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Abstract: A framework for developing predictive models for PFAS physical–chemical properties and
mass-partitioning parameters is presented. The framework is based on the objective of developing
tools that are of sufficient simplicity to be used rapidly and routinely for initial site investigations
and risk assessments. This is accomplished by the use of bespoke PFAS-specific QSPR models. The
development of these models entails aggregation and curation of measured data sets for a target
property or parameter, supplemented by estimates produced with quantum–chemical ab initio
predictions. The application of bespoke QSPR models for PFAS is illustrated with several examples,
including partitioning to different interfaces, uptake by several fish species, and partitioning to four
different biological materials. Reasonable correlations to molar volume were observed for all systems.
One notable observation is that the slopes of all of the regression functions are similar. This suggests
that the partitioning processes in all of these systems are to some degree mediated by the same
mechanism, namely hydrophobic interaction. Special factors and elements requiring consideration
in the development of predictive models are discussed, including differences in bulk-phase versus
interface partitioning processes.
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1. Introduction

Studies have identified that PFAS are present in essentially all environmental and
ecological compartments. This ubiquitous distribution poses significant potential risks
to human and ecosystem health. Accurate characterizations of exposure risks and the
development of effective mitigation measures are both essential to reducing the impacts of
PFAS contamination. Implementing accurate risk assessments and developing effective
mitigation measures requires an in-depth understanding of the distribution of PFAS in
the environment and their associated transport and fate behavior. Research conducted
over the past two decades has shown that PFAS mobility and distribution is influenced
by several mass-transfer (i.e., partitioning) processes [1–4]. These partitioning processes
are governed by the physical–chemical properties of PFAS, which are a function of their
molecular structure.

The fundamental properties of aqueous solubility and vapor pressure determine the
propensity for PFAS to reside in the aqueous or vapor phases, which has a significant impact
on mobility given that these phases are the standard conduits for contaminant transport in
the environment. The acid dissociation constant (i.e., pKa) is another important property
for PFAS given that many PFAS are ionizable. PFAS mobility and distribution is also
influenced by mass partitioning to a number of other phases and interfaces. For example,
PFAS may partition to bulk organic immiscible liquids (NAPL) such as hydrocarbon fuels
and chlorinated solvents, as well as to the interfaces between NAPL and water [3,5–7].
PFAS have been demonstrated to adsorb at (or partition to) air–water interfaces [3,6,8–14].
This process has been demonstrated to be critical for PFAS in multiple systems, including
retention and leaching in vadose zones, accumulation at aerosol surfaces in the atmosphere,
accumulation at atmosphere–surface water interfaces, and controlling removal for foam
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fractionation and other treatment methods. A multitude of studies have examined the
partitioning of PFAS to solid phases, i.e., sorption by soils, sediments, and engineered
media [15–20]. The degree to which PFAS undergo solid-phase sorption is a key factor
mediating retention and transport in the subsurface and for the performance of several
treatment methods. Finally, many studies have investigated the uptake of PFAS by flora
and fauna, i.e., mass partitioning to biological media, as discussed in recent reviews [21–23].
This uptake controls the bioaccumulation of PFAS within organisms, the bioconcentration
within the food web, and the distribution within the ecosystem.

Clearly, a detailed, quantitative understanding of PFAS distribution and transport in
the environment requires knowledge of the mass-partitioning behavior of PFAS between the
many relevant phases present, and how their physical–chemical properties influence such
partitioning. However, physical–chemical properties and mass-partitioning parameters
have been measured for only a relatively few PFAS. Furthermore, measuring them for
the thousands of existing PFAS is not practical considering the costs and time required.
Hence, methods are needed to accurately predict PFAS physical–chemical properties and
mass-partitioning parameters to support site investigations, risk assessments, and transport
and fate modeling. While several valuable efforts have been made to develop predictive
methods to date, there is a continued need for further research to resolve remaining
uncertainties and limitations and to develop an array of approaches that address different
application needs.

