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Abstract: Increased urbanization has reduced the amount of green space, resulting in a reduced
carbon sink potential across urban landscapes. Through the use of biogeochemical modeling, different
land use scenarios have been developed and run for the future (2020–2099) to compare and quantify
the potential for change in carbon and water dynamics by having more tree cover and reducing
impervious surfaces or turf lawns in Lehigh Valley, PA. These results show that the effect of deforesta-
tion is larger than the effect of reforestation. Due to young-stand age trees having a lower capacity
for carbon storage than mature trees, the loss of the mature trees has a more immediate impact. The
conversion of lawns or impervious surfaces to forests has somewhat similar effects, although the
higher nutrients of lawns allow the forest to grow better. However, replacing impervious surfaces
with trees reduces runoff more. This study shows that within the city of Bethlehem, the most socially
vulnerable area benefits the most from increasing the number of trees. When converting 25% of the
impervious area to forest, South Bethlehem significantly increased its vegetation carbon, productiv-
ity, and carbon storage, reduced its runoff, and generally created a safer and cleaner environment
for residents.
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1. Introduction

As development becomes more extensive, planning land use and land cover (LULC)
of urban areas is increasingly important, in part because urbanization has been associated
with reduced carbon sequestration [1,2]. On a global scale, the area available for land use
and land cover change (LULCC) within urban areas is relatively small, so it has a minor
effect on greenhouse gas (GHG) dynamics. However, in areas in which the LULCC exceeds
10%, there has been a noticeable change in carbon emissions [1]. Realistically, there is a
limited amount of land within cities that can be converted to other land use types. In this
study, biogeochemical modeling is used to evaluate the effect of LULCC on carbon and
water dynamics in Lehigh Valley, Pennsylvania, USA, relative to climate policy initiatives.
Lehigh Valley consists of Lehigh and Northampton counties, and this study also considers
a focus on the city of Bethlehem. The city of Bethlehem has developed a climate action
plan [3] that outlines the specific LULCC the city plans to implement to reach zero carbon
emissions by 2040. To test the effectiveness of these policies, sensitivity experiments were
developed for 2020–2099 to determine the type and magnitude of urban land use change
needed to meet these goals.

The terrestrial ecosystem model (TEM) is a biogeochemical model of terrestrial ecosys-
tems that tracks the flow of carbon, nitrogen, and water among the atmosphere, vegetation,
and soils. The model has been used to study the effect of human disturbances like LULCC,
climate change, elevated CO2, ozone, and nitrogen deposition on carbon sequestration and
ecosystem services [4–8]. By inputting LULC and climate data for Lehigh Valley into the
model, information about carbon fluxes, as well as moisture dynamics, can be determined.
Changing the number of land use types (impervious, barren, deciduous and coniferous
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forests, lawn, cropland, and pastureland) and running these different regimes in TEM
allows changes in water and carbon storage associated with different potential land use
policies to be estimated.

When considering carbon dynamics and LULC, it is well documented that urban areas
have low primary productivity and thus carbon storage [9]. Ecosystems such as fertilized
cropland, forests, and grazing pastures are among the highest carbon sinks [10]. Urban
turf lawns are fertilized and therefore can also be strong carbon sinks [11]. Growing new
shrubs and trees will be a net carbon sink, and over time, the sink may continue due to
future disturbance and regrowth or growth enhancements from nitrogen deposition and
elevated atmospheric CO2 [12,13]. However, in accounting for the entire carbon history,
mowing and decomposition more than offset enhanced growth from fertilizers [10]. One
measure of carbon sequestration by the land that accounts for the effects of disturbance
and land management is net carbon exchange (NCE), which is net ecosystem productivity
(NEP) minus the fluxes associated with land conversion and product decomposition [10].
A more positive NCE is indicative of a stronger carbon sink.

When considering the impact of urbanization on carbon dynamics, soils are often not
considered. In areas that have a low soil organic carbon (SOC), such as the warm and dry
Midwest and the western United States, urbanization results in a gain in SOC [14]. For
areas that have a higher SOC, such as the colder northeastern United States, urbanization
decreases SOC [14]. Of the cities listed in this study, Bethlehem is most similar to Baltimore,
which saw a 2.2% decrease in SOC. Increasing urbanization and the replacement of forests
or turf lawns with impervious surfaces also increase the amount of water runoff within
these areas.

Carbon sequestration is currently not accounted for in the city’s GHG inventory.
However, a specific goal of the Bethlehem CAP [3] is to increase the amount of green space
in the city, particularly for frontline communities (people of color, low-income residents,
and those with existing health conditions), which are communities most at risk of the
ramifications of climate change. These communities are meant to receive 40% of the
benefits of greenhouse gas reductions. Lower socioeconomic members of the community
are often disproportionately affected by the ramifications of environmental consequences,
such as the urban heat island effect [15]. The distribution of green spaces throughout
urban areas is often not equal across the landscape and has long been associated with
racist practices and redlining [16]. The lack of green spaces is not only an issue of inequity
but in terms of environmental function, there is a heterogeneity of ecosystem services
across the landscape [16]. The unequal distribution of green spaces and ecosystem function
disproportionately negatively affects lower-income areas. Comparing carbon storage to
social vulnerability allows for the distribution of ecosystem services across urban areas to be
assessed. One outcome of this research is to provide more information on how carbon and
water dynamics are affected by development decisions, how carbon storage is distributed
within a city, and how it is associated with social vulnerability.

In this study, we used TEM to study the following hypotheses: (1) a 10% increase
in tree cover will not significantly change carbon and water dynamics, while a 25% or
more increase will significantly change them, (2) decreases in the amount of forest will
have a larger impact on carbon storage than increasing the amount of forest by the same
percentage due to the increased forest having a younger stand age, and (3) within the city of
Bethlehem, the more socially vulnerable areas will see the largest increases in carbon storage
from increases in the amount of forest due to having the highest proportion of impervious
surfaces. Since previous studies have shown that at least a 10% change in LULC of the
total region’s area is required to achieve a significant change, it is expected that only LULC
changes accounting for more than 10% of the total area of the region will produce significant
changes. When comparing changes of the same magnitude (increasing or decreasing forest
by the same percentage), decreasing the amount of forest will likely have a larger impact
than regrowing new forests since newly forested areas are less productive initially. Within
the city of Bethlehem, it is expected that the areas that are more socially vulnerable will
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see the greatest increase in carbon storage when having impervious areas converted to
forests. Neighborhoods with higher social vulnerability tend to have a higher proportion
of impervious surfaces to tree cover, which makes them of particular importance when
designing LULCC scenarios.

2. Methods

TEM requires input variables of climate data and LULC. Remote sensing data were
used to develop LULC datasets in ArcGIS Pro Version 3.0. For the climate datasets, the
multivariate adaptive constructed analogs (MACA) RCP8.5 data from the National Center
for Atmospheric Research (NCAR) Community Earth System Model (CESM) were used
for future projections from 2019 to 2099. Sensitivity experiments were run using TEM at
monthly timesteps to determine the carbon and water dynamics of a gridded representation
of Lehigh Valley at the 4 km resolution. A subset of LULC focused on the city of Bethlehem
was also run to compare social vulnerability and an urban heat island to the estimated
changes in the carbon sink resulting from LULCC.

2.1. Remote Sensing

To run TEM, LULC datasets are required to provide the amount of each cohort
(described in Section 2.2) in each grid cell. To create the dataset, aerial imagery was classi-
fied to separate the pixels into different cohorts and then overlain with 4 km grids. The
aerial imagery used for this project was provided by USGS Earth Explorer (Table S1) [17].
A Landsat 8 Operational Land Imager (OLI) C1 L1TP imagery (Collection 1 Level 1 Terrain
Precision Correction) taken on 30 July 2017 was used to perform a classification to determine
the fractional amount of each cohort within each grid in Lehigh Valley, as well as the city
of Bethlehem. An additional classification was conducted on an image from 21 December
2017 to determine the proportion of coniferous and deciduous trees within Lehigh Valley
(Table S1, Figure S1). L1TP data were radiometrically calibrated and orthorectified through
the use of ground control points and digital elevation models (USGS). The image is in tier 1
(T1), which is the highest available quality and processing level for Landsat data [17].

For both of the images, the remote sensing data were used to categorize and quantify
the amount of land within Lehigh Valley that is developed (impervious), barren, forest, turf
lawn, cropland, pastureland, and water. For the image from December, the forest cohort
was replaced by coniferous and deciduous cohorts, using a forest area that was bare of
leaves to classify the deciduous areas. In both images, water was removed from the LULC
dataset because it is not a cohort used within TEM. Training areas were created to match
pixels of similar reflectance into the land use type groups. The training areas were used
in the pixel-based, random tree classification to group the pixels. Multiple iterations of
the classification were performed to improve accuracy by visually checking that the pixels
were being classified correctly. Using a fishnet tool, 4 km grids were created to determine
the amount of each land use type in each of the grids. The classified dataset was overlain
with the fishnet, outlining Lehigh Valley, and the outline of the city of Bethlehem was used
for the experiments involving the subset of Bethlehem (Figure S1).

