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Abstract: The South Korean government has implemented an acceptance system to promote the
high-quality recycling of waste. Industrial waste generators must provide “hazardous characteristics
data” to recycling operators. Nonetheless, ~80% of industrial safety accidents in South Korea occur
during recycling, most involving fire or explosions. Moreover, a gap in safety management exists
during ‘Circular Resource’ acceptance if the target substance is not regarded as waste. In this study
collected data on hazardous waste characteristics. From 62 waste generators, 72 waste samples were
collected, accounting for most of the resources accepted for recycling, including waste synthetic
polymers, slag, dust, waste sand, and waste foundry sand. Then, the hazardous characteristics, as
stated in the Ministry of Environment notifications, were assessed. Leaching toxicity was detected in
one slag sample and six dust samples. The Cd, Cu, As, Pb, Zn, Ni, Hg, F, and CN levels dissatisfied
the Soil Contamination Warning Standard in 31 samples. Explosivity was not detected in any
sample, whereas flammability was detected in one waste synthetic polymer sample. The results
revealed 15 cases of potential flammability. Flammability is legally defined as below the criteria
if the combustion speed criterion is not met. However, in the case of flame ignition, which could
cause large fires and safety accidents, the relevant notification should be revised. In this study, we
aimed to improve the gap between the hazardous waste management systems and industrial fields
through actual measurements of hazardous characteristics. By doing so, we seek to contribute to the
prevention of environmental and safety accidents. By continuously accumulating data and utilizing
actual measurements, we aim to revise and enhance relevant regulations, ultimately improving the
hazardous characteristics of waste management systems.

Keywords: hazardous characteristic; circular resource; inorganic industrial waste; industrial accident;
waste recycling; flammability

1. Introduction

In South Korea, where land is scarce and endowed resources are insufficient, efforts are
being made to reduce waste generation and promote resource circulation via reusing and
recycling waste in accordance with the Framework Act on Resources Circulation enacted
in 2016 (implemented in 2018) [1]. The Acceptance System of Circular Resources, stated
in the Framework Act on Resources Circulation, is a system that excludes high-quality
wastes that are free from environmental and human hazards and have economic value
from waste management, to allow liberal distribution and use. Currently, over 540 types of
waste, including waste synthetic polymers, slag, dust, waste metals, and inorganic sludge,
are accepted as recyclable resources. The number of acceptance cases has steadily increased
since the Framework Act was implemented in 2018, suggesting that more wastes will be
accepted as recyclable resources in the future [2,3]. However, once accepted as a recyclable
resource, the target substance is no longer regarded as waste with potential indiscreet
nationwide transfer, and as the current law in South Korea allows circular resources to be
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managed solely with reference to foreign substance criteria or heavy metal contents, there
is a complete lack of data on hazardous waste characteristics.

Meanwhile, over 60 million tons of inorganic industrial waste are generated in South
Korea, accounting for approximately 74% of the total industrial waste disposal. Among
these, slag, dust, and waste foundry sand amounts to approximately 34 million tons, ac-
counting for over 50% of the total inorganic industrial waste [4]. At present, over 95%
of slag, dust, and waste foundry sand are recycled as raw materials in steel and cement
manufacture, construction fill and cover materials, and road base materials [5,6]. How-
ever, safety accidents have occurred continuously in waste disposal, collection, transfer,
and treatment, while the recycling rate has been high. According to the statistics by the
National Fire Agency in South Korea, approximately 5000 accidents occurred due to waste;
these include toxic gas generation, spontaneous combustion, and fire caused by explo-
sive or water-reactive materials, of which approximately 88% of accidents occurred in
facilities related to waste recycling [7]. Most such accidents are caused by inadequate
data sharing on waste characteristics between the waste generator and recycling operator
during recycling. Notably, the hazardous characteristics of waste (explosivity, flammabil-
ity, oxidizability, corrosivity, water reactivity, pyrophoricity, leaching toxicity, ecotoxicity,
and infectivity) are challenging in waste treatment and recycling, causing accidents and
environmental problems.

