in conjunction with an ionic liquid, achieving well-dispersed nanostructures
with a length of 20 um and a diameter of 50 nm [67].

2.2.3. Spray Pyrolysis

Pyrolysis by spraying involves two processes: one physical, spraying, and another
chemical, pyrolysis. By spraying a precursor solution at high temperatures on a substrate
based on chemical reactions, a thin film is formed whose thickness and uniformity can be
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controlled. The method is suitable for large applications [39,68]. Hwangbo et al. combined
a citrate precursor technique with salt-assisted ultrasonic spray pyrolysis to develop t-ZrO,
NPs with an average diameter of 10 nm [69]. In their study, Mangesh Waghmare et al.
reported the use of a zirconyl chloride octahydrate precursor at different concentrations
to deposit thin films of c-ZrO, on a glass substrate at 450 °C. They observed that the
particle size was lower than 20 nm, and also observed an increase in the optical band
gap and in the crystallinity values of the deposited zirconia films with the increase in
precursor concentration [70]. Chen et al. studied the influence of precursor solubility
on the morphology of spherical ZrO; produced via ultrasonic spray pyrolysis [71]. They
concluded that a gas-to-particle conversion mechanism results in smaller particle sizes
compared to the one-particle-per-drop mechanism. Another study by Muelle et al. focused
on synthesizing ZrO, NPs (80-95 wt% tetragonal phase) using flame spray pyrolysis at
high production rates (up to 600 g/h) [72]. They utilized zirconium n-propoxide diluted in
ethanol, leading to average particle diameters of 6-35 nm, influenced by dispersion gas
flow rates and precursor concentrations.

While spray pyrolysis is an effective method for synthesizing ZrO, NPs, it also has
its limitations. The equipment can be complex and costly, requiring the precise control of
parameters like temperature, pressure, and precursor flow rates. It can be challenging to
achieve uniform particle size and morphology, as variations in these parameters may lead to
inconsistent results. Additionally, scaling up the process for industrial applications can pose
difficulties in maintaining quality and efficiency. The use of solvents in precursor solutions
complicates the process and raises potential environmental concerns, necessitating solvent
recovery systems.

2.2.4. Chemical Vapor Deposition

The chemical vapor deposition (CVD) method is considered a physico-chemical pro-
cess through which gaseous vapors are deposited in the form of a thin film on a surface,
based on chemical decomposition and deposition reactions. This method is rarely used
in industrial applications [73-75]. The CVD method has been widely reported in the lit-
erature for the preparation of nano-ZrO,. By using Zr(OBut)s as a precursor, Hemmer
et al. obtained microporous nano-ZrO, membranes on the surface of Al,O3 substrates by
one-step liquid-injection CVD [76]. Based on the process parameters used, the morphology
and roughness varied, obtaining a mixture of monoclinic and tetragonal phases at 500 and
600 °C. Another study reported the synthesis of ZrO; nanowires from ZrCly; powder at
1200 °C under 760 Torr on a graphite substrate with a pre-deposited thin layer of gold as a
catalyst [74]. The study indicated that the nanowires formed at higher temperatures were
longer, larger, and exhibited greater size variation (120-160 nm at 1100 °C—Figure 5a and
200-800 nm at 1150 °C—Figure 5b).

Kim et al. [77] synthesized ZrO,; thin films via metal-organic CVD with ultrasonic
nebulization, using various zirconium compounds as precursors at temperatures between
300 and 550 °C. They observed that higher substrate temperatures resulted in larger grain
sizes, with an optical energy band gap of 5.32 eV. Films deposited below 450 °C were
primarily monoclinic, while those above 450 °C exhibited a tetragonal structure.

The CVD method offers several advantages for various applications, but it also has
notable disadvantages [78,79]. The need to transfer material from deposited substrates
for additional assessment is one problem that might make procedures more difficult. The
higher production costs are another major disadvantage. Certain precursors employed
in CVD can be highly costly, while others are poisonous, flammable, or explosive. Ad-
ditionally, several CVD process changes may result in increased fabrication costs. The
kinds of substrate that can be employed are additionally restricted by the high deposition
temperatures that many CVD techniques need. Lastly, the procedure produces extremely
hazardous gaseous byproducts, which raises additional safety and environmental issues.
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Figure 5. SEM images of zirconia nanostructures grown with Au catalyst at (a) 1100 °C, (b) 1150 °C,
(c) 1200 °C, and (d) grown at 1200 °C with no Au catalyst. Reprinted with permission from [74].

2.2.5. Microwave Method

The microwave irradiation method uses the physical effect of the energy on molecules,
providing fast and efficient heating for the rapid obtention of nano-ZrO,. The advantage of
this method is the control over the synthesis process and, thus, the establishment of the
kinetic mechanisms and the product’s characteristics, but without the possibility of scaling
at the industrial level [39,80]. Because the microwave method requires less processing
time, low power consumption, and generates uniform products, it has been widely used
in ceramics production. ZrO, NPs were obtained from zirconium acetate hydroxide and
distilled water solution which was subjected for 6 min to a 2.45 GHz frequency at 800 W
power, resulting in NPs with sizes between 7 and 14 nm [81]. In a study by Hoffmann et al.,
a RAGA’s microwave system was used on a zirconium oxychloride octahydrate and NaOH
solution at 80 °C, 420 W, and 12 min. After calcination for 2 h in air atmosphere and 400 °C,
both m-ZrO; and t-ZrO, were obtained with particle sizes lower than 10 nm, as presented
in Figure 6 [82].

Figure 6. SEM micrographs of ZrO, NPs [82] (open access).
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In another study performed by Manjunatha et al., zirconyl nitrate monohydrate,
deionized water, and amino acid were used to synthesize ZrO, NPs. The gel obtained was
irradiated for 60 sec at 800 W power, leading to NPs with a cubic structure and spherical
morphology, and particle sizes between 60 and 65 nm [83].