As a result of the winter image, the forest cohort was split into 15% coniferous and
85% deciduous forests. The forest cohort division was determined by comparing an image
of Lehigh Valley in the winter (21 December 2017) to an image from the summer (30 July
2017). The total area of the forest in the winter image was compared to the total area of
the forest in the summer image to ensure accuracy. To verify the ratio of coniferous to
deciduous forest, additional classifications were conducted and produced similar results.
The ratio of forest in the winter to the summer was then used to determine what percentage
of the total forest is coniferous and deciduous, as the winter image would only show the
area represented by coniferous trees. Seventy percent of the lawn cohort was split into 65%
cropland and 35% pastureland in grids deemed non-urban (<35% impervious surfaces) as
per the Lehigh Valley Planning Commission [18]. The remaining 30% was left as lawn. The
classified data were split into 4 km grid cells. After gathering data for the categories, the
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data were input into TEM and run under current climate conditions to serve as a control
run. The most dominant land use types were forest area in most cohorts, urban in the
areas with the most impervious surfaces, and cropland in more rural areas of Lehigh Valley
(Figures S1 and S2).

Using the same classified image from Lehigh Valley, four grids in the shape of the
city of Bethlehem were extracted to represent the north, east, south, and west sections
of the city (Figure S1). A forested area in the southern section of the city was removed
because it is part of the Lehigh University campus, no one lives in the area, and our primary
goal within the city was to focus on how the potential LULCC could impact socially
vulnerable populations.

2.2. Model Description

The terrestrial ecosystems model version hydro (TEM-Hydro [4–6] consists of multiple
pools for vegetation carbon and nitrogen and a single pool for soil organic carbon and
nitrogen, as well as a pool for inorganic nitrogen. The vegetation pools include leaves,
active and inactive stem tissues (e.g., sapwood and heartwood), fine roots, and a labile
pool for storage. Fluxes into and out of the pools include photosynthesis, nitrogen uptake,
respiration, litterfall, allocation, and dissolved organic carbon (DOC). The more recent
version of the model (TEM-Hydro2) includes improvements to the modeling of land use
and a reduced-form open nitrogen cycle [4], which allows for N deposition, N fixation,
denitrification, and leaching of dissolved organic and inorganic nitrogen (DON and DIN).
Felzer et al. [4,5] provide a complete description of the model, illustrated in a summary
figure (Figure S3), along with how human disturbance is treated (Figure 1 from Felzer [4]),
which is relevant to this paper.

The cohort approach is designed to keep track of land use transitions so that when
converting impervious surfaces or lawns to forests, for example, the new forest is tracked
separately from the existing forest as it is younger and contains soil nutrients from the
original disturbed land, not the existing forest. When a forest is converted to an impervious
surface or lawn, new cohorts are created to distinguish the new impervious surface or
lawn from the original. A full description of the cohort approach is described in Felzer [19]
and Felzer and Jiang [10], but its application here is relatively simple as there is only a
single year of disturbance in each experiment. Since forest consists of both deciduous
and evergreen broadleaf types, adding additional forests or creating new cohorts from the
forests creates two new cohorts. In these experiments, there are therefore 7 cohorts prior
to 2030 (2 forests, impervious surface, barren land, lawn, crop, and pasture) and 9 cohorts
after the disturbance in 2030. Following a disturbance, the area of the original cohort that
has been depleted is adjusted accordingly. The output is then area-weighted for each of
the cohorts.

The initial model runs started with the 7 land cover cohorts, as follows: impervious
surface, barren field, deciduous forest, coniferous forest, lawn, cropland, and pasture. The
area of each cohort was used in TEM as postprocessing to area-weight the output. To
examine land use effects, a change to the land use cohort areas was implemented in 2030.
The decision to implement LULCC in a single year is a simplification of a more realistic
gradual change, but an advance of the assumption of two different states of LULC, which
would not capture the carbon effects of that land use conversion and decomposition of its
products. The changes were 10%, 25%, and 50% of the area of the cohort that was being
converted. All the experiments involved conversion to or from forests in the year 2030,
and the forest cohorts were split into two cohorts to represent coniferous and deciduous
forests. When forest area is being converted into either impervious surface or lawn, we
assume the equivalent of agricultural clearance in the year 2030. During the year of the
disturbance, 60% of the vegetation is burned. The remaining 30% goes into the 10-year pool,
and 10% goes into the 100-year pool, where they decay at a rate of 10% and 1% per year,
respectively [10]. Felzer and Jiang [10] tested several assumptions about the distribution
between the amount of timber going into the fuelwood and the 10- and 100-year product
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pools for both agricultural clearance and timber harvesting and concluded that the net
effect on cumulative NCE was relatively minor, while there is a redistribution between the
pools. Harvested crops go into the 1-year pool, where they are assumed to be consumed
within the same grid where they are grown within the year. The seed is harvested, so the
seed carbon goes into the 1-year product pool. The residual crop from the harvest returns
to the soil as stubble.

(a)

(b)

(c)

(d)

(e)

(f)

Figure 1. (a–f) Time series showing the future climate data under RCP8.5 using the CCSM4 model
as downscaled and bias-corrected by MACA for the period 2020–2099. Bolded equations denote
a statistically significant trend at the α = 0.05 level. (a) Temperature, (b) daily temperature range,
(c) net irradiance, (d) precipitation, (e) vapor pressure, (f) wind speed.

TEM-Hydro has undergone extensive validation. Felzer et al. [5] validated the model
for several watersheds in the eastern U.S. for evapotranspiration (ET) and runoff. ET
showed a strong correlation, and most basins had a positive Nash Sutcliff value for runoff.
Felzer et al. [6] validated the model at several grassland and forest eddy covariance sites
in the western U.S. for ET and NEP and discussed the particularities at each site that
may lead to disagreements. Generally, the model, like other models, underestimates peak
summer NEP in forested sites but is closer to biometric estimates. Validation for western
watersheds [6] generally shows a good fit for runoff, especially for forested watersheds.
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Felzer et al. [4] show how including disturbance in forests increases the NEP to more
closely resemble observed values, reasonable crop yields for Pennsylvania, and reasonable
dissolved inorganic nitrogen (DIN) leaching for watersheds in Lehigh Valley, which are
within the range of observed values. Felzer and Sahagian [20] compared gridded TEM-
Hydro trends from 1982 to 2000 of ET, GPP, and NEP to trends based on an amalgamated
remote sensing and an eddy covariance-based product for the conterminous U.S. and
showed an agreement in trend direction in the majority of grids. Felzer and Jiang [10]
assessed TEM-Hydro NEP and net carbon exchange (NCE) estimates relative to other
modeling (forward and inverse) and inventory studies and discussed how to appropriately
compare the different data and concluded that TEM-Hydro compares favorably when
accounting for the full range of processes and is in the range of other models.

2.3. Datasets
Input for the Terrestrial Ecosystem Model (TEM)

The input climate variables for TEM are temperature, diurnal temperature range,
vapor pressure, incoming shortwave radiation, precipitation, and surface wind speed.
MACA-downscaled and bias-corrected data were used to provide future climate data.
The area sizes in the LULC dataset provided from the imagery classification were used to
run the model based on several different landscape regimes. CO2 levels were taken from
historical data (1979–2019) [21] and future data from the RCP8.5 (2020–2099) scenario [22].
TEM also requires soil texture and elevation, ozone, and nitrogen deposition, which were
taken from standard datasets [10], with ozone and nitrogen deposition levels held constant
for the future. The products of TEM include carbon, nitrogen, and water fluxes.

Crops were fertilized but not irrigated, because Lehigh Valley is in a mesic climate.
The lawn cohort was fertilized and irrigated. Pasture was neither fertilized nor irrigated
but received natural fertilization from the livestock, as explained in Felzer [4]. The pasture,
lawn, and crop cohorts were irrigated. For irrigated cohorts, if grid precipitation in a month
during the growing season is less than 200 mm, the cohort was irrigated to the equivalence
of 200 mm of precipitation. Cropland and lawn were fertilized starting in 1979, at around
15 gN/m2yr−1, while the pasture cohort was fertilized with 5 gNm−2yr−1. Management
processes are further described in Felzer [4]. Impervious surfaces were treated as 100% clay,
as water cannot penetrate as easily through clay; additionally, the size of the bucket was set
to zero to prevent any water from penetrating.

2.4. Climate Data
2.4.1. Multivariate Adaptive Constructed Analogs (MACA)

MACA uses a statistical method that produces downscaled and bias-corrected climate
data from global climate models from the Coupled Model Intercomparison Project 5 [23] to
capture patterns of daily near-surface meteorology (surface temperature, daily temperature
range, vapor pressure, solar radiation, precipitation, wind) [24] for the future. The MACA
statistical downscaling method utilizes a training dataset (GridMET) to remove historical
biases and match spatial patterns in climate model output [24]. Data provided by MACA
were converted to monthly climate data and provided future climate data ranging from 2020
to 2099 under the RCP8.5 scenario for the NCAR CCSM4 r6i1p1 ensemble (Figure 1a–f). The
data provided from MACA is ~4 km grid resolution (0.047◦ latitude by 0.036◦ longitude).

2.4.2. GridMET

GridMET is a historical dataset of daily high-spatial resolution climate variables rang-
ing from 1979 to the present [23]. GridMET was chosen for the model spin-up because
MACA was originally bias-corrected using GridMET, so no further bias correction was
needed to connect the historical and future datasets. The GridMET data were converted
to a monthly timescale. GridMET data are also available at ~4 km resolution. The climate
variables used from GridMET were the same as for MACA and included surface temper-
ature, daily temperature range, vapor pressure, solar radiation, precipitation, and wind.
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This dataset was used solely for the purpose of providing model initial conditions in 2020,
rather than re-equilibrating at that year. The model was initially equilibrated based on the
1979–2019 GridMET climate and then run in the transient version of the model, with the
final conditions in 2019 serving as the initial conditions for the future runs, starting in 2020.
All results are reported solely from the starting and ending period of the future runs.

