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Abstract: In urban environments, various pollutants generated by road traffic, human, and industrial
activities degrade outdoor and indoor air quality. Among these pollutants, nitrogen oxides (NOx)
are subject to air quality regulations designed to protect human health and the environment. It is
therefore crucial to keep their concentration as low as possible. Advanced oxidation processes are a
practical choice for the degradation of NOx; among them, heterogeneous photocatalysis has proven
to be a viable route. However, while the efficiency of this process has been widely demonstrated on a
laboratory scale, it is still the subject of debate for real-life applications. The purpose of this study
was to present a new field experiment on the application of a photocatalytic coating to outdoor walls.
Air quality monitoring stations were used to evaluate the NOx concentration reduction instead of the
chemiluminescent analyzer, in order to increase the number of sampling points. Statistical analysis
was carried out to interpret the results. Density probability functions were plotted and showed a
positive impact of the coating, leading to lower NOx concentrations. This work was completed by a
laboratory-scale assessment of the coating’s durability using abrasion, QUV, and immersion/drying
tests. The air depollution capacity of the chosen coating was significantly reduced after QUV testing.

Keywords: air quality; NOx depollution; photocatalysis; TiO2-based coating; field conditions;
low-cost sensors; durability

1. Introduction

The deterioration of outdoor air quality has become a major global concern, both
in terms of human health and the economic costs of healthcare. According to the World
Health Organization (WHO), nine out of ten people breathe air containing high levels
of pollutants, and outdoor and indoor air pollution causes 7 million premature deaths
every year [1]. Among atmospheric pollutants, nitrogen oxides (NOx) play a predominant
role and have proven harmful effects on health. In particular, nitrogen dioxide (NO2) is
known to cause diabetes mellitus, respiratory problems (asthma), cardiovascular disease
(stroke), and other adverse effects on the immune system [2–5]. NO2 is also a potential
carcinogen [6,7]. NOx are emitted during all combustion processes using fossil fuels, such
as heating, electricity generation, and the transport industry (the road transport sector was
the main source of reported NOx emissions, responsible for 41%, followed by the energy
supply sector with 17% of emissions in the EU Member States in 2021) [8–12]. Urban areas
are particularly affected by air pollution, with road traffic being one of the main sources of
NOx, emitted principally in the form of NO [13,14]. NO2 is a secondary pollutant formed
mainly by a photolysis reaction between NO and O3 [15,16]. From an environmental point
of view, NO2, along with sulfur dioxide (SO2), is also involved in the formation of acid
rain, reacting with water to form nitric and nitrous acids, leading to degradation of human
patrimony and deterioration of soil and freshwater ecosystems due to the modification of
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their chemical composition [17]. Moreover, NOx coming mainly from outside can infiltrate
buildings and affect indoor air quality.

In 2021, the WHO revised the NO2 threshold limits and recommended that a value
of 10 µg·m−3 annual average or 25 µg·m−3 24-h average should not be exceeded (instead
of the previous values of 40 µg·m−3 annual average and 200 µg·m−3 1-h average) [18].
However, this new annual average guideline is far from being met in 2021 in European
countries, as shown in Figure 1, and 52,000 deaths were attributable to the exposure to
NO2 concentrations above the WHO air quality guideline level of 10 µg·m−3 in the EU-
27 (Member States) [5]. To help cope with this burden, air quality plans are defined to
improve air quality, reduce air pollutant emissions, and bring benefits to public health. Air
quality plan policy focuses mainly on traffic planning and management (improving public
transport, management of parking spaces, speed limits, low-emission zones, and modal
shifts in transport), public information and education through different media channels,
and the use of low-emission fuels [19].
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increase population density, the layout of buildings tends to form narrow corridors where 
air pollution accumulates. Exploiting the surfaces of existing or new buildings to capture 
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In France, almost 80% of the population lives in urban areas and is therefore exposed
to heavy road traffic, domestic heating, and local industry. To optimize urban space and
increase population density, the layout of buildings tends to form narrow corridors where
air pollution accumulates. Exploiting the surfaces of existing or new buildings to capture
gaseous pollutants appears to be an interesting way to decrease their concentration and,
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therefore, improve outdoor and indoor air quality. This can be done using catalytic [21–23]
or photocatalytic [24–26] processes, which are promising technologies for NOx degradation.