2.2.6. Precipitation Method

Precipitation synthesis is the easiest method to obtain nanoparticles, by forming a
Zr(OH), in an alkaline medium (pH 10), followed by its calcination until it crystallizes in the
form of Zr oxide [84]. Depending on the precipitation conditions, pH, and crystallization
temperature, three ZrO, phases can form: cubic (c-ZrO,), monoclinic (m-ZrO;), and
tetragonal (t-ZrO;). For example, the formation of t-ZrO, takes place at 390400 °C, and
by increasing the temperature to 700 °C, m-ZrO is formed. The porosity of the obtained
material is very important in practical applications. In processes such as photocatalysis,
the phase type and purity influence the band gap energy, which provides high efficiency
in the process [85]. The co-precipitation method, as a method derived from precipitation,
also represents a simple means of the simultaneous precipitation of zirconium ions with
hydroxide ions. It also allows for the control of pH, temperature, and reaction time, which
provides adequate control over the particle size, morphology, and crystal structure of
nano-ZrO, [39].

2.2.7. Sol-Gel Method

The sol-gel method is a common synthesis method for nano-ZrO,, offering the ad-
vantage of large-scale application with adequate control over particle size, morphology,
homogeneity, crystalline structure, and composition. This method is based on the hy-
drolysis and condensation reactions of the precursor molecules to form a gel that led to
nano-ZrO, through thermal processing, as observed in Figure 7.

—
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Step: 1 (Hydrolysis) ~ Step: 2 (Condensation) Step: 3 and 4 (Aging & Drying) Step: 5 (Calcination)

Figure 7. An overview of the steps of the sol-gel method. Reprinted with permission from [39].

Many studies have reported the use of the sol-gel method for the synthesis of nano-
ZrO, [86-88]. A study by Ordoériez et al. reported the effects of anionic, cationic, and
non-ionic surfactants on the stability and dispersion of nano-ZrO,. They found that surfac-
tants improved stability and reduced agglomeration. Their process involved mixing 5.4 mL
of zirconium isopropoxide (IV) with 78.8 mL of 2-propanol, adding acetic acid, and then
deionized water dropwise. The TEM analyses showed that, after stirring and drying, the gel
was calcined at 800 °C, resulting in particle sizes of 59.9 nm =+ 13.5 nm (Figure 8) [89].
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Figure 8. (a,b) FE-SEM and (c,d) TEM images of the sol-gel synthesized ZrO;. Inset: histogram of
particle size distribution. Reprinted with permission from [89].

The effect of pH on optical, morphological, photocatalytic, spectral, and structural
properties was investigated by Dharr et al. [90]. Their findings showed that, with an increase
in pH, the bandgap values increased and the crystallite size decreased. Waghmare et al.
studied how annealing temperature affects the structural and optical properties of nano-
ZrO,. They synthesized nanocrystalline ZrO, by mixing zirconyl chloride octahydrate,
ethylenediaminetetraacetic acid (EDTA), and ammonium hydroxide, then drying the gel.
The resulting material was annealed at 650 °C, 750 °C, and 850 °C for 2 h to produce
crystalline ZrO, nanopowders. Their results indicated that crystallite size varied with
annealing temperature, and that with increased temperature the UV-Vis absorption band
edge decreased [91].

Self-assembly chiral low-molecular-weight gelators (LMWGs) were used as templates
by Huo et al. [92] to prepare left- and right-handed helical ZrO, nanotubes and double-
coiled nanoribbons with outer dimensions of 300-700 and 800 nm.

The sol-gel method offers several advantages, making it a popular choice for synthe-
sizing materials [44,93]. It is cost-effective and produces homogeneous materials with high
purity. Additionally, it operates at low processing temperatures, which is beneficial for
creating composites and complex nanostructures. The method also allows for the uniform
introduction of small amounts of dopants into the sol, ensuring even distribution in the
final product. However, there are some disadvantages to consider [94,95]. The reaction
time can be longer compared to other methods, and the use of organic chemicals poses
health risks. Furthermore, samples often require post-treatment for purification, which can
add to the complexity of the process.

2.2.8. Electrochemical Deposition

Electrochemical deposition is a method used for the fabrication of nanostructured
films that present some significant advantages like high deposition rates and good control
over the thickness of the deposited film with high purity and uniformity [96]. The literature
reports many studies that used electrochemical deposition to obtain a ZrO, coating over
different substrates like AISI 316L stainless steel [97,98], commercial titanium [99], boron-
doped diamond electrodes [100], and NiTi alloys [96,101]. The mechanism for the formation
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of ZrO, from aqueous electrolytes of zirconyl salts usually implies the electrosynthesis of
zirconium hydroxide particles on the surface of the substrate. At first, the dissolution of
salts in water leads to the formation of zirconyl cations (ZrO?*) that are solvated, leading to
the formation of the tetramer (Zry(OH)g(H,0)16)%*, a solution that is highly acidic due to the
tendency of these solvated species to release protons [102]. The pH level increases near the
cathode surface during the cathode reactions that take place during the electrodeposition
process, causing colloidal zirconium hydroxide particles to precipitate on the substrate
surface. In the next step, this hydroxide undergoes dehydration, resulting in the formation
of ZrO, [96].

2.2.9. Atomic Layer Deposition (ALD)

In contrast to PVD and CVD processes, atomic layer deposition (ALD) is an alter-
native technique that allows the deposition of highly uniform and conformal films on
substrates of any shape at low temperatures, offering precise control over film thickness
at the atomic level [103]. The nature of the precursor used plays a critical role in the
growth per cycle (GPC), crystallinity, and temperature range for the deposition of ZrO,
films. Many studies have reported the use of the ALD process in the development of
ZrO, by using different precursors like Zr(OC(CHs)3)4 [104], ZrCly [105], and Zrl4 [106].
There are advantages and disadvantages for each precursor used in the process. ZrCly
presents low volatility and requires a high evaporation temperature in the ALD pro-
cess [107]. Also, by using ZrCly and H;O in the ALD process, HCl is generated, leading
to corrosion risks and the degradation of the ZrO; film [108]. Frequently utilized precur-
sors include alkylamido- and cyclopentadienyl-based compounds, such as Zr(NMe,)y,
Zr(NEtMe)y4, and CpyZrMe; (Me—methyl, Et—ethyl, and Cp—cyclopentadienyl) [109].
However, alkylamido ligands tend to exhibit low thermal stability, and the GPC for Cp
precursors is lower than that of alkylamides. Another precursor investigated that presented
high reactivity to surface ligands (e.g., -OH), high volatility, and good thermal stability is 3
tetrakis(dimethylamido)zirconium(IV) (Zr(NMej)s or TDMA-Zr). Liu et al. investigated
the use of this precursor and H,O for the formation of ZrO, films on nitrogen-doped carbon
nanotubes (N-CNTs) [110] and graphene nanosheets (GNS) [111]. They concluded that
thin films can be obtained at temperatures lower than 100 °C, with crystallinity and GPC
strongly depending on the deposition temperature.