The objective of this work is to present a framework for developing cost-effective tools
for predicting PFAS properties and parameters. The approaches available for the prediction
of physical–chemical properties will first be discussed, followed by an examination of prior
applications focused specifically on PFAS. A framework for developing a cost-effective
approach will then be presented, along with illustrative examples and discussion of special
considerations, uncertainties, and limitations.

2. Methods for Predicting Physical–Chemical Properties and Parameters

Several methods exist for predicting the properties and mass-partitioning parameters
of chemical compounds. These various methods have been used for many years and
successfully applied to a wide range of compounds. The methods can be divided into two
general categories—empirical methods and physical-modeling methods.

A widely used empirical prediction method is the quantitative-structure/property-
relationship (QSPR) approach. QSPR models are based on developing correlations between
measured properties or parameters that describe a specific behavior of the compounds of
interest and molecular features of those compounds. The molecular features are represented
by so-called descriptors, such as molar volume, that can be readily determined indepen-
dently. Data sets comprising the measured property or parameter are used to develop and
test the models. Linear free-energy relationships (LFERs) are another empirical-based ap-
proach wherein correlations are established between two properties for a set of compounds,
one property for which predictions are desired and another property for which measured
data are more readily available. The octanol–water partition coefficient is a commonly
used reference property for the latter. An advantage of these methods is their relative
ease of use and ability to be applied rapidly, which supports routine application for site
investigations and risk assessments. A primary disadvantage of these methods is the need
for training data sets that are representative of the target compounds for which predictions
are being made.

Ab initio physical-modeling methods employ quantum–chemical or molecular–
mechanical calculations that are based on atomistic models of the molecule in question and
its disposition in the relevant solvent. The defined model is used to generate information
about the system, such as energy states, electron densities, and solvation free energies, that
are then used to predict the target property or parameter. These methods are essentially
independent of the need for measured-data training sets. This is a distinct advantage
compared to the empirical methods. A primary disadvantage of these methods is their
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greater complexity and required computational resources. As a result, they are not as easy
and rapid to use as the empirical methods, which generally limits their routine application.

A formal program titled the Statistical Assessment of the Modeling of Proteins and
Ligands (SAMPL) Challenges, funded by the National Institutes of Health, has been in
progress for several years to support the blind testing of multiple prediction methods
[http://www.samplchallenges.org/ (accessed 12 February 2024)]. These efforts have
provided several valuable insights into the best methods and practices for predicting
physical–chemical properties. The results of the two most recent challenges, SAMPL6
and SAMPL7, which tested the ability to predict octanol–water partition coefficients (log
Kow) for several series of organic compounds, demonstrated that the best performing
prediction methods were those based on quantum–chemistry and QSPR approaches [24,25].
Notably, it was shown that empirical-based methods such as QSPR models can perform
equally as well as the ab initio physical-modeling methods. However, the accuracy of the
QSPR methods is dependent upon the quality of the training data sets used to develop the
QSPR relationships. In particular, the size and representativeness of the training data sets
were more important than the specific approaches and descriptors employed. Of the two
general physical-modeling methods, the quantum-chemical based methods were superior
to those based on molecular-mechanical approaches. Quantum-chemical based methods
employing COSMOtherm [26], a commercial property-prediction platform, achieved the
overall highest scores of the physical-modeling methods.

