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Abstract: Coronavirus disease 2019 (COVID-19) can be tracked through wastewater, enabling the
prediction of cases by wastewater-based epidemiology (WBE). An issue that complicates WBE is that
humans are not static, moving in and out of sewer drainage areas throughout the day. During large-
scale events (i.e., sports, music, culture), large populations move during a small time frame in certain
areas, with some individuals carrying along the virus. To track such human movement anonymously,
cell phone location data (using StreetLight®) were used to monitor the flow of populations in and
out of the sewershed during football games at the University of Oklahoma for two consecutive
seasons (2020–2021). Hourly wastewater samples were taken during gamedays (Saturday to Sunday
mornings) and on one control Saturday (no game) for each season, along with controls in the form
of composite samples for days surrounding the events. Hourly population data during gamedays
allowed for the calculation of viral load per capita, which increased for most games, indicating the
existence of incoming infected individuals in the region. This case study aims to help decision makers
understand how hosting large-scale events during this and potential future disease outbreaks may
impact public health.

Keywords: wastewater-based epidemiology; COVID-19; large events; human mobility

1. Introduction

Coronavirus disease 2019 (COVID-19) is the disease caused by Severe Acute Res-
piratory Syndrome Corona-Virus 2 (SARS-CoV-2) [1]. What began as an outbreak of
SARS-CoV-2 in Wuhan, China, in December 2019 was classified as a pandemic by the World
Health Organization (WHO) in March 2020 and was described as the “most consequential
infectious disease since the 1918 influenza pandemic” [2]. A virus that predominantly
impacts the respiratory system, SARS-CoV-2 is spread mostly through the inhalation of
droplets from an infected person [3,4]. Symptoms of this disease are typically fever, cough,
chest discomfort, fatigue, headache, and diarrhea, among others [5]. However, a sizable
portion of those infected will have mild symptoms or may even be asymptomatic, making
the clinical confirmation of cases difficult [2]. It is possible for asymptomatic persons to
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spread COVID-19 to healthy individuals, making spread from asymptomatic persons a
problem [6]. Obtaining an accurate count of infections using traditional clinical testing in a
timely manner is also difficult due to the volume of cases around the world, shortages of
supplies, and a lack of understanding of the disease by medical and academic experts [7].
The virus’s high transmissibility, lack of symptoms in some cases, and difficulty in detection
makes large-scale public events—where attendees from different regions concentrate in
small areas—a potential hazard to public health [8,9].

1.1. Wastewater-Based Epidimiology for COVID-19

To account for the difficulty in tracking outbreaks using traditional testing methods, re-
searchers have turned to using wastewater-based epidemiology (WBE) to track COVID-19.
WBE is the process of using wastewater to track diseases and other human health indicators
through the sewage system. This method has been used as early as the polio eradication
program in the twentieth century [2] but was named in 2001 when it was used to study
pharmaceutical concentrations in wastewater [7]. WBE relies on the fact that as long as a
particle/substance excreted by humans is stable in wastewater, it can be tracked [7]. Re-
searchers realized early on during the pandemic that WBE could be used to track COVID-19
in an area [1,2,10,11], with approximately 43% of people who actively have COVID-19
shedding viral RNA particles in their feces [12]. The exact concentration of SARS-CoV-2
shed per infected person is subject to investigation but could vary geographically [13].
This difference in shedding in feces could also be impacted by variants, manifestations or
symptoms of the disease, or differences in the populations infected. Because SARS-CoV-2
(like all other viruses) does not replicate outside of the human body, WBE has proven to be
an effective way to track the spread of disease.

Collection of samples from a sanitary sewer system that represents shedding from the
population of interest is a vital part of WBE. However, several human and environmental
factors such as the time and frequency of restroom use, sewage residence time in the
wastewater system, variable shedding rates of infected persons, and variable proportions of
black and gray water present challenges to obtaining and interpreting representative sam-
ples [2]. Different collection methods can be used, such as grab samples or time-weighted
and flow-weighted composites. Grab samples can provide a snapshot of the time interval
in which they are taken [14]. Moreover, successive grab samples collected at certain time
intervals can capture the temporal variation in the pathogen in wastewater. Time-weighted
composite samples are a series of grab samples taken at a certain time intervals and com-
bined, resulting in one sample representing the entire sampling period. Time-weighted
composites are most representative of the contributing population if the flow rate and
ratio of feces to other water in the sewer is consistent throughout the day. Flow-weighted
composite samples are a series of samples taken after a certain amount of water has passed
through the pipe and combined. The frequency of sampling is therefore dictated by flow
rate, resulting in one sample normalized for flow across the entire period. Flow-weighted
samples are often considered the best choice for representing a given population over a
given period of time [14]. However, both time-weighted and flow-weighted composites
have drawbacks. It is time consuming and costly to run an autosampler for long periods
of time to achieve long-term composites, with mechanical and other failures preventing
the extraction of continuous samples [14]. Also, unlike grab samples taken throughout the
period, composite samples cannot show variability in the amount of a pathogen throughout
the period.

1.2. Background and Research Gaps on WBE for Large-Scale Events

WBE is scalable and can be used to monitor certain analytes during specific events. To
date, most event-based wastewater monitoring experiments have been focused on tobacco,
alcohol, and illicit drug use during sporting events and concerts [15–17]. In Italy, researchers
observed an increase in alcohol consumption during sporting events by collecting samples
on an hourly basis [18]. In Florida, researchers at the University of Florida tracked the
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concentration of illicit drugs in the wastewater leaving a football stadium during a game
by sampling wastewater on a 30 min basis beginning one hour before the game and ending
approximately 30 min after the end of the game [17].

While there are not yet data available on the temporal variation in SARS-CoV-2 in
wastewater at large sporting events, there is existing research about the use of WBE at
sporting events to track other public health phenomena. Montgomery et al. [19] monitored
for illicit drugs during basketball games. Sassano et al. [20] speculated that European
soccer matches were associated with the spread of SARS-CoV-2 in Italy and Spain. How-
ever, regarding sporting events, much of the existing research looked at the spread of
the virus among team members rather than among incoming spectators. For instance,
researchers studied whether SARS-CoV-2 is spread by players during professional rugby
matches [21], European professional soccer games [22], and even American high school
football games [23].