2.5. Experiment Design

For the future (2020–2099) period, a control run without LULCC and experiments with
LULCC were run to examine the impact of LULCC on carbon and water dynamics. The
control experiment consisted of the future model run in which the LULC remains at 2017
values. Sensitivity experiments were then performed using monthly transient climate from
2020 to 2099, to experiment with different percentages of LULCC for the city of Bethlehem
based on the types of LULCC outlined in the CAP [3]. Different percentages of land use con-
version (10%, 25%, and 50%) were used to determine what threshold of change results in a
significant difference from the control. The change to LULC will be implemented in the year
2030 when new cohorts are created from the source cohort. The new cohorts are land use
types created from the preexisting land use types following the disturbance. While the Beth-
lehem CAP is designed to increase sustainability (experiments 1 and 2), two experiments
were added to see what the impact of decreased forest (experiments 3 and 4) would be
and simulate further development (Table 1). When a forest is converted to an impervious
surface or turflawn, a disturbance is created in the forest cohorts, as described above; the
area is reduced, and new cohorts of impervious surface or turflawn are created. When
impervious surfaces or turflawns are converted to forest, the area of the impervious surface
or turflawn is reduced, and new forest cohorts are created. The newly created cohorts have
different properties from the original cohorts because the forest stand age is reset and, in
the case of forest to impervious surface, the soil texture is changed to 100% clay, and water
penetration into the surface is allowed. Additionally, no evapotranspiration was allowed
for sitting water on impermeable surfaces, assuming the water runs off fast enough to
prevent evapotranspiration at the source location.

Table 1. LULCC experiments based on the CAP. Sub-experiments are based on the percent change in
each experiment, including 10%, 25%, and 50% change. L2F = lawn to forest, I2F = impervious to forest,
F2L = forest to lawn, F2I = forest to impervious. Sub-experiments refer to the 10%, 25%, and 50%
changes, respectively.

Experiment Sub-Experiments Lawn Forest Impervious

1 (L2F) 1, 2, 3 Decrease by 10%,
25%, 50%

Increase by 10%,
25%, 50%

2 (I2F) 4, 5, 6 Increase by 10%,
25%, 50%

Decrease by 10%,
25%, 50%

3 (F2L) 7, 8, 9 Increase by 10%,
25%, 50%

Decrease by 10%,
25%, 50%

4 (F2I) 10, 11, 12 Decrease by 10%,
25%, 50%

Increase by 10%,
25%, 50%

From the original classification image used for Lehigh Valley, a subset of Bethlehem
was extracted. The Bethlehem run used the same inputs as Lehigh Valley after being
cropped to only retain the grids of Bethlehem. The city was divided into four regions, north,
south, east, and west, to study how the same percentage of LULCC could affect the regions
with their differing proportions of each land use type. The northern section of Bethlehem
has more green space than the other sections, and South Bethlehem (locally referred to as
the South Side) has the highest proportion of impervious surfaces. The values for the city
of Bethlehem were recalculated to account for accurate estimates of LULC for the four grids
representing the four quadrants of the city.
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2.6. Statistical Analysis

To analyze the significance of the results, a two-tailed Student’s t-test was used, as the
difference of means between the control run and the run with LULCC change for each time
period (2030–2049, 2050–2069, and 2070–2099). The results were analyzed at an α = 0.05 level
of significance. For the carbon storage fluxes for Lehigh Valley (NEP and NCE), the t-test
was performed on the cumulative values to show the compounding effect of the change in
carbon storage throughout each time period. Additionally, analysis of variance (ANOVA)
using a post hoc Tukey approach was used to determine the significance of the difference
among the 10, 25, and 50% cases. ANOVA analysis is shown by the different letters either
above or below the bars on the graphs. For each subset of experiments, the letters that are
the same do not have a significant difference. Differing letters have statistically different
means, e.g., a bar with “a” and a bar with “b” have statistically different means from each
other. The statistical significance of the climate trends and the base run were also assessed at
the α = 0.05 level using the approach described in Felzer and Sahagian [20]. The statistical
analysis was performed using IBM SPSS 29.0.1.0 statistics software.

3. Results
3.1. Climate Conditions

For the future (2020–2099), climate conditions indicate a warmer (Figure 1a) climate.
Air temperature and vapor pressure are both modeled to increase significantly (Figure 1e).
The daily temperature range is predicted to increase significantly, indicating higher daytime
air temperatures (Figure 1b). The reduced wind speeds may be a result of overall warming
as the equator-to-pole temperature gradient is reduced (Figure 1f). The small increasing
trend in precipitation is not statistically significant. Along with increasing CO2 in the
atmosphere (resulting in 927 ppm CO2 by the year 2099), warmer air temperatures can
be expected to increase productivity and biomass in a region that is not moisture-limited,
like Lehigh Valley. However, the same climate conditions can also lead to a decrease
in soil carbon; as the temperature increases, the conditions become more favorable for
heterotrophic respiration in the soils. The future climate for Lehigh Valley with this scenario
includes higher air temperatures and more humid conditions, which are consistent with
expectations from a warming scenario. These climate trends would suggest increases in
productivity and biomass, as long as ecosystems do not become moisture-limited.

3.2. Lehigh Valley Control Run: Changing Climate and CO2

The control run shows the state of current carbon and water dynamics, with the LULC
of 2017 remaining constant, but with changing climate and CO2. For the future period,
solely as a result of the changing climate and CO2, the vegetation carbon (VegC), and
vegetation carbon fluxes (net primary productivity (NPP) and gross primary productivity
(GPP)) show a statistically significant increase during the 21st century (Table 2). There is
also a statistically significant decrease in soil carbon. While the ecosystem carbon fluxes
(NEP and NCE) have a slight increase, the increase is not significant. Overall, the water
variables (evapotranspiration, runoff, and soil moisture) do not change by a large amount,
with only ET showing any significant increase. These results are consistent with a warmer
climate and higher CO2 levels increasing vegetation productivity, warming causing more
decomposition, and no large change in precipitation.

Table 2. Trends over all PFTs. Carbon units in TgCyr−1; Water units in 1012 mm H2O yr−1. Bold
values indicate a trend statistically significant at α = 0.05 level.

Time VegC SoilC GPP NPP NEP NCE Soil Moist ET Runoff

2030–2049 53.33 2.56 1.72 −3.74 −9.35 −11.91 3.80 −2.75 20.70

2050–2069 135.45 −25.94 10.42 4.16 −0.82 −3.58 1.01 1.60 4.68

2070–2099 141.72 −13.89 15.58 5.54 0.57 1.06 −1.00 3.88 −6.94

2020–2099 103.01 −17.68 12.70 5.31 0.50 0.68 −0.07 3.10 −0.55
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3.3. Land Use Changes for Lehigh Valley
3.3.1. Experiment 1 Lehigh Valley: Converting Lawn to Forest

Experiment 1 (L2F) involved the creation of new forests from areas that were pre-
viously lawns. Results are shown as percent differences from the control (Table 3), as
displayed by bars (Figure 2), time series (Figure 3), values for different PFTs (Table 4), and
maps (Figures S2 and S4–S7). By the end of the century, results show a significant increase
in vegetation carbon by 5.7% and a decrease in soil carbon by 8.1%. The soil carbon also
decreases in all cases (Figure 2, Table 4a). There are nonsignificant increases in the carbon
fluxes and decreases in all the water variables. Through time, only the vegetation carbon
increases for the 25 and 50% cases and all the soil carbon decreases are generally outside
the range of interannual variability (IAV) of the control, while there is not a significant
increase in cumulated NCE (Figure 3).

Table 3. Control results for base conditions for the historic period 2020–2099. Vegetation carbon
(VEGC) and soil carbon (SOLC) are TgC, GPP, NPP, NEP, and NCE are TgCyr−1, soil moisture is
1012 mm H2O, and evapotranspiration and runoff are 1012 mm H2Oyr−1.

Cohort VegC SoilC GPP NPP NEP NCE Soil Moist ET Runoff

Impervious 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.00 0.35

Barren 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.09 0.08

Forest 35.61 10.36 3.19 1.63 0.13 0.13 0.80 1.21 0.76

Pasture 0.19 0.39 0.29 0.16 0.04 0.00 0.10 0.18 0.04

Lawn 0.30 3.10 0.33 0.15 0.00 0.00 0.14 0.19 0.12

Cropland 0.03 0.70 0.21 0.12 0.09 −0.01 0.08 0.22 0.19

Average 36.14 14.55 4.03 2.07 0.27 0.13 1.18 1.88 1.53

Table 4. Percent differences from control run for 10, 25, and 50% land use changes from (a) lawn
to forest, (b) impervious to forest, (c) forest to lawn, and (d) forest to impervious for Lehigh Valley
covering the future period (2070–2099). VEGC and SOLC are TgC, GPP, NPP, NEP, and NCE are
TgCyr−1, soil moisture is 1012 mm H2O, and evapotranspiration and runoff are 1012 mm H2Oyr−1.
Bolded values denote a statistically significant difference at the α = 0.05 level. Note that NEP and
NCE are not cumulative.