2.2.10. Green Methods

Green methods involve physical, chemical, and biological methods that have the ad-
vantage of eliminating the consumption of reagents that negatively affect the environment.
A comprehensive overview of green methods for nano-ZrO, synthesis was suggested by
Van Tran et al. [35], as presented in Figure 9.

Green synthesis can be achieved with the help of plants or microorganisms (bacteria,
fungi, or algae). Plants are a locally available resource and are advantageous for large-scale
applications. Compared to other green materials such as bacteria, fungi, and algae, plant
use reduces the microbial risk by avoiding the secretion of metabolites or toxins during
cultivation and use [35]. The reaction time is faster and the kinetic speed is higher in the
production of nano-ZrO,, with biomolecules in the plant performing the bioreduction
of Zr ions in a few minutes. In contrast, microbial variants typically require several
days under ambient incubation conditions [112]. Extracts containing biomolecules from
plants are easy to obtain and control. The plant parts used can include leaves, bark,
roots, or flowers, and the solvents are generally water or ethanol. Bacteria, the fastest-
growing microorganisms, serve as efficient biofactories for the synthesis of nano-ZrO,
under mild conditions of temperature, pressure, and pH. They can produce nano-ZrO,
through bioreduction, biocapping, and biostabilization methods [35,113]. Also, there are
various species of fungi that can be used in green synthesis, but specialized data have shown
that algae, as predominantly aquatic organisms that use chlorophyll for photosynthesis,
often yield superior results compared to terrestrial plants. Brown algae or marine algae
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contain multifunctional polysaccharide-type biomolecules that can act as bioreducers for
Zr ions forming nano-ZrO,, with an average size of about 5 nm [114,115].

i . .' .- bkl

Figure 9. General representation of ZrO, green synthesis method.

Although recent innovative synthesis routes have enabled large-scale production,
green methods are not yet feasible for industrial applications due to harsh environmental
conditions for carrier survival, high energy consumption, and complex processes [39]. In
the case of removing environmental pollutants, such as antibiotics and textile dyes, the
issue of reusing ZrO, NPs must be addressed. For nano-ZrO,-based nanocomposites,
optimization of the biomass ratio is necessary to avoid interactions between the green
extract and dopants. Additionally, the ecotoxicity of green-synthesized ZrO, NPs requires
ongoing assessment. These limitations warrant further investigation [35]. Despite these
limitations, the green synthesis of nano-ZrO, using microbial and botanical sources has
attracted significant interest, as it offers several advantages, including eco-friendly and
cost-effective production compared to traditional chemical synthesis methods [35].

3. Nano-ZrO, in Non-Conventional Energy Applications

Zirconium-based nanomaterials have been extensively researched and tested across
various technological fields, demonstrating their effectiveness as fuel cells, sensors, cat-
alysts, catalyst support, semiconductor devices, as well as in electro-optical, dielectric,
piezoelectric, and structural applications [116-119]. Dopant-stabilized cubic zirconia can
be synthesized through multiple methods, and its nanoparticles can be incorporated into
electrolyte materials in fuel cells [120-125]. Zirconia is commonly utilized in ceramics
due to properties such as a large band gap, low absorption, high melting point, and high
dielectric constant. Nano-ZrO,, stabilized at high temperatures, finds applications in dental
implants, catalysis, and coatings as thermal barriers, and in display and photonic devices
owing to its short-wavelength luminescence properties. Additionally, ZrO;’s non-toxic
nature makes it an ecologically advantageous material, positioning it as a potentially highly
functional material for future applications.
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3.1. ZrO, as Advanced Material Support for Energy Conversion Systems

The use of electricity today is achieved through conversion from primary energy
sources (fossil, nuclear, and hydro), but also from other non-conventional techniques, in
which the solar cell, fuel cells, or batteries prove their applicability. The most important
source of energy is sunlight that can be converted into electricity using solar cells. Today, lo-
cal energy distribution networks are increasingly supplied by solar power plants. Batteries
are used for both energy conversion and storage, with storage systems playing a key role
in load balancing applications in power systems. Fuel cells generate electricity for a variety
of applications, and, recently, energy generation has been explored through gas plasma or
liquid metal effects that can move in a magnetic field. Additionally, thermoelectric and
thermoionic conversion processes are being considered as potential applications in space
vehicles [126]. The materials that form the basis for the development of such solutions are
sustainable materials of the future, with ZrO;-based matrices being successfully synthe-
sized and tested. In renewable energy resource systems, solar cell technology offers the
advantage of high-power conversion efficiency at low production cost.

Table 1 shows some examples from the last 10 years of methods of preparation and
characteristics of ZrO, NP used in energy conversion applications.

Table 1. Significant examples over the past 10 years of publications regarding the preparation method

and characterization of ZrO, with potential applications in energy conversion.