Both categories of methods have been applied to predicting PFAS properties and mass-
partitioning parameters. Several studies have developed and applied bespoke QSPR and
LFER models for predicting specific PFAS properties. These bespoke empirical models are
developed through the use of measured data sets obtained for specific PFAS for a specific
property or parameter. For example, LFER models for several partitioning parameters,
including air–water, octanol–water, and octanol–air, have been developed for fluorotelomer
alcohols (FTOHs) and olefins [27]. QSPR models for several properties including aqueous
solubility, vapor pressure, and octanol–water partitioning were developed for data sets
comprising a number of PFAS, including perfluorocarboxylic acids (PFCAs), perfluorosul-
fonic acids (PFSAs), and FTOHs [28,29]. QSPR models for air–water interfacial adsorption
have been developed for a wide range of PFAS, including all headgroup types [8–10,14,30].
QSPR and LFER models have also been developed for solid-phase sorption of PFAS [31–35].
Finally, several studies have investigated the uptake of PFAS by plants or animals and ob-
served that bioconcentration factors exhibit correlations to PFAS chain length [21–23,36–42],
which has led to development of QSPR models.

The PFAS-specific QSPR models that have been developed to date have generally
been shown to produce reliable estimates of properties and parameters for PFAS that are
represented by the training data sets used to develop the models. They provide valuable
confirmation that PFAS-specific QSPR models can provide a robust method to rapidly
predict relevant parameters. However, the models developed so far have typically focused
on a small subset of PFAS. Further development and testing is required to incorporate a
wider range of PFAS and environmental conditions.

Large-scale general purpose (i.e., non-PFAS specific) software platforms have also
been used to predict PFAS properties. Two of the most widely used software platforms
employed in prior studies of PFAS are EPI Suite and COSMOtherm. EPI Suite is a web-
based platform operated by the U.S. EPA that comprises an extensive database of measured
data and a suite of individual prediction modules that employ QSPR-based estimation
methods. It therefore serves as a prime representative of an estimation-based method, and
it is freely available for use. As previously noted, COSMOtherm is a commercial platform
that is based on quantum–chemical calculations. Studies comparing the performance of
multiple methods, including COSMOtherm and EPI Suite, for predicting measured PFAS
properties have demonstrated that COSMOtherm generally produced reliable estimates of
PFAS properties while EPI Suite performed comparatively poorly, with the poor perfor-
mance attributed to a lack of PFAS-specific training data [34,43,44]. The effectiveness of
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COSMOtherm for predicting PFAS properties was further demonstrated in studies that
compared COSMOtherm predictions alone to measured data [45,46]. Finally, a recent
study demonstrated that a QSPR-based method and COSMOtherm both produced accurate
predictions of hexadecane–air partition coefficients for a wide range of PFAS [47].

The results of the PFAS-specific studies compiled in the preceding paragraph are
consistent with the results obtained from the SAMPL testing program discussed above.
First, COSMOtherm appears to produce generally reliable predictions and therefore serves
as an effective independent source of predictions for cases where measured data are not
available. Second, empirical-based methods such as QSPR models can perform equally as
well, and better in some cases, compared to COSMOtherm and other physical-modeling
methods. However, the performance of the empirical methods is highly dependent upon
the quality and representativeness of the training data.

3. Framework Development

The objective of the framework is to provide an integrated approach for developing
cost-effective tools for predicting PFAS physical–chemical properties and mass-partitioning
parameters. The framework is focused on developing prediction tools that are readily
accessible and easy to use so that they can be routinely and rapidly employed for site-
characterization and risk-assessment applications by consultants, regulators, and other
interested parties. This has been identified as a critical need [48]. The effort is accomplished
by using PFAS-specific QSPR models as the basis of the prediction methods. It is recog-
nized that prediction tools may be developed for other objectives, and that the associated
frameworks and resultant tools may differ from the ones presented herein.