In this manuscript, the focus was shifted to the large traveling populations that move
within a region for 24–48 h to attend a large-scale event such as a football game, partic-
ipating in different indoor and outdoor activities related to the main event (including
indoor/outdoor gatherings before, during, and after the game). Among such large popula-
tions, the underlying assumption is that asymptomatic individuals will be carrying and
transmitting the virus during their stay within a certain region, something that WBE can
capture accurately.

Monitoring large-scale events, such as football games, is crucial for public health,
since these events may act as focal points for the spread of infectious diseases such as
COVID-19 or similar viruses. Such gatherings tend to bring together diverse populations
from various regions, creating an ideal environment for pathogens to spread. Close contact,
shared facilities and crowd density increase the potential for disease transmission. The
information that this research aims to provide can be used to guide policy and inform
decision makers in the face of our next public health crisis. Specifically, it can elucidate
how an incoming population may affect local viral loads, potentially leading to a local
outbreak and the exposure of many people to the virus, which may lead to strain on
healthcare systems.

1.3. Background and Research Gaps on WBE for Dynamic Population Movement

One of the most difficult aspects of WBE is correlating the number of positive cases
with the values detected in wastewater. The first step in this process is to obtain an accurate
count of the population in the sampling area. However, because humans are not static, it
can be difficult to accurately estimate such a population, particularly during large-scale
events. There has long been a need for devices that provide the high-resolution data that
cell phones now offer in the study of epidemiology.

Using smartphones and their Global Positioning System (GPS) capabilities allows
researchers to track the movement of people at fine temporal and spatial resolutions [24–26].
This practice is also beneficial because it does not require that participants self-report
movement and activities [25], but still provides a timely estimate of the population and
its geographical flux [24,27]. Specifically, as Chaix [25] points out, with high-resolution
movement-tracking data, researchers can place travel into context, such as determining
the reason for a person to be in a certain place at a certain time. Mobile device data
have been used to estimate park visitation in Orange County, California [28]. In Oslo,
Norway, researchers used WBE combined with mobile device population data to monitor
for illicit drug use [29] or have combined mobile phone data with census data to estimate
populations in large cities [30]. So far, such an investigation for COVID-19 for large-scale
events has not been conducted to estimate the impacts of dynamic population movement
on the viral load of a certain region due to the event itself and its related activities.
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1.4. Background on COVID-19 Response in Study Region

The COVID-19 response in the U.S. varied significantly by state, city, and even aca-
demic institution. The public policies, mandates, and recommendations in place had a
direct impact on the transmission of the virus at both temporal and spatial scales. Thus,
a brief summary is provided herein focusing on the state of Oklahoma and specifically
on the University of Oklahoma’s Norman campus to better describe the conditions under
which each football season was held. Norman is the third most populous city in the state,
is located only 20 miles away from Oklahoma City, and has a population of approximately
128,000 (2020 Census Data). As the hometown of the University of Oklahoma (OU), the
largest university in the state, with nearly 32,000 students, it is also a popular destination
owing to its longstanding college football tradition. The Gaylord Family Oklahoma Memo-
rial Stadium, home of the Sooners, has a capacity of a little below 84,000 spectators, and
during football gamedays, the population around campus and the city of Norman nearly
doubles due to people that attend the event in person, watch the game in restaurants, or
even tailgate around campus.

In 2020, the State of Oklahoma recommended the use of masks in “red or orange”
counties for individuals aged 11 yrs and older at work, in public spaces, and in restau-
rants [31]. A county was classified as orange by the Oklahoma State Department of Health
when it exceeded 14.29 new cases per 100,000 people per day, and Cleveland County, the
home of the City of Norman and the University of Oklahoma, was classified as orange
from at least 24 September 2020 to the end of 2020 (State of Oklahoma Department of
Health, n.d.) [32]. Following state guidance, along with mask mandates in place at both
the university and in the City of Norman, the University of Oklahoma allowed for 25%
occupancy at home football games during the 2020 season, resulting in 22,700 people in
attendance at each of five games in total that were held in the Gaylord Family Oklahoma
Memorial Stadium in Norman [33]. Masks were required at these events, though there
were limits to the enforcement of mask usage.

In 2021, the state legislature in Oklahoma passed Senate Bill 658, which banned schools
from mandating in-classroom mask usage [34]. Because of this and other circumstances,
the fall 2021 football season was treated much differently than the prior season, with a
return to full stadium capacity and on-campus tailgating. Notably, there were no masking
or vaccination requirements to attend games [35].

At the same time, new SARS-CoV-2 variants arose during 2021 that were generally
more infective, believed to be due to changes in the structure of the virus, particularly the
spike protein [36]. These variants often had a geographic signature [3], typically originating
in areas with high community circulation and low vaccination coverage [37]. The primary
variants of concern during this study were the alpha and delta variants. The alpha variant
was first identified in the UK, and some estimate that it was 50% more transmissible than
the original virus and was associated with an estimated 50% increase in mortality [36].
This variant was the most dominant variant in the state during the 2020 football season.
The major variant that was at its peak in the fall of 2021 across the globe was the delta
variant. The delta variant was also the major variant circulating in Oklahoma from June
through approximately December 2021 and was associated with another wave of COVID-19
outbreaks. The delta variant was replaced by the omicron variant as the dominant variant
of concern in the state of Oklahoma in January 2022 [38]. The delta variant demonstrated
a household transmission risk approximately 60% greater than that of the alpha variant,
which was already more transmissible than the original version of SARS-CoV-2.

Another factor to consider regarding the fall of 2021 compared to that of 2020 was
the existence of SARS-CoV-2 vaccines. By 15 October 2021, the percentage of adults in
Oklahoma who had received at least one dose of a vaccine was 71%, while 60% of adults in
the state received both doses [39]. While vaccination does reduce the risk of hospitalization
and severe disease from the delta variant, experts recommended that other measures such
as mask usage and social distancing should be continued to effectively reduce the spread
and prevent further mutations of the virus [40].
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1.5. Case Study Goals—Paper Organization

The overarching goal of this study was to determine if WBE can be used to measure
temporal changes in SARS-CoV-2 in wastewater in order provide some preliminary results
on the ways in which large-scale events may affect the local region when it comes to
infectious diseases such as COVID-19 due to the dynamic effects that incoming traveling
populations might bring to the region. WBE is ideal for such an investigation, since there
is a high likelihood that any infected individuals might be asymptomatic but still able to
transmit the virus to other attendees or locals. Secondary goals were set with respect to
the quantification of the viral change due to travel into the City of Norman for the football
game and whether data from tracking mobility platforms such as StreetLight® can be used
to measure changes in population for an entire city.