The hazardous characteristics of waste have been managed in South Korea under
“Notification of the Regulations on the Types of Wastes and Industries that Have to Identify
Hazardous Characteristics” notified in 2016, and “Obligations to Prepare and Provide
Hazard Information Data”, a newly developed clause in the Waste Control Act (2017) [8].
As the notification on hazardous characteristics includes only 17 types among all the waste
categories in management, there is a gap in the management scope. Additionally, inorganic
waste, compared to other waste types, is commonly recycled as aggregate material for land-
fills, which significantly increases the likelihood of contact with soil or groundwater [9–11].
In fact, inorganic wastes release strongly alkaline leachate during recycling, which causes
environmental problems [12–14].

Against this backdrop, this study presents data on the hazardous characteristics of
synthetic polymer and inorganic industrial wastes among those with a high acceptance rate
as recyclable resources in South Korea to prevent safety accidents during their handling.

This study is unique in that it focuses on the actual measurement of hazardous char-
acteristics of industrial waste, contributing to the prevention of safety accidents through
actual data. Our approach provides real-world insights into the hazardous properties of
various waste materials. By analyzing 72 samples from 62 waste generators, including
synthetic polymers, slag, and dust, this study offers a comprehensive understanding of the
potential risks involved in waste recycling. This empirical approach not only enhances the
accuracy of safety measures but also aids in the formulation of more effective waste man-
agement policies. The findings highlight the importance of considering actual hazardous
characteristics data in safety regulations, thereby promoting safer recycling practices.

2. Literature Review

Various countries manage the hazardous characteristics of waste in different ways.
The United Nations (UN), for example, categorizes hazardous characteristics into seven
classes, from Class 1 to Class 9, and this system is designed to be compatible with the
Basel Convention’s categories of hazardous characteristics. The Basel Convention manages
hazardous characteristics across 14 categories, from H1 to H13. These include two types
of reactivity, five types of flammability, one type of corrosivity, three types of toxicity,
two types of oxidizability, and one type of infectivity. In the United States, hazardous
characteristics are broadly managed under four categories, but they differ in that they
use a listing system based on waste and its characteristics. The European Union (EU)
manages hazardous characteristics across 15 categories, from HP1 to HP15. In South Korea,
hazardous characteristics are categorized into nine types, including explosiveness and
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flammability, and relevant regulations specify the generating industries and types of waste.
Table 1 presents the hazardous characteristics of waste in different countries.

Table 1. Comparison of waste management status of hazardous characteristics.

Korea (9) [15] UN (7) [16] Basel (14) [17] EU (15) [18] U.S.A (4) [19]

Explosivity Class 1
(Explosivity)

H1
(Explosivity)

HP1
(Explosivity)

Ignitability
Flammability (liquid) Class 3

(Flammability [liquid]) H3 (Flammability [liquid])

HP3 (Flammability)
Flammability (solid)

Class 4
(Flammability [solid])

H4.1
(Flammability [solid])

Pyrophoricity H4.2
(Pyrophoricity)

Water reactivity H4.3
(Water reactivity)

ReactivityOxidizability
Class 5

(Oxidizability and
Organic peroxide)

H5.1
(Oxidizability)

HP2
(Oxidizability)

- H5.2
(Organic peroxide) HP1, HP3

-
Class 6

(Toxicity and Infectious
substances)

H6.1
(Poisonous [acute])

HP6
(Poisonous [acute]) Toxicity

Infectivity H6.2
(Infectivity)

HP9
(Infectivity) -

Corrosivity Class 8
(Corrosivity)

H8
(Corrosivity)

HP4 (Irritant)
HP8 (Corrosivity) Corrosivity

-

Class 9
(Miscellaneous

dangerous substances
& articles)

H10
(Water reactivity or

oxidizability)

HP12
(Water reactivity or

oxidizability)
Reactivity

- H11
(Toxicity)

HP4, HP5, HP7, HP10,
HP11, HP13

Toxicity
Ecotoxicity H12

(Ecotoxicity)
HP14

(Ecotoxicity)

- H13
(etc)