The framework is based on the following principles and workflow logic:

• There is a critical need for rapid, easy-to-use methods to predict physical–chemical
properties and mass-partitioning parameters for the thousands of existing PFAS of all
structure types

• Empirical methods such as QSPR models have been demonstrated to produce ac-
curate predictions of properties and parameters for a wide range of compounds,
including PFAS, as long as representatives of the target compounds are present in the
QSPR database

• PFAS can be grouped by molecular structure (e.g., headgroup type) and representative
members of each structure type included in QSPR models

• Large-scale empirical-based software platforms such as EPI Suite currently do not
produce reliable predictions of PFAS properties for most cases, due to a lack of PFAS-
specific training data

• Physical-modeling methods such as COSMOtherm have been demonstrated to pro-
duce reliable predictions of properties and parameters for a wide range of compounds,
including PFAS

• Due to their commercial nature, relative complexity, and higher computation demands,
platforms such as COSMOtherm are not currently suitable for the rapid, day-to-day
routine use required for environmental site investigations and screening assessments

• COSMOtherm can be employed to develop validated predictions of properties to fill
in data gaps for measured PFAS properties and parameters.

• Curated measured and COSMOtherm-predicted data can be used to develop bespoke
PFAS-specific QSPR models that can provide rapid and accurate predictions

• The PFAS-specific QSPR models will provide a critical tool that is accessible and easy
to use for consultants, regulators, and other interested parties.

The basic framework comprises the following elements. (1) Aggregate relevant mea-
sured data sets for the selected property or parameter. (2) Curate the compiled database.
Prior studies that have compiled measured PFAS property data have shown that significant
differences can occur between measured values from different studies, due to a number
of factors. Therefore, the aggregated data sets should be curated following best practices
to ensure data representativeness. Li et al. provide a recent comprehensive overview of
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this issue [49]. (3) Identify data gaps present in the curated database. To be more broadly
applicable, the prediction tools should be inclusive of all major PFAS structure types. Data
gaps may often involve missing data for certain structure types. (4) Fill in the data gaps
with validated predicted values. COSMOtherm or a similar platform can be used to gener-
ate independent predictions of properties and partitioning parameters for representative
PFAS structure types. (5) Develop bespoke PFAS-specific QSPR models. The measured and
independently-predicted data sets are combined to develop a PFAS-specific QSPR model
for predicting the selected property or mass-partitioning parameter. The two key elements
comprising steps 4 and 5 will be briefly discussed.

As previously noted, it is not practical to measure properties for the many PFAS
that exist. In addition, it is not possible to measure some properties for certain PFAS
due to a number of factors, such as constraints in experimental methods or analysis, or
commercial availability of the PFAS. Given its prior successful applications to PFAS systems,
COSMOtherm serves as an example physical-modeling method that can be used to produce
predictions to resolve critical data gaps.

COSMOtherm is based on the approach termed “Conductor-like Screening Model for
Real Solvents” that was developed by Klamt [26]. The basis of this model is an assumption
that solute molecules are embedded within a cavity that is formed in the solvent (i.e.,
the basis for the hydrophobic interaction mechanism). The solvent, typically aqueous
solution for many environmental applications, is treated as a virtual conductor environment.
Both the polarization charge density on the molecule surface and the total energy of
the molecule is calculated with a quantum chemical field algorithm. The strength of
electrostatic, hydrogen bonding, and dispersion interactions between the molecule and the
solvent are also calculated. The strength of these interactions is then used to predict the
chemical potential of the solute molecules in the solvent using statistical thermodynamics.
The magnitude of each selected physical–chemical property is then determined based on
the calculated chemical potentials. A key element in the application of COSMOtherm
is the identification of the most representative 3-D conformation of the molecule in the
solvent under the relevant conditions. This can involve significant effort and time. The
application of COSMOtherm to PFAS has been demonstrated in prior studies, with the
methods developed and tested [34,43–47].

The final prediction tools will comprise bespoke PFAS-specific QSPR models. There
are many publications available providing guidance on best practices for the development
of QSPR models [50,51]. The guiding principle in developing the models for this application
is that of ease-of-use for routine implementation. One of the key elements of the QSPR
method is the selection of the molecular descriptors. Several molecular-descriptor types
are available, including size-based descriptors such as molecular mass and molar volume,
constitutional descriptors based on the numbers of a specific type of atom or bond (e.g.,
carbon number), descriptors characterizing molecular structure (such as the molecular
connectivity index), and complex 3-D geometrical descriptors [52]. To support ease-of-use,
it is important to focus on descriptors that are readily available in reference materials or are
easily determined.