The methods employed (Section 2) and results achieved (Section 3) are described for
the surveillance of an important infectious disease during large-scale events, combined
with the dynamic traffic flow of the population into and out of the region of interest.
Sections 4 and 5 provide a discussion of the results and conclusions for this study, stressing
the effects of population monitoring and other factors that influence the recorded in this
study trends.

2. Methods

Based on the background discussed in the introduction, grab samples and time-
weighted composites were leveraged for both football seasons to capture the desired
temporal variations during the game and to establish comparisons with daily averages
from days before and after the games.

2.1. Sampling Process

For the 2020 football season, five weekends were selected for sampling based on the
football schedule, while seven weekends were selected for the 2021 football season. The
complete information regarding the two seasons, game list, opponents, and results can be
found in [33,41]. Table 1 shows specific information about each gameday and the control
day for each season. The control days were selected on an away gamedays when only
residents would be expected to be present in the sewershed. The 24 h time-weighted
composite samples for Friday (day before the game), Saturday (day of the game), and
Tuesday (when everyone who visited for the game has left) for each sampling event were
collected from the treatment facility and analyzed. All the samples were collected at the
City of Norman Water Reclamation Facility (NWRF) after initial grit screening, which
removed large solids, but before any water treatment. The NWRF is an activated sludge
treatment facility that serves a population of approximately 87,779 with an inflow rate of
43 MLD, including the OU campus and the stadium, which is at a distance of approximately
4 km north of the facility [42]. Hourly samples were collected for the gamedays and control
Saturdays, except for cases where the autosampler clogged due to its extended presence in
the sewage. Samples were collected using Teledyne ISCO (Lincoln, NE, USA) Avalanche
refrigerated autosamplers set to collect 700 mL samples every hour for 24 h beginning
Saturday morning. Two sets of fourteen 950 mL plastic ISCO sample bottles were cleaned
using a 10% percent bleach solution, rinsed with tap water, washed with 2% detergent
(Citranox), rinsed with DI water, and finally treated with sodium thiosulfate and rinsed
again with DI water [43]. It should be noted that the method employed here closely follows
the sampling and analysis procedures that are detailed in [44].
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Table 1. Home game information and control dates for the two sampled seasons.

2020 Season

Date Opponent Start Time Attendance

12 September Missouri State 6:00 PM 22,700
7 November Kansas 2:30 PM 22,700

14 November Control (no game) - -
21 November Oklahoma State 6:30 PM 22,700
5 December Baylor 7:00 PM 22,700

2021 Season

Date Opponent Start Time Attendance

4 September Tulane 11:00 AM 42,206
11 September Western Carolina 6:00 PM 83,538
18 September Nebraska 11:00 AM 84,659
25 September West Virginia 6:30 PM 84,353

16 October Texas Christian 6:30 PM 84,391
13 November Control (no game) - -
20 November Iowa State 11:00 AM 82,685

2.2. SARS-CoV-2 Analysis

Samples were maintained between 4 and 6 ◦C until they could be processed (typically
within 24 h of receipt), as described in [44] and described briefly here. The samples
were strained, divided into three technical replicates, mixed with polyethylene glycol
(PEG 8000), and incubated overnight at 6 ◦C. After incubation (10–16 h later), samples
were centrifuged at 14,600 RCF for 45 min at 4 ◦C, and the supernatant was decanted.
Pellets were resuspended in a guanidine thiocyanate lysis buffer. Total nucleic acids,
including viral RNA, were precipitated with an equal volume of 100% isopropanol, bound
to carboxylated magnetic beads, and eluted in DEPC water following several washes in 80%
ethanol. The concentration of SARS-CoV-2 RNA in the extracted nucleic acid was estimated
using quantitative reverse transcription polymerase chain reaction (RT-qPCR) [44]. The
geometric mean of the replicates was used in this analysis to normalize non-detections.
Non-detections were assigned a value of 312 copies/L, approximately half of the detection
level [45]. The microbiological analyses were performed at the University of Oklahoma’s
Department of Microbiology and Plant Biology. Because these samples represent an entire
sewershed, infections in individual persons could not be inferred or determined.

2.3. Cell Phone Data

Data on the number of mobile devices entering and leaving the Norman sewershed
were obtained from the City of Norman’s sewer boundary shapefile from StreetLight
Data, San Francisco, CA, USA (streetlightdata.com-accessed on 15 January 2022) (SL), a
data analytics company that deidentifies and organizes location information from mobile
technologies (e.g., phones, communication towers, and GPS-enabled devices) [46,47]. SL
was originally designed to provide information about traffic movement for mobility and
transportation planning, but mobility analytics platforms like SL are growing in popularity,
with numerous investigations examining traffic patterns, vehicle volume metrics, and
other applications that require the mapping of user behavior or an accurate headcount of
populations within a region of interest [48–51]. Such an ability to track human mobility
at an individual level has, as expected, raised significant concerns with respect to privacy
and sharing policies, with extensive literature on this matter [52,53]. It should be noted
though that most such platforms, including SL, have strong policies in place that deidentify
the data and focus on measurable quantities (like travel distance and location positioning),
protecting the cell phone users at an individual level [46,47]. Like every method, SL has
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some inherent limitations regarding the provided data related to (i) inaccuracies in estimates
due to data aggregation and anonymization that can obscure individual travel patterns
and reduce the precision necessary for certain analyses, (ii) the uneven representation of
populations that might not have access to smartphones or connected vehicles [26], and (iii)
GPS and cellular coverage for the region of interest. Some of these limitations are explicitly
examined in Section 4 of the manuscript to quantify the effect that they might have had on
the recorded results.