(a)

L2F Cohort VegC SoilC GPP NPP NEP NCE Soil Moist ET Runoff

10% Forest 1.24 0.70 1.69 1.68 4.69 4.69 1.27 1.50 1.02

10% Lawn −10.03 −10.03 −10.03 −10.03 −10.02 −10.02 −10.03 −10.03 −10.04

10% Average 1.13 −1.64 0.51 0.62 2.28 4.84 −0.35 −0.05 −0.26

25% Forest 3.10 1.76 4.24 4.22 11.77 11.77 3.20 3.77 2.56

25% Lawn −25.03 −25.03 −25.03 −25.03 −25.03 −25.03 −25.03 −25.03 −25.03

25% Average 2.85 −4.08 1.28 1.57 5.72 12.16 −0.86 −0.10 −0.64

50% Forest 6.22 3.53 8.48 8.46 23.57 23.57 6.41 7.55 5.13

50% Lawn −50.02 −50.02 −50.02 −50.02 −50.01 −50.01 −50.02 −50.02 −50.02

50% Average 5.70 −8.14 2.58 3.14 11.46 24.34 −1.71 −0.20 −1.27
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Table 4. Cont.

(b)

I2F Cohort VegC SoilC GPP NPP NEP NCE Soil Moist ET Runoff

10% Impervious 0.00 −10.08 0.00 0.00 0.00 0.00 −10.03 0.00 −10.03

10% Forest 0.14 0.25 0.07 0.10 1.25 1.25 1.94 1.38 2.39

10% Average 0.14 0.18 0.06 0.08 0.61 1.30 0.90 0.89 −1.12

25% Impervious 0.00 −25.19 0.00 0.00 0.00 0.00 −25.02 0.00 −25.02

25% Forest 0.35 0.63 0.18 0.25 3.14 3.14 4.86 3.47 6.00

25% Average 0.35 0.45 0.14 0.20 1.54 3.27 2.27 2.23 −2.77

50% Impervious 0.00 −50.00 0.00 0.00 0.00 0.00 −50.01 0.00 −50.01

50% Forest 0.71 1.27 0.37 0.50 6.28 6.28 9.72 6.96 12.02

50% Average 0.70 0.90 0.29 0.40 3.08 6.55 4.55 4.46 −5.53

(c)

F2L Cohort VegC SoilC GPP NPP NEP NCE Soil Moist ET Runoff

10% Forest −10.01 −10.01 −10.01 −10.01 −10.01 −10.01 −10.01 −10.01 −10.01

10% Lawn 74.77 29.17 74.10 74.16 202.85 −297.50 74.23 73.92 76.77

10% Avg. −9.23 −0.91 −1.80 −2.66 −4.48 −11.79 2.21 1.03 0.90

25% Forest −25.01 −25.01 −25.01 −25.01 −25.01 −25.01 −25.01 −25.01 −25.01

25% Lawn 187.06 72.98 185.37 185.52 507.42 −744.12 185.71 184.91 192.06

25% Avg. −23.06 −2.25 −4.47 −6.62 −11.18 −29.46 5.55 2.60 2.26

50% Forest −50.00 −50.01 −50.00 −50.00 −50.01 −50.01 −50.01 −50.01 −50.01

50% Lawn 374.20 146.00 370.81 371.12 1015.06 −1488.52 371.49 369.90 384.19

50% Avg. −46.12 −4.49 −8.92 −13.23 −22.36 −58.92 11.11 5.21 4.54

(d)

F2I Cohort VegC SoilC GPP NPP NEP NCE Soil Moist ET Runoff

10% Impervious 0.00 NA 0.00 0.00 0.00 0.00 54.35 0.00 55.92

10% Forest −10.01 −10.01 −10.01 −10.01 −10.01 −10.01 −10.01 −10.01 −10.01

10% Average −9.86 0.46 −7.94 −7.91 −4.91 −12.72 −4.57 −6.42 7.89

25% Impervious 0.00 NA 0.00 0.00 0.00 0.00 135.97 0.00 139.89

25% Forest −25.01 −25.01 −25.01 −25.01 −25.01 −25.01 −25.01 −25.01 −25.01

25% Average −24.64 1.17 −19.84 −19.77 −12.27 −31.78 −11.40 −16.05 19.74

50% Impervious 0.00 NA 0.00 0.00 0.00 0.00 272.00 0.00 279.85

50% Forest −50.00 −50.01 −50.00 −50.00 −50.01 −50.01 −50.01 −50.01 −50.01

50% Average −49.27 2.36 −39.66 −39.52 −24.54 −63.54 −22.79 −32.09 39.51

The increasing vegetation carbon throughout the future shows the growth of the
forested area over time from the newly created forest cohorts since the climate conditions
are the same. Soil carbon decreases with the conversion to forest, however, which is due
to the calibrated parameters used to describe the lawn cohort (see Section 4), resulting in
higher heterotrophic respiration in those areas when they become newly forested. The
largest increases in productivity and carbon storage occur in urban and surrounding areas,
as they tend to have more lawns (Figures S2, S4 and 5a).
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right, the categories are lawn to forest (L2F), impervious to forest (I2F), forest to lawn (F2L), and 
forest to impervious (F2I). Post hoc ANOVA testing is displayed, indicating which experiments are 
statistically different from each other in each category. Bold letters indicate if the run was statistically 
significant compared to its control value, based on a two-tailed Student’s t-test at the 95% confidence 
level. (a) Vegetation carbon, (b) soil carbon, (c) GPP, (d) NPP, (e) cumulative NEP, (f) cumulative 
NCE, (g) ET, (h) runoff, (i) soil moisture. 

(b) (a) 
a a b a a a a b c a b c 

a b c a b c a b ab 
a b a 

a a a a a a a b ab a b c a a a a a a a b ab a b c 

a a a a a a a b ab a b a 
a a a a a a a b c a a b 

a a a a a a 

a b ab 

a b c 

a a a a a a 
a a a 

a b c 

a a a a a b 
a b c 

a b c 

(d) (c) 

(e) (f) 

(g) (h) 

(i) 

Figure 2. (a–i) Bar charts showing the percent change for 10, 25, and 50% land use changes in Lehigh
Valley. Within each subgroup, the changes in the area are 10, 25, and 50%, respectively. From left
to right, the categories are lawn to forest (L2F), impervious to forest (I2F), forest to lawn (F2L), and
forest to impervious (F2I). Post hoc ANOVA testing is displayed, indicating which experiments are
statistically different from each other in each category. Bold letters indicate if the run was statistically
significant compared to its control value, based on a two-tailed Student’s t-test at the 95% confidence
level. (a) Vegetation carbon, (b) soil carbon, (c) GPP, (d) NPP, (e) cumulative NEP, (f) cumulative
NCE, (g) ET, (h) runoff, (i) soil moisture.
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Figure 3. (a–i) Time series reflecting changes involving converting lawn to forest (10, 25, and 50%) 
and forest to lawn (10, 25, and 50%) for 2020–2099. The detrended standard deviation is shown in 
gray on the control run. Vegetation carbon (VEGC) and soil carbon (SOLC) are TgC, GPP, NPP, 
NEP, and NEP are TgCyr−1, soil moisture is 1012 mm H2O, and evapotranspiration and runoff are 
1012 mm H2Oyr−1. (a) Vegetation carbon, (b) soil carbon, (c) GPP, (d) NPP, (e) cumulative NEP, (f) 
cumulative NCE, (g) ET, (h) runoff, (i) soil moisture. 
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Figure 3. (a–i) Time series reflecting changes involving converting lawn to forest (10, 25, and 50%)
and forest to lawn (10, 25, and 50%) for 2020–2099. The detrended standard deviation is shown in
gray on the control run. Vegetation carbon (VEGC) and soil carbon (SOLC) are TgC, GPP, NPP, NEP,
and NEP are TgCyr−1, soil moisture is 1012 mm H2O, and evapotranspiration and runoff are 1012 mm
H2Oyr−1. (a) Vegetation carbon, (b) soil carbon, (c) GPP, (d) NPP, (e) cumulative NEP, (f) cumulative
NCE, (g) ET, (h) runoff, (i) soil moisture.
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3.3.2. Experiment 2 Lehigh Valley: Conversion of Impervious Areas to Forest

Experiment 2 (I2F) involved the conversion of impervious areas to forested areas by
10, 25, and 50%. The only significant changes are increasing soil carbon in the 25% and 50%
cases and reduced ET and increasing soil moisture in the 25 and 50% cases (Figure 2). Other
nonsignificant changes are an overall increase in carbon stocks and fluxes and less runoff
(Table 4b). The increase in soil moisture is consistent with no soil-holding capacity for
impervious surfaces. When converting from impervious to forested areas, urban grids that
are located near the center (the majority impervious) have the largest increase in carbon
storage (Figure S4b). These are also the grids that generally see the largest increase in NPP
and vegetation carbon (Figures S5b and S6b). The time series (Figure 4) shows that all the
changes are within the control IAV.

It would be expected that converting impervious to forest would have a larger mag-
nitude of change for a similar amount of land change than converting lawn to forest.
However, due to the fertilization of lawns, forest regrowing in areas that were impervious
is more nitrogen-limited than those regrowing in previously lawn areas. The resulting
nitrogen limitation in previously impervious areas inhibits the growth and vegetation in
these regions.