Another important element is the number of descriptors to employ. Many QSPR
models employ a single descriptor, while others use multiple. In the interest of simplicity, a
parsimonious approach would focus initially on developing single-descriptor models. This
approach is anticipated to produce reasonable results for some properties and parameters.
However, it is also anticipated that the single-descriptor approach may fail for other
properties or parameters. In these cases, a polyparameter approach can be used wherein
multiple descriptors are employed. However, it is important to keep in mind that as the
number of descriptors increases, the more complicated the model becomes, wherein at
some point diminishing returns limit the ease-of-use.

The issues of which descriptor to employ and the number of descriptors needed is
illustrated with QSPR models developed for air–water interfacial adsorption. Brusseau and
colleagues have developed bespoke QSPR models for predicting PFAS air–water interfacial
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adsorption coefficients [8–10,14]. An example is presented in Figure 1. It is observed that
the model is successful for all major structure types. In addition, the single-descriptor
approach is sufficient in this case. The descriptor employed, molar volume, is a readily
available parameter that can be determined in different ways, including from the quotient
of molar mass and mass density. Therefore, the model meets both key criteria of being
widely applicable as well as simple to use.
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Figure 1. QSPR model to predict air–water interfacial adsorption coefficients (Kaw) for PFAS as a
function of molar volume (Vm). The data include measurements for 61 different individual PFAS
representing all types of molecular structures. From Brusseau and Van Glubt [14].

Other descriptors are commonly employed in PFAS studies, including fluorinated
carbon number, carbon number, and molecular weight. These descriptors have been used
with some success for applications involving primarily PFCAs and PFSAs. However, molar
volume was demonstrated to be a superior descriptor in representing a wider range of
structures for air–water interfacial adsorption [9]. For example, the poor performance
of fluorinated carbon number is shown in Figure 2 for a subset of the data presented in
Figure 1. It is representative for the PFCAs, PFSAs, and branched PFCAs, consistent with
prior studies wherein fluorinated carbon number has been used for QSPR models for other
partitioning parameters. However, fluorinated carbon number is clearly inadequate for the
more complex PFAS structures.
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Figure 2. QSPR model to predict air–water interfacial adsorption coefficients (Kaw) for PFAS as a
function of fluorinated carbon number. The data comprise a subset of data presented in Figure 1.
Revised from Brusseau [9].

As noted, the QSPR model presented in Figure 1 is successful for all major structure
types. However, the single-descriptor model failed for PFAS with very large headgroups.
In this case, a two-descriptor model was developed to successfully predict coefficients for
these PFAS [30].

The issue of descriptor selection can be further illustrated by examining recent mod-
els used to predict the log of the organic-carbon normalized sorption coefficient (Koc).
Coppola et al. [33] used EPI Suite to predict log Koc values for several PFAS based on log
Kow. A four-descriptor QSPR model was recently developed for predicting log Koc values
for several PFAS [31]. The two models produce similar predictions of log Koc. For example,
the first model predicts log Koc values of 1.34, 2.82, and 3.35 for perfluorobutanoic acid,
perfluorooctanoic acid, and perfluorooctane sulfonic acid, respectively, whereas the second
model predicts values of 1.36, 2.65, and 3.21. The observation that the four-parameter
model produces similar results compared to the single-parameter model illustrates that the
inclusion of additional parameters, which complicates the model, does not always lead to
improved accuracy. In addition, obtaining values for some of the descriptors used in the
four-parameter model (e.g., “lowest unoccupied molecular orbital energy”) requires the
use of chemical modeling programs, which significantly reduces ease of use.
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4. Example Application and Special Considerations