HP15
(etc) -

Leaching Toxicity - - - Toxicity

3. Materials and Methods
3.1. Materials

Approximately 4.15 million cases from the 2021 Allbaro system were statistically
analyzed to collect samples of synthetic polymer and inorganic industrial wastes [20]. The
disposal of inorganic industrial wastes was reported by 4186 waste generators in total,
and approximately 22,000 cases of waste synthetic polymers were reported by 1600 waste
generators. Among the inorganic industrial wastes, dust was generated by the highest
number of facilities, at n = 2011. The disposal of ≥99% of slag and waste foundry sand
was as general industrial waste, and slag, in particular, had a ≥86% disposal rate by the
top 10 waste generators with the highest generation of slag (See Figure 1b). Considering
the waste generator and the amount of generated waste, 72 samples were collected from
62 facilities. For the sample collection, the Waste Pollution Standard Method was followed;
the details are given in Figures 1 and 2 and Table 2.
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Table 2. Details of waste sample for this study.

Waste Type Classification
Number of Samples

Designated Waste Workplace Waste Total

Slag

Steel slag - 2 2
Furnace slag - 1 1

Lead heat treatment metallurgical
process slag 1 - 1

Slag not otherwise specified - 2 2

Dust
Dust 6 - 6

Dust not otherwise specified - 15 15

Waste foundry sand

Chemical caking waste foundry sand - 5 5
Clay caking waste foundry sand - 2 2

Sandblast sand - 1 1
Waste sand not otherwise specified - 5 5
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Table 2. Cont.

Waste Type Classification
Number of Samples

Designated Waste Workplace Waste Total

Waste synthetic
polymer

Waste Polypropylene 2 - 2
Waste polyvinyl chloride resin 1 1 2

Waste synthetic rubber 3 3 6
Waste synthetic resin - 6 6

Waste styrofoam - 1 1
Waste foamed synthetic resin - 2 2

Plastic waste packaging material - 1 1
Waste fish net - 1 1

Waste polyurethane foams - 1 1
Waste polyethylene - 1 1

Waste synthetic polymer compounds
not otherwise specified 4 5 9

Total 72

3.2. Methods

The current law in South Korea stipulates that the hazardous characteristics of waste
be assessed in recycling 17 waste types disposed of by the facilities stated in the regulatory
notification “Notification of the Regulations on the Types of Wastes and Industries that
Have to Identify Hazardous Characteristics” [16]. However, as the waste accepted as a
circular resource is handled no longer as waste but as a general product, it could cause a
potential gap in safety management. Thus, this study aimed to resolve this gap by collecting
data on hazardous waste characteristics based on actual measurements. Notably, for slag,
the notification states that only the leaching toxicity and water reactivity be assessed, but
the corrosivity was additionally analyzed in this study considering the potential release of
strongly alkaline leachate upon contact with water.

In South Korea, there are nine hazardous characteristics (See Table 1). The relevant
notifications specify which hazardous characteristics need to be checked according to
the generating industries and waste classifications, and Table 3 shows the hazardous
characteristics that need to be checked for the waste used in this study. This study focuses
on analyzing waste generated from industries not specified in the notifications, and waste
from other than the applicable industries was not used.

Table 3. Hazardous characteristics list for each waste type in South Korean regulations.

Waste Type Generating Industry Hazardous Characteristic

Slag

a. Other Non-Ferrous Metal Smelting, Refining, and Alloy
Manufacturing (24219)
b. Copper Rolling, Extrusion, and Drawing Products
Manufacturing (24221)
c. Other Primary Non-Ferrous Metal Manufacturing (2429)

Leaching toxicity, water-reactivity,
corrosivity a

Dust a. Other Non-Ferrous Metal Smelting, Refining, and Alloy
Manufacturing (24219)

Leaching toxicity, water-reactivity,
corrosivity, explosivity, flammability

Waste foundry sand a. Cast Iron Foundry (24311) Leaching toxicity

Waste synthetic
polymer

a. Synthetic Rubber Manufacturing (20301)
b. Synthetic Resins and Other Plastic Materials
Manufacturing (20302)

Flammability

a Although slags are not considered corrosive in regulations, they were analyzed in this study because the pH of
some slags is too high.
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3.3. Leaching Toxicity