3.3.3. Experiment 3 Lehigh Valley: Conversion of Forested Area to Lawn

The runs in experiment 3 (F2L) converted forested areas to lawns. The LULCC
decreases all the carbon variables but increases the water variables (Figure 2, Table 4c). The
vegetation carbon and soil carbon decreases are significant in all cases, while the carbon
fluxes are all significant for 50%. There is a strong decrease in cumulative NCE in all cases.
The ET increases are significant for 25 and 50%, and the soil moisture increases for all cases.
In the initial 2030–2049 period, there is a large decrease in NCE due to the conversion of
forest into lawn (Figure 3f). When forests are cut down, it is assumed that 60% of forests
are burned, resulting in a large negative NCE. The NCE is still negative in the other periods
following 2030–2049; however, it is not as negative since the change occurred in 2030 and
a majority of the products have burned or decayed in that period. The cumulative NCE
is significantly negative in all cases (Figure 3f). The increase in soil moisture is due to the
irrigation of lawns, which also produces increases in runoff, although the increase in runoff
is not significant. The northern and southern sections of Lehigh Valley are more heavily
forested and see the largest decreases in NCE, NPP, and vegetation carbon when converting
forested areas to lawns (Figures S4c, S5c and S6c).

3.3.4. Experiment 4 Lehigh Valley: Conversion of Forest to Impervious Area

The runs in experiment 4 (F2I) converted forested areas to impervious surfaces. Unsur-
prisingly, there are large decreases in vegetation carbon and the vegetation and ecosystem
carbon fluxes, with all decreases significantly negative for all cases except for 10% NPP
and NEP (Figure 2, Table 4d). The ET and soil moisture decrease in all cases, and runoff
increases in all cases. This increase in runoff is expected as water cannot percolate the
impervious surface.

There is an increase in soil carbon, however, which is due to the assumption that 85%
of the material that is burned remains in the soil, and there is no heterotrophic respiration in
impervious surfaces. The burning of wood for the conversion, as well as the carbon entering
the soil, can be seen immediately following the conversion in 2030 (Figure 3a,f). When the
forested area is burned during the conversion and a large portion of the burned material
is added to the soil, it appears that there is a large increase in soil carbon, even though
the impervious surface is calibrated to assume no carbon. Although soil carbon increases
for the cases in which the forest area is burned, the trend for soil carbon throughout the
future period is still negative (Figure 3b). The 50% change case produces results outside
the IAV of the control for most cases, with the cumulative NCE changes being negative and
significant for all cases (Figure 4f).
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Figure 4. (a–i) Time series reflecting changes involving converting impervious to forest (10, 25, and 
50%) and forest to impervious (10, 25, and 50%) for 2020–2099. The detrended standard deviation is 
shown in gray on the control run. VEGC and SOLC are TgC, GPP, NPP, NEP, and NEP are TgCyr−1, 
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Figure 4. (a–i) Time series reflecting changes involving converting impervious to forest (10, 25, and
50%) and forest to impervious (10, 25, and 50%) for 2020–2099. The detrended standard deviation
is shown in gray on the control run. VEGC and SOLC are TgC, GPP, NPP, NEP, and NEP are
TgCyr−1, soil moisture is 1012 mm H2O, and evapotranspiration and runoff are 1012 mm H2Oyr−1.
(a) Vegetation carbon, (b) soil carbon, (c) GPP, (d) NPP, (e) cumulative NEP, (f) cumulative NCE,
(g) ET, (h) runoff, (i) soil moisture.



Environments 2024, 11, 133 15 of 27

The forested areas along the northern and southern sections of Lehigh Valley see a
decrease in vegetation carbon (Figure S5d) and productivity decreases that are larger in
magnitude than the experiment in which the forest is converted to lawn (Figure S4c,d). The
decrease in NCE is somewhat similar between the two cases (Figure S3c,d), with impervious-
to-forest having more grids showing a larger decrease in NCE than when converting from
lawn. Since lawns still have the capacity for carbon storage and productivity, they see less
of a decrease in carbon than impervious surfaces. However, turflawn still does not have
the capacity for carbon storage and productivity that forests do.

3.4. Land Use Changes for Bethlehem
3.4.1. Experiment 1 Bethlehem: Conversion of Lawn to Forest

The results are shown as percent differences from the control (Table 5), as displayed
by bars for the 50% case (Figure 5) and values for different PFTs (Table 6), but divided
between the four regions of the city. For the first experiment (L2F), in the city of Bethlehem,
vegetation carbon increased while soil carbon decreased, and the carbon fluxes all increased
(Figure 5, Table 6a) in all the regions. In all regions, vegetation and soil carbon saw
significant changes for the 10%, 25%, and 50% cases (Table 6a), while GPP and NPP
generally saw significant increases for the 25% and 50% cases. Cumulative NEP and NCE
are significantly positive in all regions. The region that saw the largest percent change
increases in biomass, carbon storage, and productivity is the South Side of Bethlehem,
which is usually significantly different from the other regions. While the South Side sees the
largest percent increase, the region still has the lowest absolute values of carbon storage and
productivity of all the regions (Table 5) due to having the highest proportion of impervious
surfaces to forest area. The change from lawn to forest results in a decrease in soil moisture
and runoff due to areas defined as lawns being irrigated, so the lawn cohorts have higher
soil moisture than the forest cohorts per unit area.

3.4.2. Experiment 2 Bethlehem: Conversion of Impervious Areas to Forest

Experiment 2 (I2F) for the city of Bethlehem converted impervious surfaces to forest by
10, 25, and 50%. Across the regions of Bethlehem, all the carbon variables increase (Figure 5,
Table 6b). This change resulted in increases in soil moisture and ET, with reduced runoff
in all regions. For the same percentage of the area changed during the same period, the
South Side has the largest increases in carbon stocks and fluxes, with increases of 77, 33,
and 510%, respectively, for vegetation carbon, NPP, and NCE. However, this region still
has the lowest biomass and carbon when compared to the other regions due to the higher
proportion of impervious surfaces (Table 5). Cumulative NEP and NCE are significantly
positive for all regions, and especially pronounced for the South Side (Figure 5).

3.4.3. Experiments 3 and 4 Bethlehem: Conversion of Forest to Lawn and Impervious

In the third (F2L) experiment for the city of Bethlehem, forest area was converted to
lawn area by 10, 25, and 50% to simulate deforestation. The LULCC resulted in decreases
in the carbon stocks and vegetation and ecosystem carbon fluxes (Figure 5, Table 6c). The
percent decrease (Table 6c) for all the regions in vegetation carbon is similar for each case.
However, the absolute values show that North Bethlehem decreased the most in vegetation
carbon, NPP, and carbon storage due to the region having the highest proportion of forest.
Experiment four (F2I) produced similar results in carbon to experiment three, except the
decreases in GPP and NPP are larger. (Figure 5, Table 6). For F2L, soil moisture and ET
increase, while in F2I, they decrease, and runoff increases in both cases, but much more so
when converting to an impervious surface, while lawn irrigation leads to an increase when
converting to lawn. Cumulative NEP and NCE are significantly positive or negative for all
regions for both F2L and F2I.
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Figure 5. Bar charts showing the percent change for 50% land use changes in Bethlehem. Within
each subgroup, the bars represent West, South, North, and East Bethlehem, respectively. From left to
right, the groups are lawn to forest (L2F), impervious to forest (I2F), forest to lawn (F2L), and forest
to impervious (F2I). Post hoc ANOVA testing is displayed adjacent to the error bars, indicating which
experiments are statistically different from each other in each subgroup. Bold letters indicate if the
run was statistically significant compared to its control value, as described in Figure 2. (a) Vegetation
carbon, (b) soil carbon, (c) GPP, (d) NPP, (e) cumulative NEP, (f) cumulative NCE, (g) ET, (h) runoff,
(i) soil moisture.
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Table 5. Control run for Bethlehem for the future period (2020–2099). Results are split into four
regions, west, south, north, and east. VEGC and SOLC are TgC, GPP, NPP, NEP, and NCE are
TgCyr−1, soil moisture is 1012 mm H2O, and evapotranspiration and runoff are 1012 mm H2Oyr−1.

Region VegC SoilC GPP NPP NEP NCE Soil Moist ET Runoff

West 5.87 4.01 0.78 0.39 0.03 0.03 0.36 0.36 0.99

South 1.12 0.99 0.17 0.08 0.01 0.01 0.22 0.12 1.23

North 8.78 5.29 1.10 0.55 0.05 0.05 0.42 0.50 0.86

East 5.88 3.58 0.75 0.37 0.03 0.03 0.34 0.39 1.03

Table 6. Percent differences from control run for 10, 25, and 50% land use changes from (a) lawn to
forest (b) impervious to forest, (c) forest to lawn, and (d) forest to impervious for the city of Bethlehem
covering the future period (2070–2099). (a) Lawn to forest, (b) impervious to forest, (c) forest to lawn,
and (d) forest to impervious for the city of Bethlehem, PA covering the future period (2070–2099).
Results are split into the north, south, east, and west regions of the city. VEGC and SOLC are TgC,
GPP, NPP, NEP, and NE are in TgCyr−1, soil moisture is 1012 mm H2O, and evapotranspiration and
runoff are 1012 mm H2Oyr−1. Bolded values denote statistically significant differences at the α = 0.05
level. Note that NEP and NCE are not cumulative.