An example of combining measured data with COSMOtherm-predicted data sets to
create a bespoke PFAS-specific QSPR model is illustrated in Figure 3 for vapor pressure.
COSMOtherm was successful in producing predicted values for PFAS for which measured
data were not available. A single-descriptor model is observed to be adequate for this case,
at least for the limited range of molecular structures represented. In addition, fluorinated
carbon number serves as a representative descriptor, in contrast to the prior example of air–
water interfacial adsorption. Further testing would be required to determine if fluorinated
carbon number would be effective for a broader range of structure types.
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A critical consideration in the development of property-prediction tools is the de-
pendency of the particular property or parameter on system conditions. For example,
bulk-phase partitioning processes such as air–water, octanol–water, and octanol–air can
generally be treated as linear, which means that the associated partition coefficients (H, Kow,
and Koa) are constants independent of concentration. Conversely, interfacial partitioning
processes such as air–water interfacial adsorption, NAPL–water interfacial adsorption, and
solid-phase adsorption are typically nonlinear, and can be treated as linear only under cer-
tain conditions. Hence, the associated interfacial adsorption coefficients may be functions
of concentration. This complicates the development of predictive models.

Another difference between bulk and interfacial partitioning is the relative impacts
of solution chemistry, wherein it is typically of greater import for the latter processes. For
example, Abusallout et al. [53] conducted an important test by measuring the impact of
solution chemistry on the Henry’s coefficients of two PFAS. Measurements conducted
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with a deionized water matrix were compared to matrices comprised of two tertiary
wastewater effluents, tap water produced by a conventional treatment plant treating
surface water, and groundwater from a monitoring well near an active U.S. Air Force
base. Various water-quality parameters such as dissolved organic carbon, sulfate, nitrate,
chloride, calcium carbonate, and turbidity varied greatly among the waters. However, the
Henry’s coefficients were statistically similar across all matrices, including the deionized
water, for both PFAS. These results indicate that mass transfer between water and air was
not significantly influenced by the composition of the solution. In contrast, numerous
studies have shown that air–water interfacial adsorption and in particular solid-phase
adsorption is sensitive to solution composition.

Another factor contributing to the relative complexity of interfacial partitioning/
adsorption processes is the need to consider the nature of the interface, which for many
environmental systems is physically and/or geochemically heterogeneous. In contrast, bulk
phases are typically treated as comparatively simple homogeneous media. As a result of the
preceding and other factors, the development of prediction tools for parameters associated
with interfacial partitioning may often be more difficult than for bulk-phase partitioning.

The range in complexity of environmental interfaces is illustrated in Figure 4, wherein
three common interfaces are presented. The air–water interface is the most physically
and geochemically homogeneous of the three, particularly in the absence of constituents
accumulated at the interface. The surfaces of granular activated carbon (GAC) particles
are physically heterogeneous while comparatively geochemically homogeneous. Finally,
soils are comprised of many different components and, as a result, their surfaces are both
physically and geochemically heterogeneous.
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The disparity in interface complexity can have a significant impact on the development
of predictive tools. This is illustrated in Figure 5, wherein QSPR models are presented
for air–water interfacial adsorption, GAC adsorption, and soil adsorption of PFAS. Note
that the regression for the soil data is based only on the long-chain PFAS. The linear
functions satisfactorily represent the first two processes. Conversely, while the linear
function is suitable for the long-chain PFAS for soil adsorption, the values for the shorter-
chain PFAS deviate from the linear regression. Hence, the one-descriptor model does
not capture the enhanced adsorption measured for the shorter-chain PFAS. Prior studies
have hypothesized that the enhanced adsorption of the shorter-chain PFAS is related
to the impact of additional mechanisms such as electrostatic interactions with inorganic
constituents of the soil [15,16,20].
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Figure 5. QSPR models for PFAS adsorption: (bottom data) at the air–water interface (Kaw), (middle
data) by soils (Koc), and (top data) by granular activated carbon (Kd). Revised from Brusseau [20].
Regression equation for adsorption by soils and sediments: log Koc = 0.016 Vm − 1.6, r2 = 0.98;
Regression equation for adsorption by GAC: log Kd = 0.013 Vm − 2.2, r2 = 0.89; Regression equation
for adsorption at the air–water interface: log Kaw = 0.019 Vm − 7.1, r2 = 0.95.