No. Method Characteristics Year Ref.
Zr0,-PCNFs present high initial discharge specific capacity
1 Zirconium dioxide doped porous carbon nanofibers of 1003.2 mAh g~ ! and maintains a capacity of 720.2 mAh 2024 [127]
’ (ZrO,-PCNFs) made by electro-spinning method g~ ! after 400 cycles, with a decay rate of only 0.07% per cycle
and conspicuous Coulombic efficiency of above 97.5%
ZrO; by precipitation method, calcination at 210x-1: agglomerated p:;:ieshgr%;m nm) as nanobars and 2023
2. different temperatures (50, 120, 150 °C), 7:0,-2: 1 1 P ion. 2 10 2020’ [116,120]
710,-1, ZrO,-2, ZrO,-3 10;-2: less agg omeration, 2-10 nm.
’ ’ ZrO,-3 with 2-5 nm as nanosphere
Zr0,-SiC hybrid nanofluid by mixing of ZrO, and . - o
3. SiC in distilled water as fluid and ultrasonication Maximum thermal efflc1§ncy was 75.21% for 0.041 kg/s flow
; . rate and 69.92% for 0.025 kg/s flow rate
for a uniform suspension
. : : 2023 [128,129]
Zr0, dopped with lian't hapldes ox1des~ (Sn'1/ Eu/ Trp) Lower bandgap energies i.e., 4, 3.88, and 3.57 eV for dopping
4. by chemical co-precipitation and fabrication of thin method, crvstallinity improvement from 67.92 to 45.23 nm
films on ITO substrates by dip and spin coating sy ty imp ’ ’
HfO, /ZrO; nanolaminate thin films were .
5. deposited by thermal atomic layer deposition (ALD) Total thicknesses .Of all' the HfO, and Z10; layers vxiere 22nm 2022 [130]
o and 6.6 nm, adiabatic temperature change (AT) = 12.25K
at a substrate temperature of 280 °C
6 ZrO2/(10-30 wt%)/Fe;O3 composites were Green compacts composites with cylindrical form, diameter
X produced by the powder metallurgy S o
of 13.7 mm, sintering at 1700 °C
technology
Sulfur doping concentrations decrease the band gap from 3.1 2021 [131-133]
7. Sulfur substitution on ZrO, eV (for the pure case) to 0.6 eV (for 14% of sulfur
concentration)
8 Zr1-XMnXO NPs and Zr1-X FeXO NPs by Agglomerated granular and spherical shape, ZrO, /Mn (1:1)
: coprecipitation method with nanowire structure
. The energy conversion efficiency (ECE) increased initially
9. Ti0,/Zr0, double e.l ectron transport layered with ZrO; layer thickness increase, reached a maximum ECE 2020 [134]
perovskite solar cells of 14.24% at 204 nm ZrO,
ZrO,-Y>03 nanopowders were synthesized by a a0 . .
10. chemical technology of co-precipitation Zr0,-3% mol Y,Oj (particle size 7.5 nm) nanopowder 2019 [135]
. . . . Co ferrite/ZrO, ceramic nanomixture particle size ranging
11. Cg fi;reltel{ozrcl)é;:fs)?éceg?sﬁ?elggf ?{r;;}:;l;;d from 20 to 60 nm, specific surface area and pore volume 2018 [136]
Y the propy 8 decreased by 30.31 m?/g and 0.0615 cm®/g
Zr0,-Y>03 (3 mol%) with an average particle size ~ 7.5 nm,
12. ZrO,-Y,03 (3 mol%) via coprecipitation method compact material density is pC = 3.1 g/cm?®, electrical energy 2017 [137]
(AU =130 mV on a load of 1 MQ))
13. Cubic Zr NPs via microwave combustion method Mesoporous cubic ZrO; nanoparticles with sizes of 60-65 nm 2016 [83]
for the as prepared sample (MCZ-0)
14, ZrO, fibers were fabricated using the Zr0,-500 8.61 nm, ZrO,-600 10.52 nm, ZrO,-700 17.36 nm 2014 [138]

electrospinning method

Zr0,-800 19.36 nm ZrO,-900 19.36 nm
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Today, metal oxide layers such as Al,O3, TiO,, SiO;, MgO,, and ZrO, are used as
energy barriers to restrict the recombination of charges [139-141]. ZrO, is a stable host
material with good chemical stability and optical transparency in visible (VIS) and near
infrared (NIR) regions. It also can be a good host for doping and energy transfer from ZrO,
ions to rare earth ions such as Yb-3p, Er-3p, Tm-3p, Tb-3p, Eu-3p, and Ho-3p [132,142-144].
Also, sulfur doping nano-ZrO, improves its properties in photovoltaic applications, given
that nanotechnology has focused, in recent years, on the development of semiconductor
nanomaterials for solar cell applications [145-149]. Thus, ZrO, is an electron-carrying
layer in solar cells, being, at the same time, a matrix for modifying the spectrum and
photonic conversion. Doping ZrO, with 2p elements provides ferromagnet behavior at
room temperature [150].

ZrO, can be a raw material for obtaining lead-free ceramic capacitors, which are
critical energy storage components for advanced pulsed power systems, featuring ultra-
high-power density and ultra-fast discharge speeds. Through the solid-state reaction,
different ceramics can be obtained, with ferroelectric relaxor properties, including those
based on SrZrO;. This process enhances the fracture resistance by improving the electrical
insulation and widening the band gap [151].

Through the unique properties specific to the active centers, nano-ZrO, functions both
as a catalyst and support for the catalyst, having thermal stability and adjustable porosity,
being able to attract and adsorb organic molecules and mediate organic reactions at high
temperatures [116,152,153]. The ZrO, catalyst support has good stability against silica,
alumina, and carbonate minerals, and is used in biodiesel synthesis, either alone or in
combination with other active metals or metal oxides. Studies have reported increased
efficiency when combined with alkali metals and sulfate ions for canola and soybean
oils [154,155]. The catalytic activity depends on the acidity and/or basicity of the surface,
the pore structure, and the specific surface. It also offers the possibility of reuse and
recycling, which are important features in sustainable development from the perspective of
the circular economy and lean management [156].

Oxide ceramics are considered promising absorbent materials with high efficiency and
durability for the production of energy from solar radiation [131,157,158], with alumina
(Al,O3) and zirconium (ZrO;) being the most advantageous. As a rule, other dark materials
such as Fe;O3 and MnO, are added to form new high-performance black composites [159].
The composites thus gain remarkable thermal, optical, and mechanical properties. Black
ZrO, /Fe;O3 composites have been studied for their efficiency and lifetime, characterized
by concentrated solar radiation harvesting, zero emissions, and clean energy in the form of
heat or electricity. Comparatively, superior properties, at low prices, were obtained for the
AlyO3/CuO composite [160]. Silicon carbide (SiC) and aluminum nitride (AIN) composites,
used in solar thermal power plants, also show high durability [159,161-163], but with high
thermal emissivity and very expensive processing, when inert atmosphere is used to avoid
oxidation [164].

In the case of materials for the solar receiver, the heat transfer can be inhomogeneous,
leading to the formation of hot spots and potential damage [131,165]. Thus, the materials
must be designed in such a way as to ensure good thermal conductivity and diffusivity [160].
This is the case with Al;O3/CuO and ZrO,/Fe;O3 black composites, with maximum
thermal conductivity values of 15.47 W/m K and 3.59 W/m K, respectively, both of which
are poorly investigated.