Using SL, here, community mobility pattern estimates were obtained along roadway
corridors and between specific locations. Origin-Destination (OD) analysis was performed
via the SL platform to aggregate trip count data using algorithmically transformed location
point data and was validated using embedded in vivo road network sensors and traffic
counters [47]. Origin-Destination identifiers (OD-IDs) were generated into and out of
the Norman sewershed every hour starting on Friday at 12:00 a.m. CST and ending
at 11:59 p.m. CST on Sunday for each sampling weekend. In addition to trip counts,
SL also reports trip attributes, including average trip duration and average trip length.
These data were tabulated using STATA 16.1. Hourly population estimates within the
Norman sewershed were calculated using 2019 census tract estimates from the American
Community Survey (ACS) data. Census tract geographies (n = 26) were clipped to the
Norman sewershed boundary, and aerial the apportionment of census tract populations
was performed to estimate the total population serviced within the sewershed. The total
estimated population was 87,779. The US Census Bureau, which manages the ACS, tries
to include college students in population estimates, aiming to count “people where they
live and sleep most of the time” [54]. This baseline total population is pinned to the
12:00–1:00 a.m. time slot. SL hourly traffic counts into and out of the sewershed were then
iteratively added and subtracted from the estimated baseline total population to generate
hourly estimates of the population within the sewershed area. This enabled a more accurate
quantification of the viral load per capita, as described in the next section, aiming to remove
the population number from the viral concentration that is recorded.

2.4. Viral Load Metrics and Statistical Analysis

Viral load per capita was the major metric used to determine the amount of SARS-CoV-
2 in the wastewater in this study and was calculated according to Equation (1) presented
below. Qavg is the average flow for the approximate hour that the sample represents; for
instance, if the sample was taken at 8:30 a.m., the flow was averaged from 8:00 a.m. to
8:59 a.m. and so forth. Flow data were provided by the NWRF at 15 min intervals. The viral
load per capita was calculated based on the sample and the generated triplicates as follows:

Viral Load =
Cn · Qavg

P
(1)

where Cn = 3
√

C1 · C2 · C3 is the concentration geometric mean of the three triplicates,
Qavg is the average flow for the hour, and P is the population present in the sewershed in
that hour.

Statistical analyses were performed in SPSS 28 and Microsoft Excel to test the hypothe-
ses of this project by testing the following variables: flow, population, concentration, and
viral load per capita. The analyses were performed for each game, across games, and across
seasons to test various hypotheses on the existence of differences at all these temporal
scales. Two approaches were used to compare these variables between games. The first
one examined the variability of each variable for each day compared to each other, and a
one-way Analysis of Variance (ANOVA) test [55] was used. For the concentration and viral
load per capita, there were fewer than 30 values for each day, and thus a Kruskal-Wallis
H-test (or a nonparametric one-way ANOVA) [56,57] was used. It is also worth examining
whether the mean value for each variable for the control (non-game) is statistically different
from the mean value of the same variable for all the weekends with a game. To address
the uneven sample size resulting from comparing variables on one day to variables on
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multiple days, a Welch’s t-test was used. A t-test was used to compare these variables
between two games.

Within-day variability was analyzed by breaking the day into subgroups consisting of
before the game, during the game, after the game, and a final group called late night. The
before-game group consisted of the 4 h directly before kickoff. The during-game subgroup,
consisted of the 4 h in which the game was played. All games lasted between 3 and 4 h for
both seasons [58]. The after-game group represented the 4 h window directly after the end
of the game; however, this category was only valid for some games because this defined
4 h window directly after evening games ran into the late-night category. The late-night
category represented the hours between 11:00 p.m. and 3:00 a.m. For the comparison of
these groups against each other, given their small sample sizes, a nonparametric test of
means was performed in SPSS, and the software was allowed to select the most appropriate
test given the data. This resulted in the use of a Mann-Whitney U test [59] to compare the
values. Due to the significantly small sample size (only 8 samples were available to be
compared to each other), the results of these comparisons were not further analyzed and
presented here to avoid overinterpretation. Across all games, it is of interest to know if
there are time groups that are different from the others. To determine this, for instance, the
flow, population, concentration, and viral load per capita of the before group of all games
were compared to the during-game group values for those variables for all games. This
analysis was performed within seasons as well as across seasons. The statistical tests for
this analysis utilized t-tests to compare means.

Finally, the concentration of the gameday samples was also compared to the concen-
tration of samples from the NWRF collected on other days of the week to assess whether
there was a change in the concentration associated with the football games. Two methods
were used to test this: the days temporally near a gameday were compared to the gameday
(using a Mann-Whitney nonparametric test given the small and uneven samples sizes), and
for within- and across-season comparisons, a similar analysis was performed using Welch’s
t-test to compare the two groups.

3. Results

To better interpret the study results, multiple factors need to be accounted for, includ-
ing federal, statewide and institutional health policies, mandates, availability of vaccines,
along with trends in COVID-19 cases and student presence during the investigated seasons.
Looking into the trends of reported cases of COVID-19 in Oklahoma during the 2020 and
2021 football seasons, major differences can be identified. The highest reported cases for
the 2020 season occurred later in the season, while the greatest number of cases for the 2021
season occurred at the start of the season. For the purposes of this manuscript, the 2020
football season was defined as 1 August–5 December 2020, which was the final home game
of the season, while the 2021 football season was defined as 1 August–1 December 2021.
Figure 1 displays the number of new cases per day as reported by the United States Cen-
ters for Disease Control and Prevention (CDC) for each season. The peak for the 2020
season occurred on 24 November 2020, while the 2021 peak occurred on 25 August 2021.
The COVID-19 pandemic produced new cases throughout the autumn of 2020 for many
reasons. There is an element of seasonality associated with COVID-19 prevalence, where
transmission is reduced during warmer weather [60]. Throughout the 2020 football season,
the temperature in Oklahoma decreased heading toward winter season. Another reason for
the peak in cases at the end of the 2020 football season was due to travel for the holidays,
particularly Thanksgiving [61]. Though the University of Oklahoma held classes entirely
online after the Thanksgiving vacation [62], the number of cases throughout the state was
still increasing, likely due in part to the holiday. For the 2021 season, more infective variants
were present, and strict mask usage policies were no longer in place, but the number of vac-
cinated individuals within the state of Oklahoma significantly increased toward the end of
2021. These factors could explain to a degree the smaller effect that dropping temperatures
and the congregation of individuals in closed spaces without capacity or mask constraints



Environments 2024, 11, 279 9 of 22

had as the 2021 fall season progressed. Other factors, such as weather conditions during
each game and the team’s performance within the season were not explicitly quantified or
correlated with certain trends during this case study.
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Figure 1. New cases per day in Oklahoma during the football seasons of 2020 (black line for
1 August–5 December) and 2021 (orange line for 1 August–1 December), along with their 7-day
moving averages (dashed lines of respective colors for each season) [63].