In summary, PFAS adsorption by soils and other geomedia is often nonlinear, may
be influenced by solution chemistry, and is impacted by soil properties. As a result, it
is likely that the development of predictive tools for solid-phase adsorption by soils and
other geologic media will be one of the most difficult propositions of all properties and
parameters. This difficulty is supported by the results of studies that have compared
predictions obtained with general-purpose platforms such as EPI Suite and COSMOtherm
to measured data sets [33,34]. These studies have reported that predicted values of the log
Koc compared poorly to measured values.

Numerous studies have investigated the uptake of PFAS by plants or animals. Several
of these studies have shown that bioconcentration factors exhibit correlations to PFAS
chain length [21–23,36–40]. To illustrate the application of QSPR analysis to such data,
a model is presented in Figure 6 for uptake of several PFCAs and PFSAs by several
freshwater fish species. The model provides a reasonably good representation of the
data. Notably, the slope of the QSPR function for the data set is essentially identical to
the slope of the QSPR model for air–water interfacial adsorption (Figure 5). Given that
air–water interfacial adsorption is governed by the hydrophobic-interaction mechanism,
the similarity in slopes suggests that uptake of PFAS by fish is also mediated to some degree
by hydrophobic interaction.
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Figure 6. QSPR model for PFAS uptake by fish. The freshwater data are compiled from 10 studies,
and include measurements for 13 species (Lewis et al. [23]). The marine data are compiled from
2 studies (Cheng et al. [40]; Jeon et al. [41]), and include measurements for 20 species. The regression
function is fit only to the freshwater data.

Data sets for marine fish species are compared to the freshwater data in Figure 6. It
is observed that the bioconcentration factors for the longer-chain PFAS determined for
the marine fish are similar to those for the freshwater species. Conversely, the values
for the shorter-chain PFAS are significantly greater for the marine species. Recall that
similar behavior was observed for adsorption of shorter-chain PFAS by soils (Figure 5).
One possible reason for the observed disparity is that uptake of the shorter-chain PFAS
is influenced to a greater extent by specific electrostatic-mediated interactions with tissue
constituents, and that these interactions are enhanced under the higher salinity conditions
present in marine systems. Detailed investigations would be required to test this and other
possible factors.

There are several factors that can complicate the assessment and quantification of
PFAS uptake by plants and animals. These complications can lead to uncertainty in the
magnitudes and robustness of bioconcentration factors, and concomitantly complicate
the development of predictive tools. One factor is that investigations of uptake measure
concentrations in different tissues and components in different studies. This is particularly
relevant for animal studies wherein a wide range of tissues may be measured. For example,
studies on PFAS uptake by fish have characterized concentrations in muscle, blood, liver,
kidney, other organs, as well as whole body measurements.

Another critical factor is that uptake in most cases is likely mediated by interactions
with specific constituents of the plant or animal [37,39]. Many studies have quantified
PFAS uptake or adsorption by specific constituents such as phospholipid membranes,
serum albumin, and other proteins. This research has demonstrated that PFAS appear to
be associated primarily with proteins and cell membranes. They also can interact with
lipids, but to a much lesser extent than standard hydrophobic contaminants. Some studies
have measured the magnitude to which PFAS partition to proteins, membranes, or lipids.
The magnitude of the uptake or adsorption is often quantified through the determination
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of distribution coefficients (Kd). This work has shown that the measured distribution
coefficients are functions of chain length. The development of predictive models will
need to consider and account for these interactions with specific constituents. Detailed
discussions of the development of predictive models for PFAS interactions with biological
components are presented in prior works [37,39].

