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Abstract: Pesticides affect biota inside and outside agricultural fields due to their intrinsic mode of
action. This study investigated whether pesticide active substances (AS) approved for conventional
agriculture in Europe differ in their ecotoxicity from AS approved for organic agriculture. The
evaluation was based on official ecotoxicological data for surrogate honeybee, bird, and earthworm
species, which also serve as a reference for official environmental risk assessments in the pesticide
authorization process. In October 2022, 268 chemical-synthetic AS approved for conventional and
179 nature-based AS approved for organic agriculture were listed in the EU Pesticide Database.
Ecotoxicological data were only available for 254 AS approved for use in conventional agriculture
and 110 AS approved for use in organic agriculture. The results showed a higher ecotoxicity of
conventional AS: 79% (201 AS), 64% (163 AS) and 91% (230 AS) were moderately to acutely toxic
to honeybees, birds, and earthworms, respectively, compared to 44% (48 AS), 14% (15 AS) and 36%
(39 AS) of AS approved for organic agriculture. We have only considered the potential ecotoxicities of
individual substances in this assessment; actual exposure in the field, where multiple AS formulations
with other chemicals (including impurities) are applied, will be different. Nevertheless, these results
emphasize that an increase in organic agriculture in Europe would reduce the ecotoxicological burden
on biodiversity and associated ecosystem services.

Keywords: environmental effects; plant protection; European agriculture; biodiversity loss; non-
target effects

1. Introduction

The decline in biodiversity is caused by various factors such as the destruction of
habitats, climate change, or the intensity of land use [1]. Pesticides, by their mode of action,
influence the overall biodiversity in agroecosystems and beyond [2–4]. The European
Union (EU) is aware of this fact and has proposed to reduce the use of hazardous pesticides
and increase the proportion of organic farmland [5]. However, critics of this proposal argue
that an increase in organic agriculture would lead to a higher overall hazard to non-target
organisms in Europe, as the application rates of nature-derived pesticides used in organic
farming are much higher than those of synthetic pesticides used in conventional farming [6].
In contrast, an assessment of hazards to humans and aquatic organisms has shown that
the active substances (AS) used in pesticides of conventional agriculture are by orders of
magnitude more toxic than the AS used in organic farming [7]. The extent to which other
non-target organisms such as honeybees, birds, or earthworms would be affected is not
known. The aim of this study is to assess this.

The AS approved for use in conventional agriculture in the EU are mainly carbon-
based, synthetic chemicals produced with large amounts of fossil fuels [8], while the
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AS approved for use in organic agriculture are of natural origin, such as plant extracts,
pheromones, microorganisms, or inorganic elements [7]. Regardless of the origin of an AS,
it can only be used in a pesticide in the EU if its safety has been officially approved in accor-
dance with Regulation (EC) 1107/2009 and listed in Annex 1 of Directive 91/414/EEC [9].
In environmental risk assessments (ERA), the effects on non-target organisms are tested
on a wide range of surrogate species representing the wider biodiversity. The endpoints
of acute toxicity tests indicate, for example, the dose at which 50% of the population dies
after short-term exposure (acute lethal dose LD50) or the concentration (LC50). In chronic
toxicity tests, the highest concentration is determined at which no effects are observed after
long-term exposure (NOEC; [10]).

Honeybees, birds, and earthworms are commonly used surrogate taxa in ERAs to
evaluate the potential impact on non-target organisms. Honeybees are important insect
pollinators that affect the yields of many crops such as apples, melons, cherries, pumpkins,
or tomatoes [11], although wild bees are often more efficient pollinators [12]. Pesticides can
be carried into hives through the storage of pollen and nectar, which can expose subsequent
generations to pesticides without direct contact in the field [13]. Birds also play a very
important role in agroecosystems as natural pest controllers that consume potential insect
pests [14]. In addition, birds contribute to the diversity of wild plants by spreading plant
seeds [15]. Pesticides have been shown to cause numerous lethal and sublethal effects in
birds, affecting survival, reproduction, behavior, and orientation [16–20]. Pesticides also
affect the abundance, biomass, richness, and diversity of soil fauna communities in a wide
range of environmental conditions [21,22]. Earthworms are often tested as representatives
of soil organisms as they convert organic matter into humus, which is very important for
soil fertility and plant production [23]. Pesticides have been shown to affect the activity
and reproduction [24,25] or the midgut bacteria of earthworms [26].

In the field, non-target organisms can be exposed to pesticides at different concen-
trations, with different frequencies and by different routes. Organisms can come into
direct contact with the pesticide when it is applied in the field or be affected by drift to
neighboring fields. In the case of systemic pesticides, the AS are distributed among all parts
of the treated plant, including pollen, nectar, and roots, and can affect non-target organisms
feeding on these plants above- and belowground [27].

The objective of this study was to compare the potential ecotoxicological impact of all
pesticide active ingredients approved in Europe for conventional or organic agriculture.
We focused on honeybees, birds, and earthworms as they inhabit European agroecosystems
and because they are often used as surrogate species in ERAs. To our knowledge, this
assessment is novel as no studies have yet been conducted comparing all pesticide AS
approved in the EU between conventional and organic agriculture. The results could help
to assess whether a further strengthening of organic agriculture would lead to a higher
potential ecotoxicity and burden for biodiversity in agroecosystems in Europe.

2. Materials and Methods
2.1. Data Procurement

The AS authorized for conventional and organic agriculture were obtained
from the official EU Pesticide Database published by the European Commission
(https://ec.europa.eu/food/plants/pesticides/eu-pesticides-database_en; accessed on 23
June 2024). In summary, 447 AS were authorized by October 2022, of which 268 AS were
for use in conventional agriculture (conAS) and 179 in organic farming (orgAS), which
are regulated in Annex 1 of Regulation 2021/1165 [28]. Substances that are approved for
organic farming can also be used in conventional agriculture, but not vice versa.