Samples were collected over the 24 h period from Saturday morning to Sunday morn-
ing for game days, and time-weighted composite samples were additionally acquired
on Friday, Saturday, and Tuesday for each sampling event. Each season was analyzed
individually and was also compared against the other. Analyses consisted of determining
relationships between flow, population, concentration, and viral load per capita over time.

3.1. Population Estimates

The SL data were used to produce an estimate of the number of people present in
the sewershed on an hourly basis for each weekend that was sampled. Figure 2 contains
the estimated population present in the Norman sewershed during each sampling period.
As mentioned earlier, samples were collected from approximately 8:00 a.m. Saturday to
approximately 8:00 a.m. the following Sunday. It should be noted that the population on
campus was decreasing as the semester approached December for a couple of reasons. First,
many classes had limited or no in-person meetings throughout the fall of 2020. University
policy was that classes of more than 30 people were to be held online. Second, after the
Thanksgiving holiday, from November 23 to November 27, students who traveled home
were asked to stay there for the remainder of the semester, as all classes were moved
online [62]. This likely led to a gradual migration of students away from campus as the
semester went on. However, there is no way to gather an accurate count of who left the
sewershed across the entire semester. This means that the estimated baseline population
(black line in Figure 2a) for the 2020 season is likely incorrect for the football games that
occurred later in the semester. The potential impact of this population migration on the
overall results is presented in the Section 4.
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Figure 2. Estimated population over time for all sampling periods on football gamedays for (a) the
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2020 Season: Compared to that of the control weekend, the population for each game-
day in 2020 was significantly greater according to t-tests (p < 0.01, respectively). The
population for the control day was never greater than the baseline population in 2020. For
all days that were sampled, the before-game group was the same as the during-game group
(p = 0.14). The difference between the before-game group and the late-night group was
significant (p = 0.01). The during-game group was also significantly different from the
late-night group when all sampling days were analyzed together (p < 0.01), which indicates
the dynamic effect of the population moving into a specific region to follow the game.

2021 Season: Moving to the 2021 season, the estimated population for each gameday
was found to be significantly greater than the control (p < 0.01 for Tulane, Western Carolina,
Nebraska, West Virginia, and Texas Christian; p = 0.01 for Iowa State). When compared
to one another using an ANOVA, the population for each day is significantly different
(p < 0.01). For all games in the 2021 season combined, the population in the before-game
category was not significantly different from that in the during-game category (p = 0.87).
The difference in population was also not significant when the after-after category was
compared to that in the late-night category (p = 0.40). The population in the before-game
group was significantly different from that of the after-game (p < 0.01) and late-night
categories (p < 0.01). The population in the during-game group was significantly different
from the after-game and late-night categories (p < 0.01 for both).
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Overall, the population was greatest just before or during the game for all days that
had a football game, as seen in Figure 2. This affirms the assumption that people traveled
into the city for the football games.

3.2. Concentration Comparisons

Figure 3 presents daily viral concentrations during each season separately, establishing
a common hourly time axis. Here, comparisons were made across games within each
season, across seasons, and against the control samples, as well as with days surrounding
the sampling day (either actual gameday or control). Looking first at within-gameday
SARS-CoV-2 concentration variability (defined in Section 2.4), it should be noted that
statistically significant comparisons could not be performed because for each time category
(before, during, after, and late night), there were only four samples available.
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season; (b) the 2021 season. When time series appear to be shorter in duration, this was due to
mechanical errors in the autosampler that prevented further sample collection. The games in the
legends are listed in chronological order for every season following the same color pattern.

2020 Season: For 2020, the viral concentrations during the Missouri State, Kansas,
and Oklahoma State games were not significantly different from those of the control
(p = 0.50, 0.25, and 0.95, respectively). However, the concentration from the Baylor game
(last game of the 2020 season) samples compared to that of the control day samples was
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significantly different (p < 0.01). Looking at within-gameday time categories, the SARS-
CoV-2 concentration was the greatest before the game for the Missouri State, Kansas, and
Oklahoma State games. The concentration was greatest for the during-game time category
for the Baylor game.

2021 Season: For the 2021 season, the difference in concentration from the control
day was significant for the Tulane game (p < 0.01), the Western Carolina game (p < 0.01),
the Nebraska game (p = 0.04), and the Iowa State game (p = 0.02). The only game with
a concentration that was not significantly different from the control was that with Texas
Christian (p = 0.18). Within the gameday time categories for 2021, the concentration was
greatest during the game for the Western Carolina and Nebraska games, was greatest after
the game for the Tulane and Iowa State games, and was greatest in the late-night category
for the West Virginia and Texas Christian games. The only time groups with significantly
different concentrations from each other were the before and after categories when all
games were compared together (p = 0.03).

To determine if there was an increase in SARS-CoV-2 in wastewater due to football
games, gameday samples were compared to composite samples collected from the NWRF
on days surrounding the game (Thursday, Friday, and Tuesday). Figure 4 shows the mean
concentration of the hourly gameday samples (orange squares) compared to that of the
NWRF time-weighted composite samples (blue dots) during the 2020 and 2021 football
seasons, respectively.
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Figure 4. Gameday and control mean SARS-CoV-2 concentrations (blue dots) compared to the
concentration from the City of Norman, Oklahoma (NWRF) (orange squares), over the course of the
(a) 2020 season; (b) 2021 season. The control dates are distinguished by a black frame.