The Waste Standard Test Criteria were followed to measure the leaching toxicity of
the samples. In the analysis, the seven regulated elements (As, Cd, Cr6+, Cu, Pb, Hg, and
CN) stated in Annex 1 of the Wastes Control Act and 10 additional unregulated elements
(Cr, Zn, Ni, Ba, Be, Sb, Se, Sr, V, and Mo) were tested in consideration of human and
environmental hazards. Among the elements, Cr6+ and CN were analyzed using ultraviolet–
visible spectroscopy (UV-Vis, Lambda 365, PerkinElmer, Waltham, MA, USA), Hg was
analyzed using atomic absorption spectrometry (AAs, PinAAcle 900T, PerkinElmer), and
the remaining elements were analyzed using inductively coupled plasma-optical emission
spectrometry (ICP-OES, Avio™550Max, PerkinElmer). Details about test method indicate
in Table 4.

Table 4. Details of leaching toxicity test method.

Element Test Method [21]

As, Cd, Cu, Pb, Cr, Zn, Ni, Ba, Be, Sb, Se, Sr, V, Mo ES 06400.2 (Inductively coupled plasma-atomic emission spectrometry)
CN ES 06351.1 (CN-UV-visible spectrometry)
Hg ES 06404.1a (Hg-cold vapor-atomic absorption spectrophotometry)
Cr6+ ES 06407.3a (Cr6+-UV-visible spectrometry)

3.4. Heavy Metal Contents

While inorganic wastes vary according to the waste generator and process, the proba-
bility that they may contain hazardous heavy metals is relatively high [22–24]. Additionally,
wastes are typically recycled mostly as construction fill and road base materials for burial,
so they often come into contact with the soil. Hence, it is necessary to collect content analy-
sis data to reflect the concerns of soil pollution caused by the respective waste recycling
and take preventive measures. Table 5 shows EPA method and the criteria about leaching
toxicity and heavy metal contents. In the absence of criteria on waste contents in South
Korea, the assessment was conducted across three regions: 1, 2, and 3, divided according to
the Soil Contamination Warning Standard in the Soil Environment Conservation Act. The
Soil Pollution Standard Method and the EPA methods were used in the analysis regarding
16 items in total, with the addition of fluorine in the leaching test.

Table 5. Criteria for leaching toxicity and heavy metal contents in South Korea regulation.

Compound

Subdivided Leaching Criteria [25]
(mg/L)

Heavy Metal Content Criteria [26]
(mg/kg) EPA Method

[27–31]
Designated Waste Area 1 Area 2 Area 3

Arsenic (As) 1.5 25 50 200 EPA 3050B

Copper (Cu) 3.0 150 500 2000 EPA 3050B

Mercury (Hg) 0.005 4 10 20 EPA 7471a

Cadmium (Cd) 0.3 4 10 60 EPA 3050B

Lead (Pb) 3.0 200 400 700 EPA 3050B

Hexavalent chromium (Cr6+) 1.5 5 15 40 EPA 3060a

Cyanides (CN) 1.0 2 2 120 EPA 9013A

Zinc (Zn) N/A 300 600 2000 EPA 3050B
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Table 5. Cont.

Compound

Subdivided Leaching Criteria [25]
(mg/L)

Heavy Metal Content Criteria [26]
(mg/kg) EPA Method

[27–31]
Designated Waste Area 1 Area 2 Area 3

Nickel (Ni) N/A 100 200 500 EPA 3050B

Fluorine (F) N/A 400 400 800 EPA 5050

Chromium (Cr)
Beryllium (Be)
Selenium (Se)
Vanadium (V)

Molybdenum (Mo)
Strontium (Sr)
Barium (Ba)

Antimony (Sb)

N/A N/A N/A N/A EPA 3050 B

N/A: Not Available.