The photocatalysis technique, which requires just three components—a semiconductor
(catalyst), an emitted photon (sunlight or artificial light), and a powerful oxidizing agent
(oxygen, moisture)—is based on the generation of reactive oxygen species and water
vapor, which have the potential to mineralize a wide range of pollutants through redox
reactions under ambient conditions. Various photocatalysts and modification strategies
have been studied for NO removal, with the main aim of improving its conversion and
reaction selectivity [27,28]. Among them, titanium dioxide (TiO2) has attracted great
interest in heterogeneous photochemistry [29] and is the reference photocatalyst for air
purification due to its high oxidation capacity, stability, availability, and low cost [30,31].
Cement manufacturers offer products incorporating this semiconductor in bulk as an
additive. A number of studies in the literature focus on the air depollution property of
cementitious materials with added TiO2 [32,33]. At the concrete scale, however, particles of
the semiconductor are lost in the internal structure because they are inaccessible to light
and gaseous pollutants present in the air. Moreover, this technique is not possible for other
materials with specific manufacturing processes, such as brick or wood. Surface application
via a coating offers the advantage, on the one hand, of treating existing structures and, on
the other, of optimizing the quantity of the semiconductor required at the air/material
interface, thus reducing costs [34].

Numerous articles demonstrate the effectiveness of photocatalytic coatings in reduc-
ing NOx concentration under laboratory conditions [25,35], approximating those found
indoors [36,37], or by model simulation [38,39]. For most of them, experimental parameters
(relative humidity, radiation, initial NOx concentration, etc.) are often adjusted to optimize
photocatalysis efficiency. These parameters can be easily managed on a laboratory scale, un-
like in real conditions, meaning that the effectiveness of NOx reduction using a TiO2-based
coating may be lower in a real environment than in laboratory experiments. Fewer articles
deal with the photocatalytic degradation of NOx in real-world conditions, and results
showed variability in performance depending on the environmental conditions. Maggos
et al. observed that the effectiveness of a TiO2-based photocatalytic coating applied to walls
varied from 36.7 to 82% [40]. In particular, the authors showed that wall orientation, wind
direction, and solar irradiance were the main factors behind this variation in efficiency. Folli
et al. observed a reduction in NOx degradation with relative humidity and an increase with
temperature; an average of 22% NOx degradation and a maximum of 45% were obtained
with concrete paving stones containing TiO2 [41]. More recently, Brattich et al. observed
a reduction in NOx of between 14 and 21% in both real and simulated conditions [42].
Further references on real-life experiments can be found in a review by Russel et al. [43].
The photocatalytic process also raises the question of long-term durability and efficiency.
These aspects, along with the efficiency assessment under field conditions, are of the utmost
importance in demonstrating the technology readiness level of such a process. Further
studies are still needed in these areas.

The present article focuses on two practical aspects of NOx photocatalytic depollution.
It proposes to report a new field test to evaluate the performance of a photocatalytic coating
to reduce NOx concentration under real conditions, as well as to assess the durability
of the process. This research work was conducted as part of the MaT’Cap (MaTériaux
photocatalytiques et Capteurs de la qualité de l’air, i.e., Materials and Sensors for air quality)
project funded by the Occitanie Region (South of France) and bringing together three
companies—LRVision, Ellona, and PREGA|GA SMART BUILDING—and a university
laboratory—Laboratoire Matériaux et Durabilité des Constructions (LMDC)—for a 3-year
period. The aim was to assess the air depollution performance of a coating (formulated
by LRVision) designed to be applied to the surfaces of existing structures to reduce the
concentration of NOx emitted by road traffic, using Ellona® air monitoring stations as
an assessment tool. Field experiments were carried out on the scale of canyon streets
specifically precast and installed by PREGA|GA SMART BUILDING (off-site concrete
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production plant) for the needs of the project, into which artificial pollution (exhaust
gases) was injected. NOx concentration was monitored by Ellona® air quality stations,
which measured NOx concentrations at various points in the canyons. Coating durability
was assessed by comparing the percentage of NO reduction at the reactor scale before
and after abrasion cycles, accelerated weathering tests (QUV panel), and immersion in
water/drying cycles.