For the present study, the ecotoxicological endpoints of conAS were taken from the
Pesticide Properties Database of the University of Hertfordshire (PPDB) [29]. The ecotoxi-
cological endpoints of orgAS were derived from the Bio-Pesticide Database (BPDB), which
is an addition to the PPDB. Typically, the tests from which these ecotoxicological endpoints
were derived are conducted with surrogate species such as honeybees (Apis mellifera), birds
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(Colinus virginianus, Corturnix japonica, and Anas platyrhynchos), and earthworms (Eisenia
foetida). For the current evaluation, we took the acute oral and contact LD50 in µg bee−1

for honeybees, the acute LD50 in mg kg−1 and chronic NOEL in mg kg bw−1 d−1 for birds,
and the LC50 in mg kg soil−1, as well as the NOEC values in mg kg soil−1 for earthworms
from the PPDB and BPDB. LD50 values with a “greater than” sign (>) were treated as equal
to the value, which may overestimate the associated hazards.

In the PPDB and BPDB, there was no ecotoxicological assessment for 14 conAS and
69 orgAS for the surrogate species under consideration, so they were excluded from the cur-
rent analyses. Therefore, 254 conAS and 110 orgAS were considered for the comparison of
potential ecotoxicity. We considered all AS that were ecotoxicologically assessed, including
those used for post-harvest applications or for storage gases such as ethylene and CO2.

2.2. Comparison of Potential Ecotoxicity

In the PPDB, the acute toxicity of an AS for honeybees and birds was given as the
LD50 value. For honeybees, the acute oral toxicity was mainly assessed using OECD tests
no. 213 and no. 214 [30,31]. For birds, the acute toxicity in birds was assessed using
OECD test no. 223 [32]; the acute LD50 and chronic NOEL for birds was determined using
OECD test no. 205 [33]. Earthworm ecotoxicity was assessed using OECD test no. 207;
the ecotoxicological endpoint of acute toxicity in earthworms is expressed as acute LC50
in mg kg soil−1 [34]. Chronic toxicity to earthworms is usually assessed using OECD test
no. 222 [35] by determining the endpoint “no observed effect concentration” NOEC in
mg kg−1 soil.

Based on these ecotoxicological data, we evaluated all AS using the PPDB classification
system, which consists of three toxicity categories: low, moderately, and highly toxic
(Table 1).

Table 1. Terminology used to classify toxicity adapted from PPDB [29].

Organism Species Exposure Ecotoxicological
Endpoint Thresholds Reference

Low Toxic Moderately
Toxic Highly Toxic

Honeybees
Western

honeybee
(Apis mellifera)

Oral and contact,
48 h

Acute LD50
(µg bee−1) >100 1–100 <1

OECD test no. 213:
Honeybees, acute
oral toxicity test;

OECD test no. 214:
Honeybees, acute

contact toxicity test

Birds

Mallard duck
(Anas

platyrhynchos),
bobwhite quail

(Colinus
virginianus),

Japanese quail
(Coturnix
japonica)

Oral, 14 days Acute LD50
(mg kg bw−1) >2000 100–2000 <100

OECD test no. 223:
Avian, acute oral

toxicity test;
OECD test no. 206:

Avian, reproduction test

Mixed into food
before egg

deposition, 21 days

Chronic NOEL
(mg bw−1 d−1) >200 10–200 <10

Earthworms Compost worm
(Eisenia foetida)

Mixed into
artificial soil,

14 days

Acute LD50
(mg kg soil−1) >1000 10–1000 <10

OECD test no. 207:
Earthworm, acute

toxicity test;
OECD test no. 222:

Earthworm,
reproduction test

Mixed into
artificial soil,

28 days

Chronic NOEC,
reproduction

(mg kg soil−1)
>100 0.1–100 <0.1

Even if the LD50 records the lethality, the calculated number of LD50 doses per AS
does not correspond to the actual number of non-target organisms killed in the field.
Their effect may also be indirect [36] or, depending on the actual exposure, may have no
effect at all. Furthermore, no interactions between different simultaneously applied AS
were considered.



Environments 2024, 11, 137 4 of 18

3. Results
3.1. Comparison of Active Substances

Of the 254 conAS, 91 AS were herbicides (36%), 81 AS were fungicides (32%), 42 AS
were insecticides (17%), and 25 AS (10%) were plant growth regulators (Figure 1). The
“Others” category included nematicides, rodenticides, molluscicides, and other AS.
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Figure 1. Pesticide types of active substances (AS) allowed in conventional farming (conAS, n = 254)
and organic farming (orgAS, n = 110) in Europe according to the official EU Pesticide database.

Of the 110 orgAS, 57 AS were insecticides (52%), 35 AS were fungicides (32%), 7 AS
were herbicides (6%), and 3 AS (2.7%) were plant growth regulators (Figure 1). All four fatty
acids (methyl decanoate, lauric acid, methyl octanoate, oleic acid) and all pheromones were
counted separately. Pelargonic acid, the four fatty acids, sodium chloride, and citronella oil
were categorized as herbicides in the database but are used in the non-agricultural sector
and are not permitted in organic farming [28]. If an AS fell into more than one category,
it was only counted once. For example, azadirachtin was only counted as an insecticide,
although it is also authorized as an acaricide in Europe [28]. Supplementary Table S1 lists
all conAS and Supplementary Table S2 lists all orgAS used in this study.

3.2. Comparison of Pesticide Classes

Based on the information contained in the PPDB and BPDB, the pesticide classes were
compared in terms of their toxicity to honeybees, birds, and earthworms.

Moderate acute toxicity to honeybees was found for 79.1% of the evaluated conAS
and 43.6% of the evaluated orgAS (Table 2). Supplementary Table S3 provides an overview
of the ecotoxicological evaluation of all AS considered in this study.

Moderate or high acute toxicity to birds was observed in 64.2% (163 AS) of conAS and
in 13.6% (15 AS) of orgAS (Table 2). Moderate chronic toxicity to birds was found in 48.0%
(122 AS) of conAS, but only in 1.8% of orgAS. Of the conAS, 9.1% (23 AS) were highly
chronically toxic to birds, but no orgAS fell into this category (Table 2).