Heat losses from the material surface are also very important, for which there should
be low emissivity values in the infrared (IR) light, based on the emissivity evaluating the
yield of the solar—thermal absorbent material [166-168]. Al,O3/CuO composites reach the
emissivity value of 0.56, compared to ZrO, /Fe,Os, which have a value of about 0.70 [131].

ZrO; can also be used in nano-fluid form as a heat-absorbing medium for solar flat
panel water heaters (SPWH). The addition of nano-ZrO; with an average particle size of
50 nm in the aqueous environment led to a 20.68% increase in the efficiency of the heating
system [169].
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Renewable energy dominates at present due to its sustainability and ability to generate
power on a large scale. Solar energy is notable for its popularity and rapid growth, al-
though its performance is influenced by various factors [128,170-172]. Recent research has
highlighted that nanotechnology brings added value to energy capture and storage systems.
The incorporation of nanoparticles into fluids has considerably improved their properties,
especially in solar thermal collectors, where an increase in the rate of heat transfer between
the collector and the fluid has been observed due to higher thermal conductivity. Notable
effects were observed when using a ZrO,-SiC-water hybrid nano-fluid [128].

3.2. ZrO; as Material Support for Non-Conventional Storage Energy Systems

Scientific development has led to the emergence of innovative applications in the field
of electrical energy devices, which have become essential in everyday life [173-175]. This
development has contributed to a significant increase in global electricity consumption,
which has amplified energy demand [176-178].

A crucial factor is the efficient storage of energy, given the risk of losses in the case of
using inappropriate devices. Supercapacitors offer a sustainable solution, outperforming
traditional energy storage devices such as batteries and capacitors. Among the advantages
of supercapacitors are their high energy storage capacity, low cost, longer lifetime, shorter
charging times, safety, and low environmental impact [173,179]. Supercapacitors are
classified into electric double-layer capacitors and pseudocapacitors, the latter having a
higher specific capacity and energy densities. The electrode material is very important for
the performance of the pseudocapacitor; typically, it is based on nano-oxides of metals
such as MnO, RuO,, TiO,, SnO,, ZrO,, Fe;03, V05 etc. [180,181]. Nanostructures lead to
remarkable physical and chemical properties as nano-ZrO; is an excellent optical, thermal,
mechanical, and electrical material [182].

Some examples of methods of preparation and characteristics of ZrO, NPs used for
energy storage applications over the last 10 years are presented in Table 2.

The literature indicates that the hydrothermal fabrication of nano-ZrO, and/or nano-
Ag doped ZrO,, which presents a porous surface and high conductivity, leads to better
electrochemistry in supercapacitor applications [191].

Fast energy storage capacitors are a current requirement in the field of pulsed power
and power electronics technologies, which is the reason why the design of advanced
materials and the application of nanotechnologies is in continuous development. In this
context, lead-free ceramics have been developed with regard to dielectrics that have a fast
charge/discharge rate and long lifetime. An example is (1—x)(0.65rTiO3-0.4Nag 5Big 5 TiO3)-
xZrQO; (STNBT-xZr), in which the addition of ZrO, synthesized hydrothermally led to a
decrease in particle size and an improvement in fracture resistance [124].

Pure ZrO; electrodes have high electrical resistance, which restricts their effectiveness
as electrode materials in supercapacitors. ZrS, materials have been explored as potential
electrode materials in Li-ion batteries [192]. Figure 10 shows the stratified arrangement of
ZxS; and the electrochemical process mechanism in a lithium-ion battery.

Manzoor et al. [193] synthesized a ZrO, /CdS nanohybrid, which demonstrated an
excellent electrochemical response for pseudo-supercapacitor devices. For instance, a high
specific capacitance (Cs) of 1391 F/g, specific energy of 48.27 Wh/kg, specific power of
0.0014 Kw /kg at a current density of 2.5 A/g, and excellent stability at 2000 cycles were
achieved for ZrO,/CdS synthesized material using the galvanostatic charge discharge
(GCD) (Figure 11). The enhanced electrochemical performance of the zirconia-based
supercapacitor electrode materials was attributed to their high conductivity, rapid electron
transfer, and large specific surface area.
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Table 2. Significant examples of publications regarding the preparation method and characterization
of ZrO, with potential applications in energy storage over the past 10 years.