2. Materials and Methods
2.1. Field Experiments for Air Depollution Assessment
2.1.1. Experimental Site

The experimental site, shown in Figure 2a, was located at the PREGA|GA SMART
BUILDING plant (Labège, Haute-Garonne, France). Reinforced concrete walls were built
by PREGA|GA SMART BUILDING (cement CEM I 52.5 R CE CP2 NF PLN) and assembled
to form two canyon streets 3 m high and 10 m long: an untreated control street and a
street with 60 m2 walls treated with a photocatalytic coating formulated by LRVision SAS
(Escalquens, Haute-Garonne, France), with walls within a canyon spaced 3 m apart. These
streets were equipped with air quality monitoring stations, referred to as WT1 (Ellona®,
Toulouse, Haute-Garonne, France [44]) hereafter (Figure 2b), and with a weather station
(Vantage Pro 2 Plus, Davis® Instruments, Météo Concept, Cesson-Sévigné, France). Three
WT1 stations were placed in each canyon street, and the weather station was positioned at
the top of the middle walls.
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Figure 2. (a) Photo of the experimental site: the treated canyon street was on the right, and the
untreated (control) canyon street was on the left. Three WT1 air quality stations were installed in
each canyon. A weather station was installed at the top of the middle walls. (b) WT1 air quality
monitoring station.

2.1.2. Coating Application

Before applying the TiO2-based coating, the walls were stripped (laitance and grout
film cleaner, vegetable-based formula) to increase the surface porosity of the concrete
and optimize coating application. An adjustable-jet sprayer was used for the application
(Figure 3a). The canyon walls were then cleaned with water using a high-pressure cleaner
(Figure 3b).
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The rutile-based dispersion (potassium silica as binder, 4 wt.% TiO2 dry content) was
applied using an airless sprayer (Figure 3c). Only one layer was applied to the interior
surfaces of the treated canyon (a total of 60 m2) at a flow rate of 1.0 L/min. The volume of
the dispersion was measured before and after the application. A quantity of approximately
4–5 g of TiO2 per meter square was deposited on the wall surface. The surfaces then
dried naturally.

2.1.3. On-Site Air Depollution Experiment

Forced pollution tests were carried out by positioning a diesel vehicle at the entrance
to each canyon street to simulate a critical pollution episode in an urban environment,
such as heavy road traffic. WT1 air quality monitoring stations were positioned at a height
of 1.5 m inside the canyon streets, at a 10 cm (±0.5 cm) distance from the wall, and at
different distances from the source of pollutant emissions (exhaust gases): 1 m, 4 m, and 9 m.
The artificial pollution was emitted by the diesel vehicle for 30 min in each canyon street,
first in the treated canyon and then in the untreated (control) canyon. Before this, wind
measurements were taken for 30 min in each canyon, at 3 different locations—1 m, 4 m, and
9 m (10 min per location)—using an anemometer (WINDVISU, Littoclime SARL, Caen, France),
to determine the local wind speed inside each canyon. Weather conditions—temperature,
relative humidity, wind speed and direction, and solar irradiance—were obtained from the
Davis® Instruments weather station. The frequency of measurement for the WT1 station and
anemometer was 10 s, and 15 min for the weather station. A schematic representation of the
forced pollution test (diesel vehicle positioned at the entrance to the treated canyon street) is
shown in Figure 4.
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2.2. Laboratory Experiments for Durability Assessment
2.2.1. Preparation of Coated Mortar Samples