Most of the conAS, 90.6% but only 35.5% of orgAS were moderately or highly acutely
toxic to earthworms (Table 2). In terms of chronic toxicity to earthworms, 58.7% of conAS
were moderately chronically toxic, but only 7.3% of orgAS were. Of the conAS, 0.3% (1 AS)
were highly chronically toxic to earthworms but no orgAS fell into this category.
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Table 2. Overview of the ecotoxicological assessment of all pesticide active substances (AS) approved
in the European Union (n = 447). Some AS could not be assessed because no ecotoxicological profile
was available. Because AS can be toxic to different organisms, the addition of the counts can be higher
than the total number of AS considered. See Supplementary Table S4 for more details on the specific
toxicity categories among test organisms.

Ecotoxicological Classification Approved in Conventional Agriculture Approved in Organic Agriculture

% n % n

Total number of EU-approved AIs 60 268 40 179
Of these, those that were

ecotoxicologically assessed 94.8 254 61.5 110

Honeybees—moderate or high
acute toxicity 79.1 201 43.6 48

Birds—moderate or high acute toxicity 64.2 163 13.6 15
Birds—moderate or high chronic toxicity 57.1 145 1.8 2

Earthworms—moderate or high
acute toxicity 90.6 230 35.5 39

Earthworms—moderate or high
chronic toxicity 58.7 149 7.3 8

3.3. Potential Hazards to Honeybees

Honeybee acute contact toxicity was caused by 18 highly toxic and 164 moderately
toxic conAS, while these categories were caused by 2 highly toxic and 34 moderately toxic
orgAS (Figure 2). The acute oral toxicity to honeybees was contributed by 16 highly toxic
conAS and 116 moderately toxic conAS; for orgAS, acute oral toxicity was contributed by
3 highly toxic AS and 26 moderately toxic orgAS (Figure 2).
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Figure 2. Ecotoxicological risk assessment of active substances approved in Europe in conventional
agriculture (conAS; n = 254) and organic agriculture (orgAS; n = 110) for honeybees based on acute
oral LD50 (µg bee−1) and acute contact LD50 (µg bee−1).

The ranking of the most toxic AS in terms of contact and oral toxicity to honeybees
is dominated by insecticides. The most toxic conAS regarding contact toxicity to honey-
bees were abamectin, deltamethrin, and gamma-cyhalothrin, with LD50 of 0.001, 0.002,
and 0.005 µg bee−1, respectively (Table 3). The most toxic orgAS regarding honeybee
contact toxicity were spinosad, pyrethrins, and azadirachtin, with LD50 of 0.004, 0.013,
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and 11.81 µg bee−1, respectively (Table 3). The most toxic conAS regarding honeybee oral
toxicity were abamectin, milbemectin, and deltamethrin, with LD50 of 0.004, 0.026, and
0.070 µg bee−1, respectively (Table 3). The most toxic orgAS regarding honeybee oral
toxicity were spinosad, (Z)-8-Dodecen-1-ol, and (Z)-8-Dode-cen-1-yl acetate, with LD50 of
0.06, 0.85, and 0.85 µg bee−1, respectively (Table 3).

Table 3. Honeybee top-10 active substances (AS) approved in Europe in conventional agriculture
(conAS; n = 254) and organic agriculture (orgAS; n = 110) based on acute oral and acute contact LD50.
F = fungicide, H = herbicide, I = insecticide.

Honeybee Oral Toxicity Honeybee Contact Toxicity

Rank Type
LD50

(µg Bee−1)
conAS Type

LD50
(µg Bee−1)

orgAS Type
LD50

(µg Bee−1)
conAS Type

LD50
(µg Bee−1)

orgAS

1 I 0.004 Abamectin I 0.06 Spinosad I 0.001 Abamectin I 0.004 Spinosad
2 I 0.026 Milbemectin I 0.85 (Z)-8-Dodecen-

1-ol I 0.002 Deltamethrin I 0.013 Pyrethrins

3 I 0.07 Deltamethrin I 0.85 (Z)-8-Dodecen-
1-yl acetate I 0.005 Gamma-

cyhalothrin I 11.81 Azadirachtin
4 I 0.14 Spinetoram I 8.1 Azarirachtin I 0.023 Cypermethrin F 12.5 COS-OGA
5 I 0.146 Sulfoxaflor F 10 COS-OGA I 0.024 Pyridaben I 20 Isaria

fumosorosea

6 I 0.16 Formetanate F 12.1 Copper
oxychloride I 0.024 Spinetoram F 22 Copper oxide

7 I 0.172 Cypermethrin F 23.3 Bordeaux
mixture I 0.025 Milbemectin F 23.5

Tribasic
copper
sulfate

8 I 0.21 Esfenvalerate F 24
Potassium
hydrogen
carbonate

I 0.036 Emamectin H 25 Methyl
decanoate

9 I 0.22 Pirimiphos-
methyl F 40 Tribasic copper

sulfate I 0.038 Etofenprox H 25 Lauric acid

10 I 0.24 Aluminum
phosphide F 48 Streptomyces

K61 I 0.038 Lambda-
cyhalothrin H 25 Methyl

octanoate

The most toxic orgAS fungicide to honeybees was COS-OGA, with an LD50 for contact
toxicity of 12.5 µg bee−1 and an LD50 for oral toxicity of 10.0 µg bee−1 (Table 4). The
most toxic orgAS herbicide for honeybees was methyl decanoate, with an LD50 for contact
toxicity of 25.0 µg bee−1 (Table 3)

Table 4. Bird top-10 pesticide active substances (AS) approved in Europe in conventional agriculture
(conAS; n = 254) and organic agriculture (orgAS; n = 110) for birds based on acute LD50 (mg kg bw−1)
and chronic NOEL (mg kg bw−1 d−1). F = fungicide, H = herbicide, I = insecticide, P = plant growth
regulator, R = rodenticide.