No. Method Characteristics Year Ref.
Relaxor ferroelectric ceramic based on
1 (0.6-x)Bag 55Sr0.45 TiO3-0.4Big 5 Nag 5 TiO3-xSrZrO3 Excellent energy density (Wrec ~ 10.0] cm3) and 2024 [151]
: ((0.6-x)BST-0.4BNT-xSZ) is prepared using the tape high energy storage efficiency (n ~ 91%)
casting method
NPs as nanospheres, nano squares, and some
P ZrO; nanopowder by microwave-assisted irregularly shaped nanostructures with an average [116]
. hydrothermal synthesis particle size of 6.7 &= 1.9 nm (as-synthesized) and 45.7 2023
=+ 9.9 nm (calcined)
s PbW‘LaO“ZZr% (PLZ) a“t?‘ferlroelecg“‘ films with by 7 g1 thickness: 355 nm, with ZrO, addition: 385 (153
: 1152 as INSEring ‘ayer by nm, with thickness of sandwiched ZrO; layer: 30 nm
sol-gel method
Ag incorporated ZrO, nanomaterials by hydrothermal ~ ZrO, NPs average size of 20-25 nm and the Ag NPs of
4. 2022 [173]
method 15-20 nm
UiO-66 (Zr-MOF) obtained by thermal conversion. . A s
5. 710, /C composites obtained at 600, 800, and 1000 °C C;jé‘éﬁ’g‘;‘iﬁgﬁgf*‘:ﬂf% nga“’:g;ei powous 2021 [184]
denoted as Z-600, Z-800, and Z1000, respectively ’ g
6 ZrO,-polymer nanocomposite porous membranes Surface area for Ni-ZrO,—rGO is 185.461 m? g’l, 2020 [185]
: prepared by the one-step phase inversion method while for Co-ZrO,-rGO it is 99.506 m? g~ )
g ] BaTiO3@ZrO; nanofibers for energy storage device.
7. The core-shell structured BT@ZrO nanofibers were -, oyt Jayer is about 30 nm and the inner rod is 2019 [186]
synthesized through coaxial electrospinning method e
about 400 nm in thickness
STNBT and ZrO, powders synthesized by solid-state
8 reaction method and microwave hydrothermal Average grain size 1.6 mm related to the addition of 2018 [124]
) method for 0.6SrTiO3-0.4Nag 5Bip 5 TiO3-xZrO, ZrO, powders
ceramics (STNBT-xZr)
~7.1 nm Hfy5Zrg50; thin films deposited at 215 °C . 3.
9. via a thermal atomic layer deposition (ALD) process Energy storage c}ef\sﬁy of ~550] cm” with an 2017 [187]
- efficiency of ~57%
on a TiN bottom electrode
10 ZrO; and reduced graphene oxide (r-GO) composite Zr0O,-rGO nanocomposite exhibited a high surface 2016 [188]
' was synthesized by chemical methods area of 390 m? g~!
11 Graphene/ZrO, composite aerogels prepared by The average particle size of the ZrO; is less than 10 2015 [189]
’ sol-gel method nm and the specific surface area is 380-490 m? g !
12. ZrO; nanorods through a hydrothermal process Average particle size of ZrO; ~ 20 nm 2014 [190]
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In another paper, ZnFe,O4-ZrO, nanocomposite was prepared by the hydrothermal
synthesis method and demonstrated excellent charge storage and electrocatalytic capabili-
ties, suggesting its use as a supercapacitor material [194]. Thus, a high current density of
104.74 mA /cm? and an electrochemical surface area (ECSA) of 46.36 m?/ g, with an onset
potential of —0.51 V, were registered for the ZnFe;O4-ZrO, catalyst when Pt was electro-
chemically deposited on its surface and used for the methanol oxidation reaction (MOR).
After 150 cycles, the MOR current increased to 107.2 mA /cm? and retained 102.34% of its
initial value. The electrocatalytic activity of prepared electrode for MOR was evaluated by
cyclic voltammograms (CV), CA, and linear sweep voltammetry (LSV) in 0.5 M KOH with
1 M methanol (Figure 12).

The increased resistivity of ZrO, provides oxidation stability, thus being compatible
with various electrical and electronic applications with excellent mechanical and chemical
properties. Since it presents a wide semiconductor band that extends around 5 eV, it is
often preferable to dope it with materials with high optical and electrical properties, such as
lanthanides [129,195,196]. The choice of ZrO, as an electrode material is also given by the
complexity of other materials in the process of obtaining, designing, and testing. Excellent
results were obtained for nano ZrO, /carbon black as an electrode material [197]. Energy
storage performance was achieved even after 5000 charge/discharge cycles. Also, the
TiO, /ZrO, nanofibers, obtained by electrospinning and the hydrothermal process, had a
high specific capacity and good electrochemical response [198]. The production and storage
of energy represent a sustainable approach in the context of the circular economy, but a
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Figure 12. (a) CV plots of ZnFe;O,-ZrO, /Pt and Pt in 0.5 M KOH with 1 M methanol electrolytes,
(b) CV plots in 0.5 M KOH, (c) LSV curves, (d) CV plots in different methanol concentration, (e) 150th
cycle of new electrolyte at a scan rate of 50 mV /s, (f) CA curves of ZnFe,O4-ZrO, /Pt and Pt electrodes

in 0.5 M KOH, with 1 M methanol at 0.5 V (0-2000 s). Reprinted with permission from [194].

In recent years, the trend has been to develop photovoltaic devices to replace fossil
fuels, thus meeting energy requirements [129]. The use of ZrO; as an interface material
between the transport layer and the absorber is an emerging approach used to passivate
defects at the interface. To increase the electrochemical performance, nanoscale ZrO; is
used with other composites or alloys, and lanthanide oxides such as Sm/Eu/Tm. The
bandgap energies are thus reduced from 4.04 to 3.57 eV, and the crystallite sizes decrease
from 67.92 to 45.23 nm, leading to the improvement of the optoelectronic properties.
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Nanocrystalline ZrO;, ZnO, and SiO;-coated ZrO, core-shell structures were synthe-
sized using both co-precipitation and seeded polymerization techniques, showing promise
as optical-electronic devices [199].

Abhisek et al. [200] demonstrated through FESEM analysis a morphological transition
from nanoclusters of small ZrO, particles (Figure 13a,b) and stacked NiO flakes (Figure 13c,d)
to self-assembled ZNC nanotorous structures (Figure 13e—g). It can be observed that each NiO
flake consists of tiny particles that have self-organized into nanoclusters, creating a central
void typical of a nanotorous-like structure. The particles within the nanoporous flakes show
a high degree of order and uniform decoration, with no evidence of agglomeration. This
organization resulted in the formation of vacancies, which could enhance the electrochemical
performance of the composite. The average particle size was found to be 49.54 nm, with a
mean pore diameter of 20.15 nm.

Monoclinic ZrO; shows abundant hydroxyl functional groups on the surface, as
shown by the IR vibration spectra, that determine an intense electrocatalytic activity of the
nanoparticles. This property has been used in the production of the electrocatalyst for the
electrochemical generation of hydrogen, with hydrogen release increasing as the content of
the monoclinic phase rises, compared to the tetragonal phase. Hydrothermal synthesis at
acidic pH was also selected for the production of monoclinic nano-ZrO, [201].

Antiferroelectric materials also belong to the category of dielectric capacitors, with
efficient energy storage, which have the advantage of obtaining high photogenerated
voltages that cannot be achieved by green polymers or only by metal oxides [202,203].
These high-power materials show almost zero remanent polarization and performance in
the phase transition process [204,205]. An example is the Pbg ggLag 10ZrO3 antiferroelectric
films, where a ZrO, insertion layer was deposited on LaNiO3/SiO, /Si substrates using the
sol-gel method [183]. Tests indicated that the insertion of the ZrO, layer leads to superior
fracture toughness and energy storage properties.

Al,O3/ZrO, and Al,O3/Zr0O,(Y,03) eutectic ceramics show excellent mechanical
properties at high temperatures [206]. ZrO, acts as a stabilizer, and the added amount can
provide control over the phase and the microstructure. ZrO; can also be obtained in the
form of fibers with superior microstructure and mechanical properties. The growth speed
of the fibers also leads to an increase in breaking hardness and fracture toughness [206,207].