Normalized mortar (water/ cement ratio of 0.50, 450 g of Portland cement CEM I
52.5, 225 g of water, and 1350 g of 0/2 mm sand) was prepared according to the NF EN
196-1 standard. After mechanical mixing of water, cement, and sand, the fresh mortar
was poured into a 30 × 30 × 1 cm3 steel mold and vibrated for 15 s on a vibrating table.
It was left to dry for 7 days before being demolded and sawn into 10 × 5 × 1 cm3 or
15 × 5 × 1 cm3 samples using a diamond saw. Prior to the coating application, the mortar
surface was ground (120-µm silicon carbide abrasive disk) to smooth the surface and
remove the release agent. The photocatalytic coating (the same TiO2-based dispersion
used for field application) was then applied to the surface of mortar samples using a fine
brush. The quantity deposited on the surface, and therefore the TiO2 dry content, was
controlled by weighing the beaker containing the coating with the brush before and after
application. A content of 9.5 ± 0.5 g/m2 of TiO2 was deposited (approximately 0.0475 g for
a 50 cm2 sample) to ensure the accuracy of the weighing. Samples were left to dry at room
temperature for 24 h before being tested for air depollution.

2.2.2. Reactor-Scale Air Depollution Experiment

A commercial nitrogen monoxide cylinder (16 ppm of NO balanced in N2, Air Liquide)
was used to generate the gaseous pollutant. The flow rate of the NO gas stream was
controlled by a mass flow controller. Dry, pollutant-free air was supplied by an air generator
(ZAG 7001, Envea SA, Poissy, France). The desired relative humidity (RH) level was
achieved by mixing dry air with air passing through a gas washing bottle, the flow rate of
each stream being adjusted by mass flow controllers. The NO gas stream and humidified air
stream met in a mixing chamber to give a polluted humidified air stream (400 ppb NO, 50%
RH), which entered a cylindrical borosilicate glass reactor containing the mortar sample.
It was also possible to bypass (bypass route) the reactor to control the level of pollution
injected. The NO, NO2, and NOx concentrations were measured by a chemiluminescent
analyzer (AC32M, Envea SA, France). This experimental set-up was adapted from ISO
22197-1 [45].

The experimental protocol used to assess the air depollution property of coated mortar
samples was previously described by Hot et al. [35,46]. It basically consisted of four main
steps: (1) adjusting the desired level of NO pollution (400 ppb) through the bypass route
(10 min), (2) injecting polluted air into the reactor containing the sample in the darkness
(10 min), (3) switching on the light (30 min), and (4) switching off the light (10 min). A Narva
LT-T8 Blacklight blue 18 W 073 fluorescent tube was used to activate the photocatalytic
process. The intensity of UV-A light received at the surface of the mortar sample was
5.8 W/m2. The air depollution property was evaluated by measuring the NO degradation
(expressed in percentage) according to Equation (1).

NO degradation (%) = 100 × [NO]initial − [NO]final
[NO]initial

, (1)

where [NO]initial and [NO]final were the concentrations in ppb measured by the analyzer at
the exit of the reactor before light activation once the steady state was established (step 2),
and at the exit of the reactor after light activation and averaged over the last 10 min
(step 3), respectively.

2.2.3. Abrasion, Accelerated Weathering, and Immersion/Drying Experiments

The durability of the photocatalytic coating deposited on the mortar surface was
evaluated by the changes in the degradation percentage of the NO gaseous pollutant before
and after abrasion cycles, accelerated weathering tests, and immersion in water and drying
cycles. Equation (2) was used to assess the changes in the NO removal efficiency (ρE). The
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higher the ρE value (maximum value of 1), the lower the impact of the durability test on
the air depollution capacity of the coating.

ρE =
NO degradation after durabilty test

NO degradation before durability test
, (2)

where NO degradation percentages after and before durability testing were calculated by
Equation (1).

Abrasion tests (without water) were carried out according to ASTM D2486 using
the Abrasion tester Elcometer® 1720. Mortar samples were exposed to a varying number
of cycles—100, 200, or 1000—using a nylon brush and a 3M Scotch Brite® abrasive pad
consistent with the ISO 11998 standard. Three different mortar samples were used, each for
a specific number of cycles.