2020 Season: For 2020, as the season progressed, the viral concentrations increased,
which aligns with the trends in confirmed cases at the same time (refer to Figure 1). The
difference in concentration between the NWRF time-weighted composite samples in the
surrounding days and the mean of the hourly samples on gameday was not significant for
any of the four gamedays in 2020: Missouri State (p = 0.33), Kansas (p = 0.62), Oklahoma
State (p = 0.68), and Baylor (p = 0.38). However, there was a significant difference between
concentrations in the surrounding-day composite samples and the mean concentrations of
the hourly samples for the control, non-gameday Saturday (p < 0.01).

2021 Season: For the across-day comparison in 2021, it was found that the difference
in the concentrations between the surrounding-day NWRF composite samples and the
mean of the hourly gameday samples was significant for the Tulane (p< 0.01), Nebraska
(p < 0.01), and Texas Christian (p = 0.01) gamedays and was significant during the control
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non-game Saturday (p = 0.02), but was not significant for the Western Carolina (p = 0.23),
West Virginia (p = 0.07), or Iowa State gamedays (p = 0.41).

Average gameday concentrations were compared directly to the control Saturday
concentration when there was no football game during each season. With all games
combined for each season, the concentration during the 2021 season was significantly
greater than that during the 2020 season (p < 0.01). Overall, the gameday daily average
concentrations of SAR-CoV-2 were not significantly different between any monitored
gamedays in 2020 and were significantly different between gamedays for half of the games
in 2021.

3.3. Viral Load Comparisons

Cell phone and flow data were used with the concentration data to calculate the
viral load per capita within the sewershed during each time period. Figure 5 shows the
SARS-CoV-2 viral load per capita over time for each sampling day. After normalizing the
viral concentration and flow data with the measured population, the differences between
each day were more pronounced.

2020 Season: The viral load per capita decreased for all games in the 2020 football
season. When compared to each other, the difference in viral load per capita for all games is
significantly different (p < 0.01). Furthermore, when compared individually to the control
day value, the viral load per capita of each gameday was significantly greater (p < 0.01 for
all tests). Looking next at the temporal variations within the predefined time windows for
each game, the mean viral load per capita was greatest in the during-game group. It can
also be observed that the viral load per capita had an increasing tendency over time for
all games except the Missouri State game, which was the first game of the season. Further
investigations were performed to reveal whether strong correlations existed for the viral
load per capita and the concentration and population variables independently. For both
cases, only a weak correlation was identified with the available data.

2021 Season: For the 2021 season, the viral load per capita was significantly different
for the Tulane (p < 0.01), Western Carolina (p < 0.01), West Virginia (p < 0.01), and Iowa
State (p = 0.02) games. The difference in viral load per person was not significant between
the control and Nebraska (p =0.05) or Texas Christian (p = 0.73) games. These games were
combined to analyze the viral load per person for time groups (before, during, after, and
late night). The difference in viral load per person for the before group was not significant
when compared to that for the during-game category (p = 0.06) or the late-night category
(p = 0.70), but the difference was significant when compared to the after-game category
(p = 0.01). The viral load per person for the during-game group was not significantly
different from that for the after-game (p = 0.11) or the late-night categories (p = 0.52). The
after-game category was not significantly different from the late-night group (p = 0.41).
Finally, the viral load per capita before the game increased leading up to kickoff for the
Tulane, Western Carolina, and West Virginia games and decreased for the Nebraska, Texas
Christian, and Iowa State games. The viral load per person at the during-game time scale
increased for the Nebraska, West Virginia, and Texas Christian games, but decreased for
the Tulane game.

The results of this analysis for the 2021 season are more varied than those for the 2020
season (Figure 5). When compared individually to that of the control day, the viral load per
capita of each gameday during the 2020 season was significantly greater (p < 0.01 for all
tests). For 2021, the viral load per capita for the Tulane, Western Carolina, West Virginia,
and Iowa State games were significantly greater than the control value at the p < 0.03 level.
The viral load per capita for the Nebraska and Texas Christian games were greater than
the control value, but not significantly. Overall, the average viral load per capita for the
2021 season was significantly greater than the calculated one for the 2020 season (p < 0.01).
This variability in 2021 is likely a result of changing COVID-19 activity during the season
combined with larger attendance at the games during 2021 compared to that in 2020.
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3.4. Season-to-Season Comparisons

When comparing both seasons, 2021 season gamedays had an average population
that was significantly greater than that of the 2020 season gamedays, as expected with
the university resuming regular operations and holding most classes in person, as well
as policies loosening capacity restrictions for large-scale events. Regarding the estimated
population, the 2021 football season was significantly greater than the 2020 season (p < 0.01).
As for the time category levels defined in Section 2.4 (before, during, after, and late night),
for both seasons together, the before-game group was not significantly different from the
during-game group (p = 0.27), nor was the after-game category significantly different from
the late-night group (p = 0.32). The differences in population were significant when the
before-game group was compared to the after-game (p = 0.04) and late-night categories
(p < 0.01), as well as when the during-game category was compared to the after-game
(p = 0.01) and late-night categories (p < 0.01).
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The wastewater flow for the 2020 football season was greater than that for the 2021
football season (p < 0.01). For both seasons aggregated, the difference in flow was signifi-
cant when the before-game group was compared to the during-game (p = 0.02), after-game
(p < 0.01), and late-night (p < 0.01) groups. The during-game group did not have a sig-
nificantly different flow compared to that of the after-game category (p = 0.13). The flow
recorded in the late-night group was significantly different from that of the during- (p < 0.01)
and after-game categories (p < 0.01).

The virus’s concentration in the 2021 football season was significantly greater than
that in the prior season (p < 0.01), as mentioned in Section 3.2. When both seasons were
combined, the concentration of the before-game category was not significantly different
from that of the during-game (p = 0.314) or late-night groups (p = 0.42). The concentration
in the before-game category was significantly different from that in the after-game category
(p = 0.04). This clearly indicates that the longer the traveling population resides in the area
following an event, the more the concentration of SARS-CoV-2 increases. The differences
were not significant for the during-game category compared to the after-game (p = 0.22) or
late-night category (p = 0.74).

The viral load per capita for the 2021 season was significantly greater than that for
the 2020 football season (p < 0.01). Following the same trends as the concentration, it can
be observed that the viral load per capita was able to capture the impact of the traveling
population on the recorded viral load: The viral load per person of the before category was
not significantly different from that of the during-game (p = 0.06) or late-night categories
(p = 0.16) but was significantly different from that of the after-game category (p = 0.02). The
viral load per person for the during-game group was not significantly different from that of
the after-game (p = 0.19) or late-night groups (p = 0.90). The viral load per person in the
after-game category is not different from that in the late-night category (p = 0.54). Table 2
summarizes the means for the flow (CFS), population, concentration (copies/L), and viral
load per capita (copies/capita) for each football season.