3.5. Hazardous Characteristics

The Waste Pollution Standard Method was followed to measure the hazardous charac-
teristics of waste. The details of the test method are given in Table 6. In South Korea, the
Waste Pollution Standard Method classifies only the presence or absence of hazardous char-
acteristics, but for certain items, the possibility of secondary safety accidents with potential
hazard concerns should be considered rather than the simple presence or absence of data.
For instance, in the case of flammability, the risk of safety accidents is sufficiently high even
if the combustion occurs at only 50 mm after 45 s rather than at 100 mm within 45 s. Thus,
this study extended and interpreted an additional concern regarding potential hazardous
characteristics. Figure 3 presents a schematic diagram of the analysis of hazardous waste
characteristics. The symbol
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4. Results and Discussion
4.1. Leaching Test

Figure 4 shows the leaching toxicity for the seven regulated elements. Among the
40 samples, the leaching toxicities of one slag and six dust samples were above the criteria.
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Figure 4. Result of regulated element leaching test (1 slag, 6 dust samples were higher levels than the
criteria. All of them are discharged as designated waste).

One slag and five dust samples had higher Pb levels than the criteria. The slag
generator was for the lead and zinc smelting, refining, and alloying industry, and the
detected level of Pb was 831 mg/L. The generator manufactured lead ingot through metal
recovery using waste batteries. It is conjectured that, in the lead ingot manufacturing
process, the slag residues, after lead recovery via gravity separation, were discharged and
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this lead to the leaching of a large amount of lead. The corresponding waste was confirmed
to be appropriately disposed of as designated waste.

Dust generators was mostly due to metal production and iron and steel making,
including the inorganic dye and other metal oxide industry, the iron-making industry,
the primary steel-making industry, and the steam, cold and warm water, and air-control-
supplying industry. The composition of dust generated by iron-making varies according to
the applied raw material and operation conditions, while the main constituents include
the oxides of Fe, Zn, and Pb. It is, thus, conjectured that lead was detected due to the
industrial characteristics.

In one dust sample, the level of Hg exceeded the criteria. The corresponding generator
was a power plant using solid recovered fuel (SRF) produced from waste plastic and vinyl
materials, and the result was attributed to the effect of fuel combustion. The level of Hg in
fly ash increases as the SRF ratio increases upon mixed fuel combustion. By reacting with
Cl- in the filter cake layer of the bag filter, Hg was partially released as gas-phase HgCl2
and partially adsorbed to the ash layer to be released as dust [32].

In three dust samples, the level of Cd exceeded the criteria, and the corresponding
generators were from the iron and steel-making industries. It is likely that the Cd contained
in the raw material upon the fusion of metal material in the electric arc furnace was present
in the released dust. The dust dissatisfying the leaching criteria was appropriately disposed
of as designated waste.

Figure 5 shows the result of analyzing the 10 unregulated elements with potential
hazards. While most were non-detectable or detectable in trace amounts, certain samples
contained up to 315 mg/L of Zn and up to 340 mg/L of Ba. The excessive level of Zn could
be attributed to the characteristics of the steel-making and metal-production industries. The
sample with the excessive level of Ba was from a waste-battery-recycling operator, and the
leaching is likely due to the effect of BaSO4 in the anode of the batteries [33]. The effects of
Zn and Ba on the human body are as follows: Excessive Zn exposure causes gastrointestinal
disorders and cardiovascular disease [34,35], and those residing in an environment with Ba
exposure show high probabilities of renal and respiratory disorders [36]. Hence, utmost
care should be taken when handling waste associated with Zn and Ba materials.
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4.2. Heavy Metal Contents

Table 7 demonstrates the results of analyzing the contents of heavy metals found
in industrial wastes in South Korea. As previously mentioned, references were made to
the Soil Contamination Warning Standard in analyzing the waste samples due to the lack
of relevant criteria on heavy metal contents in South Korea (See Table 5). The threshold
was exceeded in 12 cases of Cd, 23 of Cu, five of As, 13 of Pb, 30 of Zn, nine of Ni,
four of Hg, nine of F, and one of cyanides. The single region criterion of the Criteria on
Potential Soil Pollution was exceeded in four slag samples, 16 dust samples, 12 waste
foundry sand samples, and nine waste synthetic polymer samples. The Zn content was
particularly high in dust and waste synthetic polymer samples. In the case of dust, the
high Zn content could be attributed to the process characteristics of iron and steel making
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and metal manufacturing. Regarding waste synthetic polymers, it was mainly the rubber
samples that displayed a high Zn content, presumably because the production includes
the addition of nano-ZnO for rubber stability and longevity [37]. The results of the waste
content analysis should be used as a reference to prevent soil or nearby river pollution.