Bird Chronic Toxicity Bird Acute Toxicity

Rank Type
LD50

(mg kg bw−1 d−1)
conAS Type

LD50
(mg kg bw−1 d−1)

orgAS Type
LD50

(mg kg bw−1)
conAS Type

LD50
(mg kg bw−1)

orgAS

1 I 0.7 Abamectin I 68.4 Spinosad I 3.2 Oxamyl F 72.4 Tribasic copper
sulfate

2 I 1.5 Oxamyl I 82 Pyrethrins I 10 Fosthiazate F 173 Copper
oxychloride

3 I 2 Tefluthrin F 2222
Trichoderma
asperellum
strain T25

I 11.5 Formetante F 223 Copper
hydroxide

4 I 2.1 Bifenazate 1405 Orange oil R 12.9 Zinc phosphide F 616 Bordeaux
mixture

5 I 2.5 Fosthiazate I 20.9 Pirimicarb I 1000 Azadirachtin
6 H 2.95 Prosulfuron I 26 Abamectin F 1000 Bacillus amyloliq-

uefaciens

7 I 3.3 Lambda-
cyhalothrin I 49 Magnesium

phosphide F 1183 Copper oxide

8 A 3.65 Fenpyroximate I 49 Aluminum
phosphide F 1667 Ampelomyces

quisqualis
9 I 4.29 Cypermethrin I 76 Emamectin F 1700 Laminarin
10 F 4.3 Ipconazole I 81 1-methylcyclo

propene I 2000 Spinosad

3.4. Potential Hazards to Birds

Acute bird toxicity was contributed by 12 highly toxic and 151 moderately toxic
conAS, while these categories were contributed by 1 highly toxic and 15 moderately toxic
orgAS (Figure 3). The chronic toxicity to birds was contributed by 23 highly toxic and
122 moderately toxic conAS, while these categories were contributed by 0 highly toxic and
2 moderately toxic orgAS (Figure 3).
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The ranking of the most toxic AS in terms of acute toxicity to birds was dominated by
insecticides and fungicides. The most toxic conAS regarding bird acute toxicity were the
insecticides oxamyl, fosthiazate, and formetante, with LD50 of 3.2, 10.0, and 11.5 mg bw−1,
respectively (Table 4). The most toxic orgAS regarding bird acute toxicity were the fungi-
cides tribasic copper sulfate, copper oxychloride, and copper hydroxide, with LD50 of 72.4,
173.0, and 223.0 mg bw−1, respectively (Table 4). The most toxic conAS regarding bird
chronic toxicity were the insecticides abamectin, oxamyl, and tefluthrin, with NOEL of
0.7, 1.5, and 2.0 mg kg bw−1 d−1, respectively (Table 4). The most toxic orgAS regarding
bird chronic toxicity were the insecticides spinosad, pyrethrin, and the fungicide Tricho-
derma asperellum strain T25, with NOEL of 68.4, 82, and 2222 mg kg bw−1 d−1, respectively
(Table 4).

The most toxic conAS herbicide for birds was metribuzin with an LD50 of 164.0 mg bw−1;
the most toxic rodenticide of conAS was zincphosphide with an LD50 of 12.9 mg bw−1

(Table 4).

3.5. Potential Hazards to Earthworms

Acute toxicity to earthworms was contributed by 6 highly toxic and 224 moderately
toxic conAS, while these categories were contributed by 39 moderately toxic orgAS; there
was no highly earthworm-toxic orgAS (Figure 4). Earthworm chronic toxicity was con-
tributed by 1 highly toxic and 148 moderately toxic conAS and 8 moderately toxic orgAS,
while no orgAS was considered highly chronically toxic to earthworms (Figure 4).

The ranking of the most toxic AS regarding earthworm acute and chronic toxicity is
dominated by various pesticide classes including molluscicides and plant growth regulators.
The most toxic conAS for earthworm acute toxicity were the insecticides sulfoxaflor and
tefluthrin and the fungicide mefentrifluconazole, with LD50 of 0.9, 1.0, and 2.7 mg kg−1 soil,
respectively (Table 5). The most toxic orgAS regarding earthworm acute toxicity were the
molluscicide ferric phosphate, the insecticide pyrethrins, and the plant growth regulator
ethylene, with LD50 of 10.0, 23.7, and 60.0 mg kg−1 soil, respectively (Table 5). The most
toxic conAS in terms of earthworm chronic toxicity were the fungicide dimoxystrobin,
the insecticide sulfoxaflor, and the herbicide nicosulfuron, with LD50 of 0.09, 0.1, and
0.1 mg kg−1 soil, respectively (Table 5). The most toxic orgAS to earthworm chronic toxicity
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were the insecticides pyrethrins and spinosad and the molluscicide ferric phosphate, with
LD50 of 0.3, 1.8, and 6.7 mg kg−1 soil, respectively (Table 5).
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Figure 4. Earthworm acute and chronic toxicity of active substances (AS) approved in Europe in
conventional agriculture (conAS; n = 254) and organic agriculture (orgAS; n = 110) based on acute
LC50 (mg kg soil−1) and chronic NOEC (mg kg soil−1).

Table 5. Ecotoxicological risk assessment of active substances approved in Europe in conventional
agriculture (conAS; n = 254) and organic agriculture (orgAS; n = 110) for earthworms based on acute
LC50 (mg kg soil−1) and chronic NOEC (mg kg soil−1). F = fungicide, H = herbicide, I = insecticide,
M = molluscicide, P = plant growth regulator.