(a)

L2F Region VegC SoilC GPP NPP NEP NCE Soil Moist ET Runoff

10% West 4.49 −3.88 1.56 1.99 12.41 12.41 −0.77 −0.22 −0.25

10% South 7.07 −5.04 2.00 2.65 21.90 21.90 −0.42 −0.33 −0.05

10% North 3.53 −3.49 1.33 1.68 10.00 10.00 −0.76 −0.16 −0.34

10% East 3.41 −3.32 1.31 1.64 10.79 10.79 −0.61 −0.13 −0.18

25% West 11.27 −9.66 3.97 5.05 31.18 31.18 −1.90 −0.49 −0.64

25% South 18.22 −12.51 5.44 7.09 56.23 56.23 −0.99 −0.61 −0.14

25% North 8.84 −8.70 3.35 4.21 25.04 25.04 −1.90 −0.39 −0.86

25% East 8.58 −8.31 3.33 4.16 27.12 27.12 −1.51 −0.29 −0.45

50% West 22.52 −19.28 7.95 10.10 62.35 62.35 −3.79 −0.97 −1.28

50% South 36.76 −24.95 11.14 14.48 113.27 113.27 −1.95 −1.06 −0.30

50% North 17.69 −17.40 6.70 8.43 50.11 50.11 −3.80 −0.78 −1.72

50% East 17.15 −16.58 6.68 8.34 54.24 54.24 −3.00 −0.57 −0.91

(b)

I2F Region VegC SoilC GPP NPP NEP NCE Soil Moist ET Runoff

10% West 2.04 1.56 0.71 1.01 12.17 12.17 7.20 11.10 −4.04

10% South 15.34 9.00 4.60 6.63 101.57 101.57 16.57 48.78 −4.62

10% North 1.02 0.87 0.38 0.53 6.16 6.16 4.55 5.86 −3.41

10% East 1.92 1.64 0.71 0.99 13.04 13.04 7.06 9.69 −3.63

25% West 5.10 3.88 1.77 2.50 30.43 30.43 17.99 27.76 −10.09

25% South 38.43 22.50 11.48 16.59 254.55 254.55 41.47 122.10 −11.57

25% North 2.53 2.17 0.93 1.31 15.40 15.40 11.39 14.64 −8.53

25% East 4.80 4.09 1.76 2.47 32.70 32.70 17.66 24.25 −9.09

50% West 10.20 7.76 3.53 5.00 60.86 60.86 36.00 55.52 −20.19

50% South 76.94 44.99 22.95 33.19 509.72 509.72 83.00 244.34 −23.15

50% North 5.06 4.34 1.86 2.61 30.79 30.79 22.77 29.28 −17.07

50% East 9.58 8.17 3.50 4.93 65.38 65.38 35.32 48.49 −18.17
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Table 6. Cont.

(c)

F2L Region VegC SoilC GPP NPP NEP NCE Soil Moist ET Runoff

10% West −8.98 −0.57 −1.38 −2.41 −9.47 −10.78 1.30 1.01 0.31

10% South −9.27 −0.70 −1.63 −2.51 −9.80 −11.13 0.30 0.27 0.07

10% North −9.05 −0.67 −1.52 −2.59 −9.47 −10.79 1.67 1.06 0.53

10% East −9.06 −0.68 −1.44 −2.49 −9.18 −10.67 1.41 0.98 0.28

25% West −22.43 −1.39 −3.39 −5.98 −23.65 −26.94 3.28 2.60 0.76

25% South −21.95 −1.09 −2.90 −5.11 −23.27 −26.77 0.98 1.44 0.11

25% North −22.62 −1.68 −3.79 −6.45 −23.67 −26.99 4.18 2.66 1.33

25% East −22.57 −1.65 −3.53 −6.14 −22.89 −26.60 3.55 2.50 0.67

50% West −44.84 −2.76 −6.76 −11.93 −47.27 −53.87 6.58 5.23 1.52

50% South −43.91 −2.19 −5.80 −10.21 −46.54 −53.54 1.96 2.89 0.22

50% North −45.23 −3.35 −7.57 −12.89 −47.33 −53.97 8.38 5.33 2.65

50% East −45.10 −3.26 −6.98 −12.22 −45.75 −53.19 7.14 5.06 1.32

(d)

F2I Region VegC SoilC GPP NPP NEP NCE Soil Moist ET Runoff

10% West −9.68 0.17 −7.21 −7.54 −9.96 −11.27 −2.88 −6.32 2.29

10% South −9.91 −0.18 −6.27 −6.69 −10.43 −11.76 −0.88 −3.70 0.35

10% North −9.74 0.16 −7.67 −7.96 −10.01 −11.33 −3.63 −6.71 3.90

10% East −9.79 0.14 −7.80 −8.08 −10.01 −11.49 −3.17 −6.11 2.29

25% West −24.17 0.47 −18.02 −18.85 −24.88 −28.17 −7.19 −15.81 5.73

25% South −23.63 0.28 −15.05 −16.05 −24.90 −28.40 −2.12 −8.94 0.85

25% North −24.35 0.41 −19.18 −19.91 −25.03 −28.34 −9.09 −16.78 9.76

25% East −24.39 0.39 −19.47 −20.14 −24.96 −28.66 −7.92 −15.26 5.71

50% West −48.33 0.95 −36.02 −37.69 −49.73 −56.32 −14.38 −31.61 11.47

50% South −47.26 0.55 −30.11 −32.10 −49.79 −56.80 −4.24 −17.89 1.69

50% North −48.69 0.83 −38.36 −39.82 −50.05 −56.67 −18.17 −33.56 19.52

50% East −48.75 0.82 −38.92 −40.27 −49.91 −57.32 −15.84 −30.53 11.43

3.5. Biomass of Bethlehem

A goal of the Bethlehem CAP is to gain an estimation of canopy cover for the entire
city of Bethlehem, including both street and park trees (measured by the city), as well as
private property and large forested areas, such as Lehigh University. After extracting the
forested areas in Bethlehem, the average vegetation carbon for the year 2020 was calculated
to provide an estimation of the biomass for the city of Bethlehem. The section of Bethlehem
that contains the most biomass is North Bethlehem, which has the highest proportion of
forested area to impervious surfaces (Table 7). The estimated total biomass of forests in
Bethlehem is 240 TgC. Future work is to calculate the biomass for Bethlehem using the tree
inventory collected by the city and compare it to the calculated biomass from this study.
This process would require applying species-specific allometric equations to the diameter
at breast height (dbh) values measured by the city’s tree inventory. The biomass calculated
from this study is expected to be higher due to the inclusion of trees in private properties
and other areas not accessible in the ground survey conducted.
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Table 7. Biomass for the four regions of Bethlehem shown in gC/m2 and TgC as of 2017.

Biomass of Bethlehem

gC/m2 TgC

West 16,134 43

South 16,083 4

North 21,893 161

East 15,778 32

4. Discussion
4.1. Assumptions

This study explored the effects of land cover change among impervious surfaces,
turflawns, and forests in Lehigh Valley and within the city of Bethlehem. The results
were based on model runs with and without LULCC using the MACA-downscaled and
bias-corrected NCAR CESM model RCP8.5 scenario from 2019 to 2099. The results were
all presented as differences from a control run without any LULCC change. Lehigh Valley
is the equivalent of one grid of the CESM climate model, which means that for future
data, MACA only captures the trend of a single grid. The bias correction is important to
ensure that the range of climate variation throughout the time period being modeled is
reasonable and therefore responsible for the correct range of ecosystem responses. The bias
correction in MACA is performed with respect to the GridMET data, which provided the
historical climate data [23]. We examined the historical and future climate input variables
to ensure they were properly bias-corrected. MACA has been shown to perform extremely
well in temperature, humidity, wind, and precipitation through the methods of calculation,
allowing for the joint downscaling of temperature and dew point temperature [24]. This
study uses the same climate conditions for all the experiments; thus the climate serves as a
control, and the only thing changing between the experiments is the LULC datasets.

Implementing the change to LULC in a single year may seem unrealistic, but the total
area change, if spread out over 80 years, is consistent with historical rates of change. The
area change generally falls within Pennsylvania’s average annual land cover change of
115,981 km2yr−1 [25]. While the 50% conversions of forests to lawn and impervious cohorts
in experiments 3 and 4 fall within that range when accumulated over 80 years, the 10%
experiments are less than that average rate. When breaking down the land use change
provided by NRCS into land use types, the average rate of land use change in developed
areas of 15,302 km2yr−1 is less than the amount of area converted in this study in a single
year, with even the 10% conversion of impervious to forest changing 18,823 km2 in a single
year (Table S2). However, the rates of change we imposed are consistent with historical
rates but just implemented in a single year rather than spread out over 80 years.

To explore the effects of applying the LULCC in a single year, we repeated experiments 6
and 12 with the same total change applied on a decadal basis. When converting from
impervious to forest (Figure S8a), there is virtually no difference in carbon or water variables
(Figure S8b,c) because the new forest is still very young and therefore does not substantially
increase the vegetation carbon. While young, growing forests are stronger carbon sinks, the
relative area each decade is still fairly small. When converting from forest to impervious
(Figure S9a), however, the change in vegetation carbon and cumulative NCE (Figure S9b)
takes a different path, with a more gradual change than the original results, but ends up in
the same place by the end of the century, although cumulative NEP is virtually the same.
The runoff (Figure S9c) is less at first since not as much impervious surface is being created
immediately but ends up at the same values by the end of the century.