Table 7. Results of heavy metal content test.

Compound

Samples (mg/kg)

Slag
(n = 6)

Dust
(n = 21)

Waste Foundry Sand
(n = 13)

Waste Synthetic Polymer
(n = 32)

Arsenic (As) N.D.~207.06 N.D.~42.73 N.D.~30.16 N.D.~27.83

Copper (Cu) 11.3~1036.3 3.4~5548.2 4~20,477.3 N.D.~579.7

Mercury (Hg) N.D.~0.43 N.D.~10.97 N.D.~0.62 N.D.~4.23

Cadmium (Cd) N.D.~10.09 N.D.~4000.39 N.D.~4.89 N.D.~20.14

Lead (Pb) N.D.~24,984.4 3.4~33,493.1 4.1~134.6 N.D.~15,197.3

Hexavalent chromium
(Cr6+) N.D. N.D.~3 N.D. N.D.

Cyanides (CN) N.D.~0.9 N.D.~11.5 N.D.~1.4 N.D.

Zinc (Zn) 4~1074.5 36.9~960,045.8 35.1~9804 1~13,593.4

Nickel (Ni) 13.4~179.5 1.6~656.3 2.9~994.5 0.2~22.5

Fluorine (F) N.D.~311 68~7808 N.D.~3218 N.D.~53

Total chromium (Cr) 41~2121.5 2.3~4617.2 4.3~619.5 0.6~55.8

Beryllium (Be) N.D. N.D. N.D. N.D.~0.1

Selenium (Se) N.D.~32.2 N.D.~36.8 N.D. N.D.~10.6

Vanadium (V) 17.1~227.5 1.1~145.5 5.1~217.6 N.D.~17.4

Molybdenum (Mo) N.D.~20.2 N.D.~95.5 N.D.~15.1 N.D.

Strontium (Sr) 16.8~2289.7 2.5~289.8 N.D.~282.3 N.D.

Barium (Ba) 13~1450.3 6.6~867.4 5.8~243.2 N.D.~72.6

Antimony (Sb) 2.1~717.3 N.D.~2393.6 N.D.~421.4 N.D.~4005.2

4.3. Hazardous Characteristics

Table 8 shows the analyzed hazardous characteristics, including explosivity, flamma-
bility, water reactivity, and corrosivity. The data exclude waste foundry sand, as the relevant
notification requires only assessing the leaching toxicity. In the case of explosivity, all 21
tested samples demonstrated a non-detectable level.

Table 8. Results of hazardous characteristic test.

Corrosivity Flammability Explosivity Water reactivity
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4.4. Water Reactivity

The level of water reactivity indicated concerns about potential hazards in one dust
(steel industry) sample and one slag (power plant) sample. While the Standard Test Criteria
state that waste is water reactive if ≥20 L/kg·h of flammable gas is produced, the samples
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in this study demonstrated a reactivity of 8 L/kg·h and 1 L/kg·h, respectively, so did not
meet the criteria. The cause of water reactivity was primarily attributed to the reaction
between water and the CaO contained in the slag or dust from the steel-making process
and power-plant operation.

In general, sulfur (S) and oxygen (O) are handled as impurities in steel making.
FeMn is used to remove such impurities and ensure durability and anti-corrosivity by
adding Mn to the steel [38]. However, dephosphorization should be performed, as the
phosphorous (P) constituent of FeMn is also an impurity that reduces the steel quality. For
dephosphorization, BaCO3, BaO, BaF2, BaCl2, CaO, CaF2, Na2CO3, or Li2CO3 is mainly
used; these agents remove phosphorous by forming a phosphoric compound (Ca3P2,
Mg3P2, Ba3(PO4)2, etc.) [39]. Despite variations according to the process conditions, the
slag produced in such processes is generally likely to be disposed of in a form containing
the oxides of alkaline earth metals (Ba, Mg, Ca, etc.), and the respective oxide is thought to
undergo an exothermic reaction with water to produce gas.