Earthworm Chronic Toxicity Earthworm Acute Toxicity

Rank Type
NOEC (mg kg

soil−1)
conAS Type

NOEC (mg kg
soil−1)

orgAS Type
LC50

(mg kg soil−1)
conAS Type

LC50
(mg kg soil−1)

orgAS

1 F 0.09 Dimoxystrobin I 0.3 Pyrethrins I 0.9 Sulfoxaflor M 10 Ferric
phosphate

2 I 0.1 Sulfoxaflor I 1.8 Spinosad I 1 Tefluthrin I 23.7 Pyrethrins
3 H 0.1 Nicosulfuron M 6.7 Ferric phosphate F 2.7 Mefentrifluconazole P 60 Ethylene

4 I 0.109 Milbemectin F 15 Tribasic copper
sulfate

P 5 1-
methylcyclopropene H 105 Methyl

decanoate
5 H 0.13 Sulfosulfuron F 15 Copper hydroxide I 6.5 Dazomet H 105 Lauric acid
6 I 0.16 Tefluthrin F 15 Copper oxide I 9 Acetamiprid H 105 Methyl

octanoate

7 I 0.165 Deltamethrin F 40.5 Copper
oxychloride I 10.6 Esfenvalerate H 105 Oleic acid

8 H 0.167 Picloram A 55.35 Paraffin oil P 11.8 Sodium
5-nitroguaiacolate H 105 Pelargonic acid

9 H 0.17 Beflubutamid H 250 Pelargonic acid A 13.3 Fenazaquin F 155 Tribasic copper
sulfate

10 F 0.175 Fluazinam I 1000 Cydia pomonella
Granulovirus

H 15.7 Flazasulfuron F 195.5 Bordeaux
mixture

4. Discussion

In this comprehensive evaluation of the ecotoxicity of all AS approved for use in
agriculture in the EU, we found that the AS approved for use in conventional agriculture
generally have a higher inherent ecotoxicity to honeybees, birds, and earthworms than
the AS approved for use in organic agriculture. Most synthetic AS used in conventional
agriculture act through selective interaction with biochemical processes that are important
for the survival of populations of pests and disease organisms [37]. In contrast to these
pesticidal AS, microorganisms and pheromones, as well as the vast majority of plant
extracts and mineral AS approved in organic agriculture, exert their effects via a non-
specific chemical, physicochemical, or physical mode of action, by deterring or confusing
pests or the strengthening of the plant’s defense [38]. The strengthening of plant defenses
is also the main reason why the development of resistance is rarely observed in orgAS in
contrast to conAS [39]. However, it is important to note that our evaluation was only based
on the intrinsic toxicity of the approved AS to the non-target organisms considered, based
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on the available LD50/LC50 values for individual AS, and that the actual exposure in the
field will be different with multiple applications of pesticides.

4.1. Honeybee Ecotoxicity

Honeybees and other pollinators play an important role in providing pollination
services, maintaining biodiversity, and supporting crop production. Given the overall
decline in insect biodiversity, assessments of potential threats must be taken seriously.

Overall, 79% of conAS (201 conAS) but only 44% of orgAS (48 orgAS) were moderately
or highly toxic to honeybees, both by contact and oral exposure. For conAS, this was
caused by herbicides (72 conAS), fungicides (65 conAS), and, to a lesser extent, insecticides
(37 conAS). For orgAS, this toxicity was mainly contributed by insecticides (22 orgAS),
fungicides (19 orgAS), and, to a lesser extent, herbicides (4 orgAS).

The top-three of moderately or highly honeybee toxic conAS (abamectin, deltamethrin,
gamma-cyhalothrin) were 791 times more toxic than the top-three orgAS (spinosad,
pyrethrins, azadirachtin).

The most toxic conAS for honeybees was the insecticide abamectin and the most toxic
orgAS was the insecticide spinosad. However, abamectin (LD50 = 0.001 µg bee−1) was four
times more toxic to honeybees than spinosad (LD50 = 0.004 µg bee−1). Both abamectin and
spinosad are bacterial fermentation products of soil bacteria: abamectin of the actinomycete
Streptomyces avermitilis, while spinosad is derived from the actinomycete Saccharopolyspora
spinosa. Usually, there are restrictions on the use of pesticides only when honeybees are
not actively foraging in the crop (e.g., for spinosad, deltamethrin, and others); however,
this does not take into account the possible drift onto flowering weeds in the vicinity of the
field [40]. The approval for the AS abamectin was renewed on 1 April 2023, but only for use
in greenhouses, as a high risk was identified for several groups of non-target organisms [41].
The second highly toxic orgAS for honeybees was pyrethrins, with an LD50 of 0.013 µg−1.
While spinosad and pyrethrins were the only two orgAS with high bee toxicity after contact
exposure, a total of 18 conAS fell into this category.

We found that two orgAS insecticidal pheromones ((Z)-8-Dodecen-1-ol, (Z)-8-Dodecen-
1-yl acetate) were classified as highly toxic to honeybees after oral exposure. The highly
toxic risk exists for honeybee larvae after exposure to pheromone residues, whereas the
risk for adult honeybees is considered negligible [42,43]. In addition to synthetic pesticides,
biopesticides such as microbial, biochemical, and plant-incorporated protectant-based
products can also have lethal and sublethal effects on honeybees and native pollinators [44].

In general, both lethal and sublethal effects have been documented for conAS [13,45].
Pesticides have been shown to affect the functioning of the nervous system [46], the res-
piratory system [47], the digestive system [48], and the reproductive system [49], as well
as eating behavior [13], orientation [50], and mobility [51]. Even low doses of AS can
impair the immune system of pollinators, making them less resistant to infections and
parasites such as the Varroa mite [52]. Neurotoxic insecticides inhibit normal nerve system
functions by different mechanisms such as chlorpyrifos, which inhibits the enzyme acetyl-
cholinesterase [53], imidacloprid, which blocks nicotinic acetylcholine receptors [54], and
lambda-cyhalothrin, which interferes with sodium channels [46]. These effects cause nerval
overstimulation in non-target organisms, leading to paralysis and eventual death [55,56].
However, spinosad [57] and lambda-cyhalothrin [46] have also been shown to impair
midgut functions and functions associated with nutrient absorption following oral expo-
sure. Other conAS can also lead to irritation in orientation and communication [58].