An example set of QSPR analyses for partitioning of several PFCAs and PFSAs to
different biological constituents is presented in Figure 7. Data aggregated from multiple
studies are reported for four specific constituents, bovine serum albumin, structural muscle
protein, phospholipid membrane, and lipid. The QSPR regressions provide reasonable
representations of the data, although the PFSAs values exhibit deviations in some cases.
Notably, PFAS are observed to have significantly greater association with serum albumin
and phospholipid-based membrane compared to muscle protein and in particular lipid.
In addition, the slopes of the regression functions, particularly for the muscle protein and
phospholipid membrane data, are very similar to the slopes determined for the fish-uptake
data as well as the air–water interfacial adsorption data.
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5. Conclusions

This work presents a framework for developing tools to predict PFAS physical–
chemical properties and mass-partitioning parameters. The framework is based on the
objective of developing tools that are of sufficient simplicity to be used rapidly and routinely
for initial site investigations and risk assessments. This is accomplished with the use of
bespoke PFAS-specific QSPR models. The development of these models entails aggregation
and curation of measured data sets for a target property or parameter, supplemented by
estimates produced with quantum–chemical ab initio predictions.

The effort and associated costs to develop a particular PFAS-specific QSPR model
within this framework will likely be similar to those required to develop other types
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of predictive tools focused on PFAS. These involve data collection, data curation, and
data-gap filling, all of which are key to essentially all predictive-model development
efforts. However, the effort and cost to use the developed models based on the presented
framework are anticipated to be substantially less than those that may be associated with
other tools. For example, COSMOtherm or a similar platform is employed in the presented
framework to fill in data gaps. However, these platforms are not used for generating the
actual predictions; this is done with the bespoke QSPR models. In contrast, the use of
COSMOtherm or similar platforms may serve as the basis for other predictive tools, where
they are used as the primary source of predicted parameters. In this case, there would be a
greater level of effort and cost for the application.

The application of bespoke QSPR models for PFAS properties was illustrated with
several examples. This included adsorption of PFAS by soils and sediments, by GAC,
and at the air–water interface, as well as uptake by several fish species and partitioning
to four different biological constituents. Reasonable correlations to molar volume were
observed for all systems. One notable observation is that the slopes of all of the regression
functions are similar. This suggests that the partitioning processes in all of these systems
are to some degree mediated by the same mechanism, namely hydrophobic interaction.
Of course, additional mechanisms of interaction are certainly in effect in many cases, with
their significance a function of the specific medium, PFAS involved, and other factors.

As discussed herein and illustrated with examples, bespoke QSPR models are able
to produce reasonably accurate predictions under the conditions for which they were
developed. The development of PFAS-specific models for a specific target property or
parameter is an advantage of the approach presented herein, wherein it is likely that the
developed model will be highly representative for that specific system. In contrast, the
accuracy of the large-scale general purpose (i.e., non-PFAS specific) software platforms such
as EPI Suite for predicting PFAS properties has been demonstrated to be highly variable.
PFAS-specific QSPR models have been demonstrated in some cases to perform better than
general-purpose platforms, and they will likely continue to do so until the general-purpose
platforms include a wider range of PFAS in the database.

There are several questions to be addressed in the development and testing of a given
predictive model. A primary one is whether or not the model is broadly applicable to the
full range of PFAS molecular structures, or if it is limited to certain subsets. Data reported
to date comprise primarily PFCAs and PFSAs, with few measurements for precursor PFAS
and other non-anionic PFAS. Models limited to specific PFAS types are useful however,
as long as the limitations are clearly noted. The measurements and predictions have to
date focused essentially exclusively on single-component PFAS systems, with minimal
investigation of PFAS mixtures. Finally, a key question to investigate is the applicability of
laboratory measurements and ab initio-based predictions to field-scale systems.
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