Studies have shown that at least 10% LULCC is required to see a significant change
in carbon storage [1]. In this study, the only experiments in which over a 10% change
in the total region occurred were in the 25 and 50% conversion of forest to either lawn
or impervious (Table S3). The 25% and 50% experiments for F2L and F2I were outside
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the IAV range for the stocks (vegetation C, soil C, and soil moisture), but the 10% case
was also outside the IAV for the two carbon stocks, and water variables for the F2I case
(Figures 3 and 4). The F2I cases for GPP and NPP are also outside the IAV for the 25% and
50% cases. Generally, stocks have less IAV than fluxes do, resulting in the fluxes remaining
within the IAV, but not the stocks. Changes in NEP or NCE are generally smaller as they
are the difference between two fluxes (GPP and ecosystem respiration), which often change
in tandem. The IAV of the vegetation and ecosystem carbon fluxes and the water variable
fluxes tend to be quite large. The resulting variability in climate from year to year impacts
the ecosystem’s carbon fluxes. Due to this large IAV, the change in LULC would need to
be large in order to exceed the naturally large IAV in the ecosystem carbon fluxes. Both
temperature and moisture have large impacts on productivity [26–28], which can create
large IAV dependent on the climate conditions of that year [29,30]. For instance, if a year
is warmer and wetter than the previous year, productivity will also increase, resulting in
increased IAV.

4.2. Young vs. Old Forests

Young, fast-growing forests do not possess the same capacity for carbon storage as
old-growth forests [31,32]. The newly forested areas do not have the same carbon storage
that mature forests do, resulting in lesser immediate impacts from reforestation than
deforestation. While young to middle-aged forests have higher productivity (NPP) than
mature forests [33,34], mature forests have higher carbon storage than younger forests [35].
Reforesting efforts have been found to only make up for 10% of the carbon storage lost
in deforestation events [32]. The impact of carbon loss from deforestation is much more
profound than the sequestration of carbon from reforestation in the period right after the
LULCC. When forested area is reduced, there is a larger negative impact on carbon storage
than when forest area is created, due to both the lower rate of carbon storage by the young
forest and the immediate release of carbon upon timber harvest disturbances, especially if
some of the wood is burned. The assumption that 60% of the forest area is burned in the
same grid in which it is harvested results in a larger decrease in NCE initially than what
would be expected. In a real-world scenario, it is possible that more of the harvested wood
would likely be exported outside of the grid as timber harvest.

However, younger forests have important positive consequences for ecosystem ser-
vices. In terms of carbon, they sequester more carbon than mature forests, even if they store
less, although mature forests continue as small carbon sinks [36]. They will also eventually
grow into mature forests and store the carbon they have sequestered during their lifetime
both in their wood and soils [37]. Mature forests provide a source of oxygen, fix nitrogen,
improve air quality, and serve an important ecological niche, as they provide unique mi-
croclimates and habitats [38]. The carbon stored in larger trees will be sequestered even
longer if the products are used as timber and replaced by younger trees to take up even
more carbon, which is included in the TEM model. Conversely, the destruction of mature
forests without sequestering the wood releases a large amount of CO2 into the atmosphere.
There is also important cultural, religious, and medicinal value to older mature forests [38].

4.3. Conversion to Forest

When comparing L2F to I2F, a primary reason that carbon storage and productivity
increase more for the same percentage change in L2F is due to the fertilization of lawns.
Since the lawn cohort is fertilized, the new cohorts created in those areas continue to receive
nitrogen, allowing them to grow better than I2F. In an additional model run to examine
this effect, deciduous trees grew better with nitrogen fertilization and reached a higher
mature biomass. While coniferous trees are also not nitrogen-saturated, the fertilization
effect was not as impactful in these trees and will require further examination. In a real-
world scenario, the soils in formerly impervious areas have fewer nutrients than the soils
in greenspaces [39]. In order to maximize carbon storage and productivity in formerly
impervious areas, fertilization would be required. For both cases in which new trees are
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grown, the future period of 80 years is not enough to reach maximum vegetation carbon.
To enter the old-growth stage, forests often need to exceed the 100-year stand age [40].
Based on the definition of old-growth forest, the newly created forest from both lawns and
impervious areas will need more time to reach full maturity. However, existing trees in
Lehigh Valley are not old-growth, so the biomass of the trees at initialization may be larger
than reality, which would further enhance the loss of biomass due to deforestation.

The relation between vegetation and soil carbon is sometimes counterintuitive. In
the L2F case, there is increasing vegetation carbon but decreasing soil carbon. While the
percentage differences are great for the reduced soil carbon, the absolute differences are
actually less for the changes in soil carbon due to the larger absolute value of vegetation
carbon. However, turflawn is calibrated to a much larger value of soil organic carbon
(16,260 gCm−2 from Jo and McPherson [41], 1995 vs. 8290 gCm−2 for temperate forests
from Gaudinski et al. [42]). Therefore, when lawn is converted to forest, the heterotrophic
respiration rates are much higher for the new forest cohort, leading to a reduction in soil
carbon in spite of the increase in forest litter. On the other hand, when forest is converted
to impervious surface, heterotrophic respiration rates are set to 0, so there is no loss of any
existing soil below the surface and the amount of soil carbon is larger than a run without
the conversion. Studies have shown that urban soils, especially in temperate and colder
climates, accumulate 3–5 times more carbon than natural soils [43]. The conversion of
impervious surface to forest would release carbon due to years of sealed and cultural layers,
which is not considered in this study.

Altering the amount of area covered by lawns or impervious surfaces can cause
profound changes to carbon and water dynamics. Overall biomass, productivity, and
carbon storage do not show a strong increase when converting impervious surfaces to
forests but show a strong decrease when converting the forests to impervious surfaces
(Figure 2, Table 4b,d). The experiments in which forests are being converted to impervious
surfaces show a larger impact than when impervious surfaces are converted to forests.
However, it is important to note that more total area is changed when forests are converted
due to Lehigh Valley having more forested area than impervious area. The newly created
forests are also less productive due to their young stand age, while the conversion of forest
to impervious produces an immediate result. Similarly, converting forest to lawn has a
larger effect than converting lawn to forest. Due to the treatment of lawn being irrigated
in the model, the experiment with a higher proportion of lawn has higher soil moisture,
evapotranspiration, and runoff than the newly created forests.

Through the experiments, the conversion of lawns and impervious areas to forests
has only a small and often insignificant increase in carbon stocks and fluxes within Lehigh
Valley. Other studies suggest that increasing the amount of forested area can be effective
in increasing carbon uptake from the atmosphere [1,9]. The results of this study, while
agreeing with an increase in vegetation carbon, offset this increase with reduced soil
carbon due to the higher heterotrophic respiration rates. The increase in atmospheric CO2
contributes to the increased biomass as forests grow back under elevated CO2 levels [44].
While the CESM scenario does not display a significant increase in precipitation for Lehigh
Valley, the increased CO2 concentrations in an environment that is not moisture-limited
(since soil moisture remains steady) still results in increased biomass.

4.4. Water Dynamics

The use of a bucket model for moisture in TEM allows the model to account for the
effect of soil texture on porosity and saturation [45]. Since clay still has the ability to
hold soil moisture, we have chosen to entirely eliminate the water-holding capacity of
impervious surfaces. However, without allowing the water to run off without evaporation,
most of it evaporates rapidly in the model, given enough net irradiance and low humidity,
so we have had to eliminate ET for standing water on impervious surfaces in order to allow
the water to run off.
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When converting impervious surfaces to forests, the runoff would be expected to
decrease [46]. The benefits in reducing runoff, however, are dependent on the location of
the reforestation and can be diminished if there are impervious surfaces upland from where
the reforestation is occurring [46,47]. When increasing forests from impervious surfaces,
the bucket becomes larger, so soil moisture also increases and runoff decreases. In both
experiments involving forest and impervious surfaces, evapotranspiration decreases. In the
case of converting impervious to forest, soil evaporation decreases due to shading while
transpiration increases due to tree cover, but the effect of the soil evaporation decrease
dominates, especially since transpiration is small while the forests are still young with a less
developed canopy and smaller leaf area index. The conversion from forest to impervious
eliminates both transpiration and soil evaporation, although there can be consideration
of how much sitting water evaporates from the surface, which we have eliminated in
this study.

4.5. Bethlehem

The results within the city of Bethlehem show that the area with the largest potential
for increasing carbon storage and productivity is the South Side of Bethlehem. Compared
to the map of social vulnerability, this area aligns with South and East Bethlehem, which
are the most vulnerable regions within the city based on the map of social vulnerability
and have the highest heat island index [3]. The high proportion of impervious surfaces to
greenspaces, which is typical in lower-income neighborhoods, results in lower productivity
and carbon storage. In terms of the Bethlehem CAP, the city should prioritize increasing
greenspace in the South Side and east Bethlehem, as those are areas that will see the largest
improvement in carbon storage. However, unlike east Bethlehem, which is a heavily
industrial area, the South Side is a densely populated residential area. Thus, even though
both the South Side and east Bethlehem would largely benefit from increasing greenspace,
the South Side should be prioritized. Increasing the number of street trees has been found to
reduce rates of violent crimes, with underserved neighborhoods benefiting the most [48,49].
The neighborhoods that would gain the most in carbon storage from the increase in tree
cover are also the most socially vulnerable [3]. In addition, with these areas being the most
vulnerable, increasing green space will help bridge the gap in environmental equity. The
high proportion of impervious surfaces also results in a higher urban heat island effect,
which creates dangerous health conditions for the citizens within those neighborhoods [50].
By increasing greenspace within South and East Bethlehem, there is also a potential for
reducing the impact of the urban heat island effect [51].