4.2. Bird Ecotoxicity

Declines in European bird populations have been reported for decades, and agri-
cultural intensification, particularly the heavy use of pesticides and fertilizers, has been
identified as the main cause of declines in most bird populations, especially invertebrate
feeders [59].
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Overall, 64% of conAS (163 conAS) but only 14% of orgAS (15 orgAS) were moderately
or highly acutely toxic to birds. Almost 57.1% of conAS (145 conAS) showed moderate or
high chronic toxicity to birds, while 2 orgAS fell into this category. The moderate or high
acute bird toxicity of conAS was mainly caused by herbicides (60 conAS) and fungicides
(55 conAS) and, to a lesser extent, insecticides (19 conAS). Among orgAS, moderate or
high acute bird toxicity was mainly attributable to fungicides (11 orgAS) and insecticides
(3 orgAS), while no herbicidal orgAS contributed to this category. Moderate or high chronic
toxicity to birds was mainly contributed by herbicides (60 conAS) and fungicides (55 conAS).
The only 2 orgAS classified as moderately toxic were insecticides.

The top-three moderately or highly acute toxic AS to birds among the conAS (oxamyl,
fosthiazate, formetante) were, on average, approximately 20 times more toxic than the
top-three orgAS (tribasic copper sulfate, coper oxychloride, copper hydroxide).

While 12 conAS were highly toxic to birds, only 1 orgAS, tribasic copper sulfate,
belonged to this category. Other copper-based substances were categorized as moderately
toxic, such as copper oxychloride, copper hydroxide, Bordeaux mixture, and copper oxide.
In general, copper substances are considered “candidates for substitution” in the European
Union [60]. However, it should also be noted that copper-based AS are also used in
conventional agriculture [61].

Oxamyl, as the most toxic conAS to birds (LD50 = 3.2 mg kg bw−1), was 22.6 times
more toxic than the most toxic orgAS, tribasic copper sulfate (LD50 = 72.4 mg kg bw−1).
The second-most toxic conAS, fosthiazate (LD50 = 10 mg kg bw−1), was 17 times more
toxic than the second-most toxic orgAS, copper oxychloride (LD50 = 173 mg kg bw−1).
Authorization for the AS oxamyl was not renewed in May 2023 due to the risks in relation
to acceptable user exposure [62].

In terms of chronic toxicity, 57.1% of conAS were moderately to highly toxic af-
ter chronic exposure, while 1.8% of orgAS fell into this category. Abamectin (NOEL
0.7 mg kg bw−1 day−1), the conAS with the highest chronic toxicity, was 97.7 times more
toxic than Spinosad (NOEL = 68.4 mg kg bw−1 day−1). In general, smaller birds are more
sensitive to pesticides than larger birds, and as the toxicity tests were carried out on large
species, the LD50 values reported are probably not representative of smaller songbirds and
the risk of poisoning may have been underestimated [63,64]. In addition to direct skin
contact with pesticides, there is also a risk of dietary ingestion of pesticides via food, as
the offspring of birds are fed with pesticide-treated crop seeds or wild plant seeds and
small insects, which may also be contaminated by spray drift [16]. Male house sparrows
exposed to the neonicotinoid insecticide acetamiprid had a lower sperm density [17], the
eggs were smaller after exposure, and the thickness of the eggshell was also reduced [18].
In the yellowhammer, the number of eggs laid per nest was reduced after exposure to
various pesticides [65], as was the number of surviving offspring of northern bobwhite
quail after exposure to imidacloprid [19]. In addition, a reduction in the size and weight
of embryos and testicular malformations were observed in Japanese quail after exposure
to the insecticide clothianidin [66]. As is already known from pollinators, neonicotinoid
insecticides also affect the locomotor system [67] and orientation in birds [20].

4.3. Earthworm Ecotoxicity

The use of pesticides has been shown to have detrimental effects on earthworms
and overall soil biodiversity [21,22]. As AS residues are frequently found in soils across
Europe [68–71], the potential threat to soil organisms is obvious.

Overall, 91% of conAS (230 conAS) were moderately or highly acutely toxic to earth-
worms. Of the orgAS, only 36% (39 orgAS) were moderately toxic to earthworms, but no
orgAS was highly toxic to earthworms. Of the conAS, 59% (149 conAS) showed moderate-
to-high chronic toxicity to earthworms, while 7% of orgAS (8 orgAS) were moderately
chronically toxic to earthworms, with no orgAS highly chronically toxic. For conAS,
moderate or high acute earthworm toxicity was mainly due to herbicides (83 conAS) and
fungicides (75 conAS) and, to a lesser extent, insecticides (39 conAS). For orgAS, moderately
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chronically toxic to earthworms was mainly contributed by insecticides (13 orgAS) and
fungicides (12 orgAS), while 6 herbicidal orgAS contributed to this category. Herbicides
are not allowed in organic agriculture and the listed herbicide orgAS is approved for non-
agricultural purposes. Moderate or high chronic earthworm toxicity was mainly caused
by fungicides (60 conAS) and herbicides (55 conAS) and, to a lesser extent, insecticides
(23 conAS). Of the orgAS, fungicides (4 AS) and insecticides (2 orgAS), but no herbicides,
contributed to this category.

The top-three moderately or highly acute toxic conAS to earthworms (sulfoxaflor,
tefluthrin, mefentrifluconazole) were approximately 19 times more toxic than the top-three
orgAS (ferric phosphate, pyretrhins, ethylene).

The four insecticides—sulfoxaflor, tefluthrin, acetamiprid, and dazomet—as well
as the fungicide mefentrifluconazole and plant growth regulator 1-methylcyclopropene
showed highly acute earthworm toxicity. The only highly chronically toxic AS was the
fungicidal conAS dimoxystrobin. Insecticides have also been shown to be the most toxic AS
to earthworms in other studies [72]. After insecticides, fungicides are placed second and
herbicides are considered of lower ecotoxicological concern to earthworms [73]. However,
if the toxic load is considered by multiplying the quantity applied by the toxicity of the
herbicidal AS for earthworms, decreasing quantities could lead to higher toxicities if more
toxic AS are applied, as has been the case in Austria over the last 10 years [74].