Mortar samples subjected to accelerated weathering were obtained after exposure in
a QUV panel (model QUV Spray with SOLAR EYE Irradiance Control, Q-LAB) for 252 h
(equivalent to 3 months of real-life use), 504 h (equivalent to 6 months of real-life use), and
1008 h (equivalent to 12 months of real-life use) according to NF EN 927-6. The following
cycle was applied for one week: (step 1) steam condensation for 24 h (temperature of
45 ◦C), and (step 2) alternating UV irradiation for 2.5 h (4 fluorescent tubes UV-A 340 nm,
0.89 W/m2 per tube, temperature of 60 ◦C)/water spray for 30 min, repeated 48 times.
This cycle lasted 168 h. For the 252 h test, the one-week cycle was repeated a second time
with step 2 repeated 20 times. For tests lasting 504 h and 1008 h, the one-week cycle was
repeated for three weeks and six weeks, respectively. Three different mortar samples were
used, each for a specific number of test hours.

Mortar samples were also subjected to immersion/drying cycles according to LRVi-
sion’s own procedure: 5, 10, 15, and 20 cycles. A cycle consisted of immersion in water for
3 h followed by a drying period of 21 h. Four different mortar samples were used, each for
a specific number of cycles. These tests were performed on 15 × 5 × 1 cm3 mortar samples.

3. Results
3.1. NOx Depollution in Field Conditions
3.1.1. NOx Concentrations

Figure 5 shows the evolution of NO (Figure 5a–c) and NO2 (Figure 5d–f) concentrations
measured by the WT1 stations located at different distances in the treated and untreated
canyons (TC and UTC) from 9:30 a.m. to 1:30 p.m. (9:30 to 13:30) on a summer’s day in
June 2023. The forced pollution test in the treated canyon (TC) street was carried out first,
from 10:52 to 11:22 a.m., followed by the experiment in the untreated canyon (UTC) street,
from noon to 12:30 p.m. (12:00 to 12:30), which explains the offset on the x-axis. For a given
pollutant (NO or NO2), each graph (a, b, c or d, e, f) corresponds to a distance between the
source of pollution and the air quality monitoring station WT1 (1, 4, or 9 m).

The concentrations of NO and NO2 measured during the 30 min forced pollution test
carried out in the TC and UTC streets were summed and averaged. The obtained values
are summarized in Table 1.
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Figure 5. NO and NO2 concentrations obtained during the forced pollution test in the canyon
streets—treated canyon (referred to as TC, walls were coated with TiO2-based dispersion) and
untreated canyon (control canyon referred to as UTC). Pollution was injected first into the TC street,
then into the UTC street. NO and NO2 concentrations were measured by the WT1 stations located at
1 m (a,d), 4 m (b,e), and 9 m (c,f) in the TC and UTC streets.

Table 1. Sum and average of NO and NO2 concentrations obtained during the forced pollution test in
the TC and UTC streets. Concentrations were measured by the WT1 stations.

Sum of Concentrations (ppm)

Canyon NO (1 m) NO (4 m) NO (9 m) NO2 (1 m) NO2 (4 m) NO2 (9 m)

TC 6.6 3.1 0.8 7.0 3.2 1.1
UTC 20.5 5.8 2.6 14.7 5.1 1.9

Average concentrations (ppb)

Canyon NO (1 m) NO (4 m) NO (9 m) NO2 (1 m) NO2 (4 m) NO2 (9 m)
TC 52.6 24.5 5.7 55.8 24.9 8.6

UTC 159.1 42.6 20.8 113.6 37.7 15.2

3.1.2. Weather Conditions

Forced pollution tests were carried out over a short period of time (less than 2 h) to
ensure similar meteorological conditions in the TC and UTC streets. Temperature, relative
humidity, wind speed and direction, and solar radiation measured by the weather station
positioned at the top of the middle walls are shown in Table 2. Weather conditions were
broadly similar, with the exception of the higher solar radiation measured during the test
in the UTC street (no photocatalytic effect was expected in this canyon as the walls were
not coated with the TiO2-based dispersion) due to the sun path being optimal at noon
(which can also explain the higher temperature and lower relative humidity during the test
in the UTC). The local average wind speed measured by the anemometer in the canyon
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streets (protected from the wind) was less than 1 m/s: 0.75 m/s for the TC and 0.34 m/s
for the UTC. Such low wind speed values are associated with stable and calm atmospheric
conditions and are not favorable to pollutant dispersion [47,48]. This means that during
the forced pollution tests, the wind did not influence the NOx concentration profile.