However, there are some negative consequences to increasing green space too much
(for example, in the 50% case) in lower-income neighborhoods, in terms of affordable
housing. Bethlehem currently has only a 2% vacancy rate, far below the 6–8% considered
sustainable to provide affordable rents and prevent homelessness. Home sale prices and
rents have risen dramatically from 2019 to 2023, by 50% and 40%, respectively, creating
unaffordable rents for much of the population. The city has developed a comprehensive
plan [52] to address this housing crisis. However, environmental gentrification often comes
at the expense of affordable housing by driving real estate prices up and forcing low-income
residents to leave [53]. On the other hand, affordable housing can be built with significant
areas preserved as green and recreational space, as recently proposed by Bethlehem’s First
Presbyterian Church [54]. There needs to be a balance between the two needs that best
provides environmental justice for lower-income residents.

4.6. Magnitude of Carbon Sink

The average person has a carbon emission of 4.73 Tonnes Cyr−1, or 4.725 × 10−6

TgCyr−1 [55]. As of 2019, the population of Lehigh Valley is 840,000 citizens, resulting
in 3.97 TgC being produced annually. For the 2070–2099 period, the 50% change from
impervious to forest results in an 8.2 TgCyr−1 increase in NCE, which is equivalent to twice
the annual carbon emissions from the current population. When comparing the 50% change
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of lawn to forest for the same time period, there is a 30.0 TgCyr−1 increase in NCE, which is
equivalent to 7.5 times the annual carbon emissions from the current population. The L2F
change produces a larger increase than I2F, likely due to the higher nutrient content in the
L2F soils providing better growing conditions for the new trees. Certainly, adding fertilizer
when converting impervious surfaces to forests would increase forest growth even more.
Note that these increases are the result of the 50% L2F and I2F LULCC changing 4 and 5%
of the total area of the region, respectively (Table S3). To further develop greener cities and
mitigate the carbon footprint of cities, increasing greenspace even more will be necessary.

For Bethlehem, PA as of 2021, the population is 75,000, equating to 0.35 TgC being
produced annually. For the 2070–2099 period, combining the regions of Bethlehem, there
is an increase in NCE of 0.8 TgCyr−1 for the 50% change in L2F, which is equivalent to
2.3 times the annual carbon emissions of the current population. For the same period
and percentage of land use change, the change in NCE for I2F is 0.75 TgCyr−1, which
is equivalent to 2.1 times the carbon emissions of the current population. The values
are much closer for Bethlehem because of the extremely high proportion of impervious
surfaces (Figure 6, Table S4) compared to that of lawns within the city. While the growing
conditions are better in L2F, the amount of land converted in I2F for the city of Bethlehem
outweighs the lack of nutrients and therefore has a larger increase in carbon storage as
a result.
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4.7. Hypotheses Confirmation

The original hypotheses were partially supported. However, there were some signifi-
cant changes when less than 10% of the total LULCC of the region was changed (Table S3),
for example, particularly for the stocks of vegetation carbon, soil carbon, and soil moisture,
as well as ET in several of the L2F and I2F cases (Figure 3). The results showed that the
decrease in forests has a larger impact than increasing them by the same amount. The
effect of the burning of the products from deforestation makes the immediate impact of the
experiments in which forests are converted to lawns or impervious surfaces more profound.
The low carbon storage of young trees reduces the immediate impact of reforestation
(Figures 3 and 4). Reforestation had the largest effect on the South Side in terms of carbon
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stocks, vegetation carbon fluxes, and ecosystem carbon fluxes (Figure 5). Since this region
is the most socially vulnerable section of the city, increased carbon sequestration is an
ancillary benefit to greater tree cover for the residents.

5. Conclusions

Replacing lawns or impervious surfaces with tree cover can be an important part of
sustainable development in urban areas. However, a relatively large percentage of 10% of
the area will have to be converted to see a noticeable change in carbon storage, although
changes in some variables are evident with as little as 3% land use conversion. Due to the
maximum amount of each land use type that could realistically be converted, to achieve
more sustainable goals, multiple land use changes would need to occur in tandem, such as
replacing large areas of both impervious surfaces and turf lawns with forests. Converting
lawn to forest has a larger effect in this study than converting impervious surface to forest
due to the higher nutrients in the soils of the lawn, but fertilizing converted impervious
surfaces should increase their carbon storage capacity. While these transitions may be
difficult, the replacement of parking lots or the inclusion of more trees in residential areas
and lawns or even city parks will be crucial for reaching these goals. The South Side also
has many parks that are solely abandoned fields, making these areas ideal candidates for
reforestation efforts, although conversations with residents also reveal the importance of
open space for children to play.

Based on the modeling experiments, higher proportions of forest to impervious surface
and lawn result in higher productivity and carbon sequestration, which agrees with other
studies [1,2,9]. With urbanization expected to increase in the future due to increasing
populations, there is a potential for a reduction in the amount of carbon storage due to
the removal of trees. Even after increasing tree cover, the forests will not have the same
carbon storage capacity as mature forests, which reduces the immediate impact, although
younger forests sequester carbon at a faster rate than mature forests. Therefore, further
deforestation will have a larger impact than planting new trees in the same size area. While
the younger trees will not store as much carbon in the short term, the negative impacts of
deforestation are felt immediately.

With an overarching goal of producing more sustainable cities capable of sequestering
more carbon and decreasing the effects of climate change, it is clear that increasing the
number of trees within cities will be necessary. The sensitivity experiments show that even
moderate changes to land use (10%) can have a positive impact on carbon sequestration
within cities. In several scenarios with less than 10% change in total area, the results end up
being significant, suggesting that even smaller changes can be impactful. Urban areas with
high proportions of impervious surfaces or abandoned fields have the largest potential
for change and should be prioritized when considering implementing land use changes
with the goal of sustainability. In addition to enhanced carbon sequestration, added tree
cover reduces crime rates and reduces the urban heat island, making cities more livable
and reducing environmental inequities.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/environments11070133/s1. Table S1. Remote sensing data for the
summer and winter images used. Data are provided by USGS Earth Explorer. Table S2. Total area
converted from each experiment as shown by the percent change for the Lehigh Valley in km2.
Table S3. Percent of the total area of the Lehigh Valley changed by each LULCC. Table S4. The
percentage of each land use type within the four regions of Bethlehem, PA. Table S5. Landsat Band
wavelength and resolutions provided by USGS. Figure S1. Gridded, random-trees classification
of the Lehigh Valley overlaid with a 4 km fishnet. Bethlehem is shown as the highlighted region.
Classification based on Landast 8 imagery from 30 July 2017. Figure S2. Fractional land cover
based on aerial imagery from 30 July 2017. Values are displayed in percentages for (a) impervious,
(b) barren, (c) coniferous forest, (d) deciduous forest, (e) lawn, (f) cropland, and (g) pasture. Figure S3.
TEM flowchart showing the fluxes that move carbon, nitrogen, and water between the atmosphere,
vegetation, and soil (Felzer et al., 2009). Figure S4. a–d. Mapped results of Net Carbon Exchange for

https://www.mdpi.com/article/10.3390/environments11070133/s1
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the Lehigh Valley shown on 1/24th degree grids. Results reflect the difference between the control
run and the 50% land use conversions for each of the experiments for the 2070-2099 period. (a) Lawn
to Forest, (b) Impervious to Forest, (c) Forest to Lawn, and (d) Forest to Impervious. Figure S5. a–d.
Mapped results of Net Primary Productivity for the Lehigh Valley shown on 1/24th degree grids.
Results reflect the difference between the control and the 50% land use conversions for each of the
experiments for the 2070–2099 period. (a) Lawn to Forest, (b) Impervious to Forest, (c) Forest to
Lawn, and (d) Forest to Impervious. Figure S6. a–d. Mapped results of Vegetation Carbon for the
Lehigh Valley shown on 1/24th degree grids. Results reflect the difference between the control and
the 50% land use conversions for each of the experiments for the 2070–2099 period. (a) Lawn to Forest,
(b) Impervious to Forest, (c) Forest to Lawn, and (d) Forest to Impervious. Figure S7. a–d. Mapped
results of runoff for the Lehigh Valley shown on 1/24th degree grids. Results reflect the difference
between the control and the 50% land use conversions for each of the experiments for the 2070–2099
period. (a) Lawn to Forest, (b) Impervious to Forest, (c) Forest to Lawn, and (d) Forest to Impervious.
Figure S8. Repeat of experiment 6 (50% Impervious to Forest) with same areal change implemented
each decade instead of in a single year. (a) aerial change of forest and impervious surface, (b) nep,
nce, and vegetation carbon for the run with single disturbance and the run with decadal disturbances,
and (c) runoff for the single and decadal disturbance runs. Figure S9. Repeat of experiment 12 (50%
Forest to Impervious) with same areal change implemented each decade instead of in a single year.
(a) aerial change of forest and impervious surface, (b) nep, nce, and vegetation carbon for the run
with single disturbance and the run with decadal disturbances, and (c) runoff for the single and
decadal disturbance runs.
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