The conAS with the highest earthworm toxicity approved in the EU is currently
sulfoxaflor (LD50 = 0.9 µg kg soil−1), which was seen as a replacement for neonicotinoids
after they were banned in Europe [75].

The orgAS with the highest toxicity to earthworms was the moderately toxic mol-
luscicide ferric phosphate. However, in an experimental study, no adverse effects on
earthworms were observed in the control of an invasive slug species [76]. However, it is
still less chronically toxic to earthworms than the chemical-synthetic substance mollusci-
cide metaldehyde. Ferric phosphate, ferric phosphonates, and metaldehyde showed the
same acute toxicity (LD50 = 1000 mg kg−1), but ferric phosphate and phosphonates were
chronically low toxic (LD50 = 1000 mg kg soil−1), while metaldehyde was 31 times more
toxic (LD50 = 32 mg kg soil−1).

The second-most acutely toxic substances to earthworms in conventional and or-
ganic farming both belong to the chemical group of pyrethrins. However, the orgAS
pyrethrin (LD50 = 23.7 mg kg soil−1) was 24 times less toxic than the conAS tefluthrin
(LD50 = 1 mg kg soil−1). In addition, a second approved chemical-synthetic pyrethroid
called esfenvalerate is also more toxic to earthworms than natural pyrethrin, as the
LD50 is 10.6 mg kg soil−1 (natural pyrethrin LD50 = 23.7 mg kg soil−1). Altogether,
eight chemical-synthetic pyrethroids were approved as insecticides: tefluthrin, lambda-
cyhalothrin, gamma-cyhalothrin, etofenprox, esfenvalerate, tau-fluvalinate, deltamethrin,
and cypermethrin.

Copper compounds are very often discussed with regard to their impact on soil
organisms. However, based on our evaluation, not a single copper compound was classified
as acutely and chronically highly toxic, but as moderately toxic to earthworms (Bordeaux
mixture, copper hydroxide, copper oxychloride, copper oxide, tribasic copper sulfate).
According to the EU regulation on the use of copper, application is limited to a maximum
of 4 kg Cu ha−1 year−1 [77]. This restriction applies to the entire agricultural sector, not just
organic farming, as conventional farmers also use copper-based products. A meta-analysis
has shown that an application of 4 kg Cu ha−1 year−1 has no effect on the biological quality
and functions of the soil [78]. Copper-based fungicides used in vineyards reduced biomass
and caused DNA damage to earthworms (Eisenia foetida) at the highest dose (150 mg kg−1);
however, after 28 days, the earthworms had fully recovered from the negative effects of
pesticide exposure [79].

Neonicotinoid insecticides such as imidacloprid showed high toxicity to earthworms,
as the midgut bacteria of the earthworms (Lumbricus terrestris) were affected after the
recommended pesticide application [26].
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Contamination of agricultural soils with pesticides is widespread and was found on
98% of arable land, vineyards, orchards, forests, grasslands, and brownfields, and even on
organic fields, forests, grasslands, and fallow land [80]. The risk assessment identified a
moderate-to-high risk for earthworms in arable soils, mainly due to insecticides and/or
acaricides that were present much longer than their degradation would suggest.

Our results indicate that soil in conventional fields, which contain more pesticide
residues than soils from organic fields, poses a high risk to soil invertebrates and may
jeopardize soil functionality, especially as additive or synergistic “cocktail effects” may
occur [81,82].

In general, the mode of action of pesticides is responsible for their higher or lower
toxicity to non-target organisms [83]. The lower toxicity of orgAS to non-target organisms
may be due to the fact that (i) their mode of action on the target receptor is usually agonistic,
whereas that of conAS is more often antagonistic, and (ii) non-target organisms may have
evolved in environments where poisonous plants grow and have developed neurophysi-
ological mechanisms to cope with the potential threat of poisoning [83]. Therefore, most
organisms have not been able to develop the appropriate physiological characteristics for
synthetic conAS that could counteract their effect.

4.4. Study Limitations

By using LD50 and LC50 characteristics, our risk assessment focused only on lethal
effects but did not consider sublethal and indirect effects [84]. In addition, our evaluation
does not take into account that organisms are exposed to multiple pesticides during the
growing season, legacy effects from previous applications [85,86], or interactions with
other agrochemicals or heavy metals [87–89]. The assumption underlying ERAs that the
organisms affected have sufficient time to recover from one pesticide application to the
next does not correspond to reality [3].

Approaches have been developed that consider the ecotoxicological risks for biodi-
versity and ecosystems at environmental concentrations of an AS, taking into account
persistence, bioaccumulation, and probability of exposure in different environmental com-
partments (water, sediment, soil, vegetation, air) [90]. We found no ecotoxicity data for
14 conAS and 69 orgAS that are authorized in European agriculture. While the lack of data
for orgAS is understandable due to their origin as basic substances also used in the food
industry, the lack of data for conAS is difficult to understand given the requirements for
the authorization of pesticides.

It was also found that for 30% of the monitored pesticides currently in use, no data on
chronic toxicity to soil invertebrates at different trophic levels were available, although the
ERAs showed that pesticide residues in soil pose a high risk [91].

Similarly, to the official ERAs, our evaluation was based on a few surrogate species.
However, it should be clear that not all species are equally exposed to pesticides due to
different habitat use. For instance, the typical habitat of the earthworm species Eisenia
foetida that is considered in ERAs lives in litter layers and very rarely in arable fields. In
addition, a meta-analysis concluded that E. foetida is actually less susceptible to AS than
earthworm species native to agroecosystems [92,93]. The honeybee has been used as an
indicator species for standard ecotoxicological tests, but it has been pointed out that it is
not always a good proxy for other species of eusocial and solitary bees, as species differ in
autecology and sensitivity to various stressors [94]. For instance, stingless bees have been
shown to be more sensitive to pesticides than honeybees [95]. The current ERA results for
birds are also difficult to extrapolate from surrogate bird species to a field situation [96,97].