An XRF analysis was performed on the waste (slag and dust) samples tested for
water reactivity for more accurate causal analysis(See Figure 6). The samples commonly
contained CaO, and in addition to the oxides of alkaline earth metals Ca and Mg, SiO2 and
Fe2O3 were the main constituents. Based on this analysis, the produced gas was attributed
to the reaction between CaO and water. The level of gas production was the highest for
the slag from the power plant, although the amount of CaO was relatively small. This may
be due to the difference in the content of free CaO with high reactivity resulting from the
waste-storage conditions and duration [40]. While an immersion expansion test is necessary
to measure free CaO, it is difficult to quantify free CaO with this method; hence, a follow-up
study should be conducted. Additionally, the gas produced in the water reactivity test was
assessed for flammability; it was unreactive in the flame test, and the produced gas is, thus,
presumed to be not flammable gas but steam produced in the exothermic reaction between
CaO and H2O.

Environments 2024, 11, x FOR PEER REVIEW 11 of 15 
 

 

samples in this study demonstrated a reactivity of 8 L/kg·h and 1 L/kg·h, respectively, so 

did not meet the criteria. The cause of water reactivity was primarily attributed to the 

reaction between water and the CaO contained in the slag or dust from the steel-making 

process and power-plant operation. 

In general, sulfur (S) and oxygen (O) are handled as impurities in steel making. FeMn 

is used to remove such impurities and ensure durability and anti-corrosivity by adding 

Mn to the steel [38]. However, dephosphorization should be performed, as the 

phosphorous (P) constituent of FeMn is also an impurity that reduces the steel quality. 

For dephosphorization, BaCO3, BaO, BaF2, BaCl2, CaO, CaF2, Na2CO3, or Li2CO3 is mainly 

used; these agents remove phosphorous by forming a phosphoric compound (Ca3P2, 

Mg3P2, Ba3(PO4)2, etc.) [39]. Despite variations according to the process conditions, the slag 

produced in such processes is generally likely to be disposed of in a form containing the 

oxides of alkaline earth metals (Ba, Mg, Ca, etc.), and the respective oxide is thought to 

undergo an exothermic reaction with water to produce gas. 

An XRF analysis was performed on the waste (slag and dust) samples tested for water 

reactivity for more accurate causal analysis(See Figure 6). The samples commonly 

contained CaO, and in addition to the oxides of alkaline earth metals Ca and Mg, SiO2 and 

Fe2O3 were the main constituents. Based on this analysis, the produced gas was attributed 

to the reaction between CaO and water. The level of gas production was the highest for 

the slag from the power plant, although the amount of CaO was relatively small. This may 

be due to the difference in the content of free CaO with high reactivity resulting from the 

waste-storage conditions and duration [40]. While an immersion expansion test is 

necessary to measure free CaO, it is difficult to quantify free CaO with this method; hence, 

a follow-up study should be conducted. Additionally, the gas produced in the water 

reactivity test was assessed for flammability; it was unreactive in the flame test, and the 

produced gas is, thus, presumed to be not flammable gas but steam produced in the 

exothermic reaction between CaO and H2O. 

 

Figure 6. XRF data of samples. 

4.5. Corrosivity 

Corrosivity was detected in one slag and one dust sample. Both samples were 

strongly alkaline, at pH 12.5 or above, exhibiting corrosivity. The slag sample was 

disposed of after a lead and zinc smelting process. In the process, lime is added as a 

subsidiary material, and the slag at disposal contains an abundance of free CaO to release 

strongly alkaline leachate upon reaction with water. The current Waste Control Act in 

South Korea states that the waste be disposed of and recycled after a period of aging 

through contact with air or water sprinkling, but in a previous study, water sprinkling 

alone did not lower the pH [41]. In recycling slag, therefore, utmost care should be taken 

on-site to prevent the slag from contacting rainwater. The chemical composition of slag 

Figure 6. XRF data of samples.