To investigate the heterogeneous charge transfer behavior of the analyte and the
electrode—electrolyte interface, electrochemical impedance spectroscopy (EIS) is performed.
The corrosion behavior of bare zirconia nanotubes (ZNTs) and Chitosan PEDOT (ChP)-
ZNTs hybrid nanocomposite was studied in electrochemical studies [208]. EIS was con-
ducted in freshly prepared Hanks’ solution, and the results were presented as a Nyquist
plot, as shown in Figure 14. Data showed that ChP-ZNTs exhibit superior corrosion
inhibition.
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3.3. Other Applications
3.3.1. Biomedical Applications

The continuous development of antibiotics and antifungal pharmaceutical products as
aresult of problems related to antibiotic resistance has led to the need to identify alternatives
to reduce infections, with bionanotechnology emerging as a frequently used alternative.
Today, metallic nanomaterials with antibacterial and antifungal properties are used. For
example, Ag NPs [209] and nano-ZrO; synthesized by biosynthesis from botanical and
microbial sources represent environmentally friendly synthesis alternatives [35]. The
biocompatibility of nano-ZrO, is given by its size and large specific surface, and the
positive charge of the nanoparticles develops electrostatic interactions with the bacteria,
which are mostly made up of negatively charged proteins, thus leading to biosorption
and bioaccumulation on the cell walls [35]. The literature indicates excellent results in the
antibacterial activity of nano-ZrO, obtained from green synthesis on gram-negative and
gram-positive bacteria.

3.3.2. Environmental Protection

Zirconia composites are gaining significant attention in environmental applications
due to their exceptional properties, such as high mechanical strength, excellent chemical
stability, corrosion resistance, and biocompatibility. Table 3 shows some key environmen-
tal applications of nano-zirconia composites synthesized by green synthesis as excellent
adsorbents.

The presence of emerging pollutants, such as antibiotics, contributes today to the
massive pollution of water sources, especially through discharge from hospital and urban
treatment plants, and leads to antibiotic resistance in aquatic flora and fauna, subsequently
influencing water quality [35]. A risk is also presented by pollutants’ non-biodegradable
nature and the lack of effective removal methods. Adsorption remains the most viable
method up to now to be used for removing emerging pollutants [222-224]. Thus, the
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appropriate selection and specificity of nanomaterials chosen for water treatment become

very important.

Table 3. ZrO, NPs and its composites for environmental applications.

No. Green Synthesis Method Results and Application Ref.
1 Sonchus asper leaves extract was mixed with ZrOCl,-8H,0O (0.1 Z0O-500 NPs presented an adsorptive capacity for [210]
’ M) in the ratio of 1:1 (v/v) Amoxicillin (AMX) in an aqueous solution of 180.5 mg/g
Henna extract was mixed with 0.2 M of ZnSO,-7H,0O and 0.2 .
2. M of ZrCly and microwaved at 175 °C for 15 min, then the 210,/Zn0/AC actlz iigfiir;tf}ég;/ethﬂ orange (MO) [211]
Zr0, /ZnO material was embedded on activated carbon & °
ZrO; NPs used as adsorbents for Methylene blue (MB)
3 Extract from Sapindus mukorossi added to a 0.1 M ZrOCl,-8H,O removal at pH 10, 0.3 g adsorbent dosage, initial MB [212]
’ in the ratio of 1:1 (v/v) concentration 20 mg/L, 300 min 94% removal efficiency,
and adsorptive capacity of 23.26 mg/g
Wrightia tinctoria leaf extract was added drop wise into 10 mL ZrO; NPs used for catalytic degradation of reactive
4. of (0.1 M) aqueous ZrOCl,-8H,O solution under vigorous yellow 160 dye, the degradation efficiency of 94.58% after [213]
stirring at 75 °C for 3-4 h 120 min.
Bacteria Pseudomonas aeruginosa, grown for 96 h, centrifugation 710, NPs used as adsorbents for tetracycline, the
at 10,000 rpm for 15 min resulting in cell-free supernatant, . X . ,
5. . - . : adsorption capacity of 526.32 mg/g at pH 6,Reusability [214]
which was added to a zirconium oxychloride octahydrate o
- up to 5 cycles (81.55% after the 5th cycle)
solution (20 mM)
20 mL of the Daphne alpine leaf extract was mixed with 50 mL . . L
. of ammonium meta-vanadate solution (5 mM) and 20 mLwith \ 205720z nanomateria. The deradation eficenties of D]
: 50 mL of zircon (IV) chloride solution (5 mM), then the 2 gels 25 238 o % ge (76770 p N
: (86%) for 75 min
were mixed together
7 Precipitation between extract from roots of Euclea natalensis ZrO, white nanopowder is used for tetracycline [216]
’ added to a zyrconil chloride solution adsorption, with an adsorption capacity of 30.45 mg/g
. . . ZrO, NPs used for catalytic degradation of methyl orange
8. 20 IiI:lIt‘OO;é: i;f gfrzglia]l\e/[r;s: fggf;tzrigg{ a.sgleildccl)egoﬁi)i}())ylse (MO) at pH degradation efficiency of 69.23% after 240 min, [217]
' ! 2o and MB removal of 91.22% after 240 min
9 Lagerstroemia speciosa leaf extract added to zirconium nitrate 0.2 ZrO, NPs used for MO degradation of 94.58% after [218]
’ N solution, stirred continuously at 90 °C for 3 h irradiating under the sunlight for 290 min
Leucas aspera leaf extract with an aqueous Zirconyl nitrate Z10;: Sm®" nanomaterial Sm** /ZrO? =3-11 mol.%),
10. . . . - High sunlight-driven degradation of 83.8% for acid green [219]
mixture was subsequently added to Samarium nitrate solution 4 .
ye after 90 min.
ZrO,: Mg (0.1 mol%) NPs were synthesized by B o . .
11. low-temperature phyto combustion route using Aloe Vera gel 2r0>-Mg (31 mola/o) 'gavef;ih? h1ghegs?§5hodamme B [220]
extract egradation efficiency (93%)
Precipitation of zirconia NPs using Aloe Vera extract with a o .
12. solution of ZtOCl,-8H,0 (10 mM). The NPs were embedded in Nearly 99% F-ions were adsorbed byCNZr, [221]

chitosan beads (CNZr)

chemisorption capacity of 96.58 mg/g

There are reports of the removal of antibiotics [210,214,216], dyes [210,212,213,215,217-220],
and fluor [221] in the presence of nano-zirconia/zirconia compounds synthesized by green meth-
ods. For instance, the tetracycline elimination process using nano-ZrO, obtained by biosynthesis
was accomplished at an adsorption capacity from 30.45 mg/g to 526.32 mg/g, and at up to five
cycles of reuse [215,216]. It is known that the photosynthesis process slows down or even stops in
water where paints are present, as a result of blocking the penetration of sunlight into the depth of
the water, and implicitly affecting aquatic life.