5. Conclusions

Our evaluation clearly showed that the AS approved in conventional agriculture
are more toxic to honeybees, birds, and earthworms than the AS approved for organic
agriculture. The differences can partly be explained by the fact that many orgAS are
basic substances that are also used in the food industry or are obtained from foodstuffs
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(plants, plant by-products, plant-derived products, substances, and derived substances
from animal origin) [98]. A much higher toxicity of conAS than orgAS was also found
when the hazards to humans and aquatic organisms were assessed [7]. Although we
did not consider application rates, the differences could be even more severe, as orgAS
are estimated to be applied on only approximately 5–10% of organic farmland [99,100].
However, to accurately assess the adverse effects of pesticides on biodiversity, access to
data on pesticide use [101] and monitoring of non-target species would be essential.

As pesticides have been found in various environmental matrices, including
soil [70,71,102], water bodies [103], ambient air [4,104], and even at large distances from
their application site in nature conservation areas or mountain peaks [2,105,106], a general
reduction in pesticide use seems imperative. Furthermore, a reduction in pesticide use
is possible [107], e.g., by introducing conservation biological control with more flower-
ing plants and ground covers in apple orchards [108] or vineyards [109], by reducing
fertilization and tillage, and by growing less disease-susceptible varieties [110]. Based on
our analysis, we can conclude that an increase in organic agriculture in Europe would
reduce the ecotoxicological burden on biodiversity and the associated ecosystem services
for humans [101].

Supplementary Materials: The following supporting information can be downloaded at
https://www.mdpi.com/article/10.3390/environments11070137/s1, Supplementary Table S1:
Overview of all authorized AS in EU for conventional farming, their pesticide type and their eco-
toxicological endpoints (for birds: acute LD50 and chronic NOEL, for honeybees: contact and oral
acute LD50, for earthworms: acute LC50 and chronic NOEC). In the columns “classified as” to the
right of each ecotoxicological endpoint, l.t. stands for “low toxic”, m.t. for “moderately toxic”,
h.t. for “highly-toxic”; Supplementary Table S2: Overview of all authorized AS in EU for organic
farming, their pesticide type and their ecotoxicological endpoints (for birds: acute LD50 and chronic
NOEL, for honeybees: contact and oral acute LD50, for earthworms: acute LC50 and chronic NOEC).
In the columns “classified as” to the right of each ecotoxicological endpoint, l.t. stands for “low
toxic”, m.t. for “moderately toxic”, h.t. for “highly-toxic”; Supplementary Table S3: Overview of
the ecotoxicological assessment of all pesticide active substances (ASs) approved in the European
Union (n = 447). Some ASs could not be assessed because no ecotoxicological profile was available.
Because AS can be toxic to different organisms the addition of the counts can be higher than the total
number of AS considered; Supplementary Table S4: Comparison of highly and moderately pesticide
classes approved in Europe for conventional (conAS) and organic agriculture (orgAS) towards their
ecotoxicity against earthworms, honeybees, and birds.
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59. Rigal, S.; Dakos, V.; Alonso, H.; Aunin, š, A.; Benkő, Z.; Brotons, L.; Chodkiewicz, T.; Chylarecki, P.; de Carli, E.; del Moral, J.C.;
et al. Farmland practices are driving bird population decline across Europe. Proc. Natl. Acad. Sci. USA 2023, 120, e2216573120.
[CrossRef] [PubMed]

60. EC. Commission Implementing Regulation (EU) 2022/1252 of 19 July 2022 Amending Implementing Regulation (EU) 2015/408
to Update the List of Candidates for Substitution. Off. J. Eur. Union 2022, L191, 41–44. Available online: http://data.europa.eu/
eli/reg_impl/2022/1252/oj (accessed on 23 June 2024).

61. Stein-Bachinger, K.; Preißel, S.; Kühne, S.; Reckling, M. More diverse but less intensive farming enhances biodiversity. Trends Ecol.
Evol. 2022, 37, 395–396. [CrossRef] [PubMed]

62. EU. Commission Implementing Regulation (EU) 2023/741. Commission Implementing Regulation (EU) 2023/741 of 5 April 2023
concerning the non-renewal of the approval of the active substance oxamyl, in accordance with Regulation (EC) No 1107/2009
of the European Parliament and of the Council, and amending Commission Implementing Regulation (EU) No 540/2011 (Text
with EEA relevance). Off. J. Eur. Union 2023, L98, 1–3. Available online: https://eur-lex.europa.eu/eli/reg_impl/2023/741/oj
(accessed on 23 June 2024).

63. Mineau, P.; Collins, B.T.; Baril, A. On the use of scaling factors to improve interspecies extrapolation of acute toxicity in birds.
Regul. Toxicol. Pharmacol. 1996, 24, 24–29. [CrossRef]

64. Peters, R.H. The Ecological Implications of Body Size; Cambridge University Press: Cambridge, UK, 1983.
65. Boatman, N.D.; Brickle, N.W.; Hart, J.D.; Milsom, T.P.; Morris, A.J.; Murray, A.W.A.; Murray, K.A.; Robertson, P.A. Evidence for

the indirect effects of pesticides on farmland birds. Ibis 2004, 146, 131–143. [CrossRef]
66. Tokumoto, J.; Danjo, M.; Kobayashi, Y.; Kinoshita, K.; Omotehara, T.; Tatsumi, A.; Hashiguchi, M.; Sekijima, T.; Kamisoyama, H.;

Yokoyama, T.; et al. Effects of Exposure to Clothianidin on the Reproductive System of Male Quails. J. Vet. Med. Sci. 2013, 75,
755–760. [CrossRef]

67. Berny, P.J.; Buronfosse, F.; Videmann, B.; Buronfosse, T. Evaluation of the toxicity of imidacloprid in wild birds. A new high
performance thin layer chromatography (hptlc) method for the analysis of liver and crop samples in suspected poisoning cases. J.
Liq. Chromatogr. Relat. Technol. 1999, 22, 1547–1559. [CrossRef]
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