Table 2. Mean flow (CFS), population, concentration (copies/L), and viral load per capita
(copies/capita) for the 2020 and 2021 football seasons.

Season Flow (CFS) Population Concentration
(Copies/L)

Viral Load Per Capita
(Copies/Capita)

2020 19.72 83,525 2.14 × 105 4.41 × 106

2021 16.26 90,832 5.99 × 105 1.13 × 107

Finally, determining if there were strong relationships between variables such as
flow and concentration, population and concentration, flow and viral load per capita, and
population and viral load per capita was of great importance. The correlations between
the flow and concentration for the 2020 and 2021 football seasons were calculated, with
the 2021 season demonstrating a positive trend, but overall, the relationship between these
two variables appeared to be slightly negative. For the concentration versus the population,
the correlation between these variables was very weak for both seasons, especially when
the seasons were combined. The viral load per capita and flow appeared to be uncorrelated
in both per-season and aggregated explorations. The 2021 season had a stronger correlation
between the two variables than the 2020 season. Finally, for the correlations between the
viral load per capita and the population, a slightly stronger relationship than that of the
concentration with the population was recorded. The 2020 football season had the weakest
correlation between the two variables, though it was positive. While the correlations for
the 2021 season and both seasons combined were stronger, they were negative.
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4. Discussion
4.1. SARS-CoV-2 Trends

Notably, the amount of SARS-CoV-2 in the wastewater aligns with the trends in cases
throughout the seasons (Figure 1). For instance, the Delta variant was at a peak at the start
of the 2021 football season, as reflected by the case data at the time, and corresponded to
the greatest amount of SARS-CoV-2 in wastewater at the time. A similar phenomenon
occurred at the end of the 2020 football season, where confirmed cases increased after
Thanksgiving and going into the December holidays. To better capture this, the mean value
of the hourly viral load per capita for each game was compared to the number of new cases
in Oklahoma during the week leading up to the corresponding game to determine if there
was a correlation. There was a positive relationship between the variables, indicating that
there appeared to be more SARS-CoV-2 in the wastewater when the weekly cases were
greater; however, this relationship was not significant at the 95% confidence level. The
NWRF composite samples taken on days surrounding the gameday from the wastewater
treatment plant also indicate that the SARS-CoV-2 concentration in wastewater followed the
trends of the confirmed cases. The concentration of SARS-CoV-2 in wastewater increased
over time for both gameday and NWRF composite samples in 2020. For the 2021 football
season, the concentration decreased over time for both the NWRF and gameday samples.
Again, the correlation was slightly stronger for the gameday samples (R2 = 0.48) than for
the NWRF samples (R2 = 0.44). An interesting result from the comparison of the gameday
concentration to the NWRF concentration is that for the 2021 football season, only the
West Virginia game value was greater than the NWRF value, though the difference was
not significant.

Despite these trends aligning with the confirmed cases, the amount of SARS-CoV-2
found in the wastewater was greater in 2021, when there were no restrictions about tail-
gating or attendance and Oklahoma was experiencing the “Delta surge”. In fact, the
population, concentration, and viral load per capita were all greater in the 2021 football
season than they were in the 2020 football season (the difference was significant for all
metrics except relative viral load per capita). This could suggest that at least some of the
variability in SARS-CoV-2 was likely due to football game attendance.

Table 3 shows the gameday compared to the control non-game Saturday for that
season for the concentration, viral load per capita, population, and flow for every game.
Red boxes with an upward-facing arrow indicate that the gameday value was significantly
greater than the control value, while yellow boxes with side-to-side arrows indicate that the
difference between the gameday and control values was not significant. There were more
games that had significantly greater values than the control for any metric of measuring
SARS-CoV-2; this was more evident for the 2021 season. When the concentration was
used as the SARS-CoV-2 metric for the 2020 season, most of the games did not have a
significant difference.

Table 3. Comparison of the SARS-CoV-2 concentration, viral load per capita, and flow for each game
compared to the control values for that season *.

Compared
to

Control

2020 2021

Missouri
State Kansas Oklahoma

State Baylor Tulane Western
Carolina Nebraska West

Virginia
Texas

Christian
Iowa
State

Concentration ↔ ↔ ↔ ↑ ↑ ↑ ↑ ↑ ↔ ↑
Viral load
per person ↑ ↑ ↑ ↑ ↑ ↑ ↔ ↑ ↔ ↑

Population ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑
Flow ↑ ↔ ↑ ↔ ↑ ↔ ↔ ↔ ↔ ↔

* Notation: Red boxes with upward arrows indicate that the game value was significantly greater than the control
value. Yellow boxes with side-to-side arrows indicate that the game value was not significantly different from the
control value.
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Across seasons, analysis was improved when the viral load per capita was used as the
SARS-CoV-2 metric, revealing more games in the 2021 football season that had within-day
variability. The benefit of this metric is that it is not dependent on the population or size of
a drainage area and could be compared to anywhere in the world that can also accurately
calculate the number of copies per capita.

4.2. Impacts of Population Estimation Errors

Population comparisons between gamedays and non-gamedays for both seasons
revealed that the gameday population was significantly greater than the control Saturday
population in each case, indicating that more people traveled to Norman for gamedays
than left. The baseline population was not dynamically estimated throughout the season,
something that might have resulted in inaccurate estimates of viral load per capita. The
influence of this is examined next.

The population estimated by SL likely did not accurately estimate the number of
people in the sewershed because of potential student migration out of Norman as the season
progressed, especially during the latter part of the 2020 football season. However, it does
provide a useful estimate for comparison purposes. Table 4 shows the mean and relative
standard deviation for the concentration (calculated from triplicate analysis), population
change estimates (taken from [64]), and a range of assumed errors in the population base
estimate to determine the relative contribution of population base estimates to the overall
error of the estimate of the viral load per capita for each game. Other sources of errors,
i.e., in the measurement of flow, are considered negligible for this exercise, as specific data
were not available for the City of Norman’s WRF flow measurements.