The degradation of these emerging pollutants is difficult as they are very stable, so
adsorption and photocatalysis remain alternatives [35,225,226]. Nano-ZrO, from green
synthesis had 94% efficiency for the removal of methylene blue (MB), with a low adsorption
capacity of about 23.25 mg/g and the possibility of reuse for three consecutive cycles [212].

The dyes were tested for the possibility of degradation using Zr-based composites,
such as zirconium-manganese nanocomposite (Zr/Mn) and zirconium iron (Zr/Fe) as
catalysts for the degradation of alizarin red S (AS). The removal efficiency was 99% in the
presence of UV light and 95% in the presence of sunlight [133]. The degradation efficiency
using nano-ZrO; of 99% was also obtained for methyl orange, but also for rhodamine B
using mesoporous ceramics of the ZrO,—-CeO,-TiO; type in visible light, and oxidation for
alcohol using MnO, / TiO,-ZrO; [133]. The plant extract can significantly contribute to the
formation of nano-ZrO, with a reduced size and narrower bandgap energy (3.78 eV).
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ZrO,@Si0O; core—shell nanostructures were successfully synthesized by Padovini
et al. [227] using both the hydrothermal and Stober methods. These nanostructures demon-
strated photocatalytic activity toward rhodamine B (RhB) in pollutant solutions. This
enhanced performance is attributed to the Zr-O-Si interfacial layer, which narrows the
energy gap (2.31 eV) required for electron-hole pair generation.

In water, fluoride ions are an aggressive pollutant with an impact on bones; nano-ZrO,
from Aloe Vera extract showed an adsorption efficiency of about 99% [221,228]. The studies
in the literature indicate results that lead to the continuation of research regarding the use
of nano-ZrO, obtained from plant extracts for the removal of various pollutants from water.
For example, nano-ZrO; could be obtained at a particle size of about 21 nm using lemon
juice or tuber powder [229,230].

Another environmental application is nano-ZrO, obtained by the hydrothermal
method (simple or doped with Ag), and which is used as a catalyst in the oxidation
of diesel soot and, implicitly, for suspended particles (PM) [117].

An important application in the field of environmental protection is the study of
the corrosion of steels that are part of metal structures, cutting equipment, gas sensors,
refractory materials, etc. Good results of inhibiting the corrosion process on a mild steel
were obtained using polymer composites of PVDF/ZrO,. The role of ZrO, doping with
stabilizers is to obtain high strength and fracture toughness [231]. Nano-ZrO; is also used
in composites with aluminum to increase the coefficient of friction and resistance to wear,
traction, impact, microhardness, and fracture toughness [232].

In metallurgy, the manufacture of sensors for the detection of unwanted microelements
in molten steel is in continuous development. The ZrO, (MgO) electrolyte has been studied
in this respect, presenting an effect on the measurement of the low oxygen potential,
together with 6MgO-2Y,03-ZrO,, obtained by sintering without pressure [233].

The photocatalytic role of nanomaterials is well known for the degradation and
oxidation of emerging organic pollutants. A C3N,/ZrO nanostructure containing graphitic
carbon nitride (C3Ny), and zirconium oxide (ZrO;) obtained by direct thermal pyrolysis,
were tested in the process of the photocatalytic degradation of a mixture of dyes, Rh
B + crystal violet (CV), and the reaction of methanol oxidation [233]. An efficiency of
97% was obtained in the degradation of the dye mixture, and for methanol the oxidation
activity of the nanostructure was exceptionally high, at a current of 138.25 mA /cm? for 2 M
methanol [234].

4. Conclusions and Perspectives

This review presents the most important aspects related to the synthesis methods and
future applications in the field of energy conservation and storage. ZrO, nanoparticles
represent a material of the future in the context of preserving natural resources and identi-
fying sustainable solutions for energy conservation and storage. It is a non-toxic material
for environment with a wide band gap and short-wavelength luminescence properties.

The applications for which ZrO, is a basic material are essential today in the devel-
opment of society towards a clean environment. Nano-ZrO, presents high-temperature
stability and corrosion resistance, and these properties give it versatility for a multitude
of applications from refractory ones to medical products, pigments, electronics, coatings,
and ceramics. However, an important aspect is represented by the synthesis methods by
which nano-ZrO; can be obtained. Although compared to other oxide materials specific
to the same field, research on the synthesis and applications for nano-ZrO; is limited, a
trend can be observed regarding the interest in applications regarding energy conversion
compared to storage. Also, in terms of research on the synthesis of nano-ZrO,, the most
used methods are those specific to the bottom-up approach, the most applied being sol-gel,
followed by precipitation and hydrothermal synthesis. There is an interest, especially in
the last five years, for green synthesis, but this is in an early stage.

While zirconium-based materials offer excellent properties, their high cost and com-
plex processing requirements (e.g., high-temperature production, specialized alloys) can
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limit their widespread adoption. The development of zirconia-based materials in term of
high energy and power density to achieve the maximum goal is still a key challenge.

Advances in processing technologies and the recycling of Zr alloys could make them
more economically viable. Continued research into new alloys, processing techniques, and
applications in emerging fields like hydrogen storage and quantum computing will expand
the range of potential uses for zirconium in the future. Green synthesized ZrO, NPs and
their corresponding nanocomposites are anticipated to yield promising outcomes across
a wide range of applications. Further research is needed to optimize the properties of
zirconia composites for specific environmental applications, such as improving adsorption
capacity and selectivity, and the integration of zirconia with other materials for enhanced
performance. In addition, the potential ecotoxicity of nano-zirconia remains a subject that
must be addressed further.
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