4.5. Corrosivity

Corrosivity was detected in one slag and one dust sample. Both samples were strongly
alkaline, at pH 12.5 or above, exhibiting corrosivity. The slag sample was disposed of after
a lead and zinc smelting process. In the process, lime is added as a subsidiary material,
and the slag at disposal contains an abundance of free CaO to release strongly alkaline
leachate upon reaction with water. The current Waste Control Act in South Korea states
that the waste be disposed of and recycled after a period of aging through contact with
air or water sprinkling, but in a previous study, water sprinkling alone did not lower the
pH [41]. In recycling slag, therefore, utmost care should be taken on-site to prevent the
slag from contacting rainwater. The chemical composition of slag generally contains CaO,
SiO2, MnO, and MgO [42], most of which are alkaline with an effect on pH. The one case of
dust was a waste disposed of by a lime and plaster manufacturer, and the high pH was
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attributable to the lime content. For a more accurate causal analysis, an XRF analysis was
performed, and the results are shown Figure 7. The data show that the slag sample had a
substantial CaO content, and the dust sample was composed mainly of Fe2O3, Na2O, and
ZnO. The pH is, thus, likely to have been high due to the alkaline constituents.
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4.6. Flammability

Figure 8 shows the results of flammability test. Among the tested waste samples,
no dust samples exhibited flammability. For the waste synthetic polymers, one sample
exceed the criteria, 15 were below the criteria but potentially flammable, and 16 were non-
flammable. In assessing the flammability, the applied train mold should show combustion
at 100 mm within 45 s to be designated as flammable. The potentially flammable samples
displayed flame ignition but did not meet the combustion speed criteria. The results
suggested that, while most samples were not flammable based on the current criteria, many
substances are likely to be flammable based on the actual measurements of hazardous
characteristics. Care should be taken in waste management due to the possibility of safety
accidents upon the flame ignition of waste, which could advance to a large fire.
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5. Conclusions

This study analyzed the hazardous characteristics of waste for the safe recycling of
slag, dust, waste sand, waste foundry sand, and waste synthetic polymers accepted as
recyclable resources in South Korea, with a causal analysis. The conclusions are as follows.
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1. Leaching toxicity was analyzed for six slag samples, 21 dust samples, 13 waste sand
and waste foundry sand samples, and 32 waste synthetic polymer samples. Leaching
toxicity was detected in one slag sample (with excessive Pb) and six dust samples
(excessive Pb, Hg, and Cd). All these samples were disposed of as designated waste.
Among the unregulated elements, Zn and Ba were abundant in certain samples, which
implied a need for precautions.

2. In the content analysis, the levels of Cd, Cu, As, Pb, Zn, Ni, Hg, F, and CN dissatisfied
the single region criterion of the Criteria on Potential Soil Pollution in 31 samples.
This implied a need for utmost care in the storage and recycling in an area potentially
in contact with the soil or groundwater.

3. Explosivity was not detected in any of the tested samples, whereas flammability was
detected in one waste synthetic polymer sample with 15 samples, raising concerns
about potential flammability. The current law defines flammability as below the
criteria if the combustion speed criterion is dissatisfied. However, in the case of flame
ignition, which could cause large fires and safety accidents, further study is needed to
amend the related notification.

4. Two samples demonstrated gas production in the water reactivity test, but the gas was
determined not to be caused by water reactivity in the flame test. Additionally, two
samples exhibited corrosivity due to their strongly alkaline nature (pH 12.5 or above).
The disposal of inorganic industrial wastes in South Korea is largely accounted for
by the iron-, steel-, and metal-manufacturing industries. Hence, there is a risk of
potential corrosivity due to the characteristic content of alkaline earth metals in such
waste generators, and care should be taken in handling wastes with special regard to
environmental accidents.

5. This study aims to manage the hazardous characteristics of waste based on actual
data, considering that there may be cases where the waste does not meet the haz-
ardous characteristic criteria but still has potential corrosivity or flammability issues
due to the industrial field. However, it is practically challenging to measure all
waste. Therefore, further study is required to avoid underestimation of the hazardous
characteristics of waste. In the future, these actual data would be applied to revise con-
tinuously accumulate data and conduct follow-up studies to revise and supplement
the relevant notifications.
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