Table 4. Estimation of the percentage of error associated with viral load per capita estimates based on
assumed percentages of population migration due to students moving out of town.

Game

Mean
Concentration

Relative
Standard Error (%)

Flow
Relative
Standard
Error (%)

Cell Phone Data
Median Error

(%)

Total Error (%) from
Assumed Standard Error of

Baseline Population

Migration (%)
1% 5% 10% 25%

2020

Missouri State
(12 September) 43 3 3 2 9 17 34

Kansas (7 November) 22 3 3 3 15 26 47

Control (14 November) 26 3 3 3 14 24 44

Oklahoma State
(21 November) 29 3 3 3 13 22 42

Baylor (5 December) 17 3 3 4 18 31 53

2021

Tulane (4 September) 14 3 3 5 20 33 56

Western Carolina
(11 September) 17 3 3 4 18 30 52

Nebraska (18 September) 24 3 3 3 14 25 45

West Virginia
(25 September) 13 3 3 5 21 35 57

Texas Christian
(17 October) 24 3 3 3 14 25 45

Control (13 November) 24 3 3 3 14 25 45

Iowa State (20 November) 22 3 3 4 15 27 48
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Table 4 demonstrates that the percentage of total error in estimating viral load per
capita was less than 20% for most games when there was less than 5% migration in the
baseline population. However, for the latter part of the 2020 season, there was a noticeable
amount of undocumented migration from campus as COVID-19 cases increased and classes
went online after Thanksgiving. If the student movement off campus resulted in a decrease
of 25% in the Norman population moving out of town by the time the 2020 Baylor game
occurred, these errors could have contributed to a much larger percentage error (56%)
corresponding to the population estimates utilizing a static baseline for our calculations.
This game also happened to correspond to one of the lower concentration standard error
estimates. While these potential biases are not quantified in our analysis, they should be
considered when comparing event data that are obtained over a period of time.

4.3. Case Study Limitations/Biases

This case study, beyond the potential baseline population estimation error that was
quantified explicitly above, could potentially have some further limitations and biases. As
mentioned earlier, the way that SL counts and aggregates individuals within the region of
interest by detecting cell phone GPS signals excludes individuals without a smartphone,
and its accuracy is dependent on mobile service in the region of interest. Due to the
result de-identification that SL performs, it is impossible to know whether all the recorded
individuals were moving into the region of interest for the gameday. However, given
the college-town character of the City of Norman, the size of gameday populations in
the stadium, and the lack of any other major events in the region, any bias introduced
by random individuals would have been minor. Other uncontrolled factors, such as the
potential correlations between gameday attendance and the team’s success that season,
gameday weather, and tailgating tickets were not investigated as additional factors that
might have created within-season variations. Funding constraints limited the sampling
of more control days per season or in more than one location, but it is worth noting that
the same site, sampling equipment, and analysis were used across both seasons. Finally,
some samples were not successfully obtained due to autosampler issues or did not provide
conclusive results after analysis, preventing more robust and consistent comparisons for
a small percentage of the gamedays. For wastewater analysis, there is also an inherent
uncertainty in the concentrations that were quantified through the triplicate analysis of each
sample. However, this uncertainty is generally consistent over time and is not expected to
contribute to bias in the analysis. Finally, each hour during the game was represented by
a grab sample that was individually sampled and analyzed, so some variability between
sampling times may have been missed on this time scale.

5. Conclusions

The impact of major sporting events (college football games) on the concentration
and load per capita of SARS-CoV-2 was determined during football weekends for the
University of Oklahoma in Norman during the 2020 and 2021 football seasons. Cell phone
data were utilized to quantify changes in population over these weekends and for one
control (non-football) Saturday during each season. Multiple comparisons were established
at various temporal scales (in hourly grouped windows, daily, and seasonally) between
the control, non-football days and the gamedays independently, as well as between the
seasons. The results indicated that (a) the amount of SARS-CoV-2 in the wastewater was
generally greater on gamedays than on the control day, although the time-dependent
change in the concentration of SARS-CoV-2 in the wastewater during the gameday was not
always significant, and (b) significantly greater amounts of SARS-CoV-2 in the wastewater
were detected in the 2021 football season than in the 2020 season regarding the average
concentration and viral load per capita, which coincides with the emergence of a more
transmissible variant along with the relaxation of statewide and university policies.

This study demonstrated the potential of an hourly sampling method to effectively
capture temporal variation in the SARS-CoV-2 concentration during large events. It also
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showed that by using the flow and population, a viral load per capita can be calculated,
which is a useful way to normalize viral concentration data. Such a metric also provided a
way to standardize the data to compare days with different populations and circumstances.
Finally, this study leveraged the use of mobile device counting technology such as SL to
estimate the population for an entire sewershed, a long-desired ability for WBE research.

For public policy makers, this case study demonstrated how hosting large-scale events
for COVID-19 and other potential future disease outbreaks may impact public health by
introducing the local community to a higher viral load, especially through asymptomatic
patients who may unknowingly attend the event or come to the area to participate in event-
related activities. In response, we suppose that new patients may emerge proportionally
with the introduced viral load, but an increase in cases could certainly be recorded as a
result of the gathering and the transmissibility of the virus. Authorities should be aware
of such trends, simply because dynamically moving populations cannot be sourced or
controlled to avoid viral hotspots in the region, nor can travelers be excluded from attending
an event simply because of their home origin.

Future research in this direction should involve a more formal design of experiments
around the football season or other events, including more control days, backup samplers,
and multiple sampling locations to better isolate and capture the event-day effects on
the recorded viral load. In addition to this, sampling should continue in the region of
interest for at least a week beyond the gameday weekend to capture new emerging cases,
especially in control communities like university dorms, that may have risen due to the
gameday population movement. Finally, research should aim to achieve faster turn-around
times on analysis, which could enable viral results to be estimated in near real time so
that they can be communicated during the event duration to make attendees aware of
the increased risk and allow them to act accordingly. Additionally, newer, more sensitive
methods for detecting viral load could be used, like droplet digital PCR (ddPCR) [65], to
identify time-dependent variations in the viral load with less uncertainty.
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