Table 2. Weather conditions during the forced pollution tests carried out in the TC and UTC streets.
These parameters were measured by the weather station located at the top of the middle wall.

Canyon Temperature (◦C) Relative Humidity (%) Wind Speed (m/s) Wind Direction (/) Solar Irradiance (W/m2)

TC 23.8 67.3 8.0 South–East 487
UTC 24.8 61.7 8.0 South–East 671

3.2. Coating Durability Assessment

For all coated mortar samples, the NO concentration injected into the reactor decreased
rapidly due to the activation of the photocatalytic reaction after the UV-A lamp was
switched on. The NO concentration returned to its initial value of 400 ppb after the UV-A
lamp was switched off. The decrease in NO concentration after light activation was more
or less influenced by the type of durability test.

Figure 6 shows the results of abrasion (Figure 6a), QUV (Figure 6b), and immer-
sion/drying (Figure 6c) tests. ρE, as defined by Equation (2), is plotted on the y-axis.
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Figure 6. Durability assessment results: (a) abrasion test, (b) QUV test, and (c) water immer-
sion/drying test. The ratio between the percentage of NO degradation after and before the test was
calculated and plotted on the y-axis (ρE).
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4. Discussion
4.1. NOx Depollution under Field Conditions

Figure 5 shows the raw NOx concentrations obtained during the forced pollution
tests. These data revealed that the NO and NO2 concentration values (concentration peaks)
obtained during the pollution injection in the UTC street were higher than those in the
TC street. This effect was even more noticeable for the WT1 station located at 1 m, i.e.,
close to the pollution source. The higher the distance between the pollution source and the
measurement point, the lower the NOx concentration (dilution effect) [2]. The decrease
in concentrations was clearly highlighted when considering the average NO and NO2
concentrations obtained during the forced pollution tests: a comparative analysis between
the two canyon streets reveals values 2 to 4 times lower for the TC street than for the UTC
street (Table 1). As mentioned in the results section, weather conditions were similar during
the pollution tests carried out in the TC and UTC streets, so the observed reduction can be
attributed to the photocatalytic activity of the coating. A radar representation is suggested
in Figure 7 to show the positive impact of the coating on NOx concentration, regardless of
the distance from the pollution source. This remediation action will contribute to meeting
the EU annual limit of 40 µg/m3 and the WHO guideline value of 10 µg/m3 for the NO2
gaseous pollutant.
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Figure 7. Radar diagram comparing the average NO and NO2 concentrations (in ppb) obtained
during the 30 min forced pollution test at different distances from the pollution source (1, 4, and 9 m),
between the UTC street (green) and the TC street (orange).

To go deeper into the analysis, we estimated the probability distribution of NOx
concentration during the 30 min forced pollution test in each canyon. The Kernel Density
Estimation shown in Equation (3) was used to plot probability density functions for NO and
NO2 concentrations [49]. It gives the density estimate at a point y (a concentration) within
a group of points xi ( i = 1 . . . n). This means that this function represents the probability
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(between 0 and 1) that the concentrations of NO or NO2 will reach a certain value (expressed
in ppb). All the computations were carried out using the Python programming language.

f (y) =
1

nh∑n
i=1 K

(
y − xi

h

)
, (3)

With f (y) representing the density estimate at point y, xi a single data point—the i-th
point belonging to our dataset (measured NO or NO2 concentrations), n the total number of
points in our dataset, h the Kernel smoothing bandwidth as defined by Equation (4) [50], and
K the Kernel function equivalent to a Gaussian distribution as defined by Equation (5) [51].

h = 1.06 × σ

n
1
5

, (4)

With σ representing the standard deviation of our dataset.

K(x) =
1

σ
√

2π
× e−

1
2 (

x−µ
σ )

2

, (5)

With x representing the random variable (here x = y−xi
h ), σ the standard deviation of

the distribution, and µ the mean of the distribution.
Figure 8 shows the density functions obtained for the NO (Figure 8a–c) and NO2

(Figure 8d–f) concentrations at different distances from the pollution source during the
forced pollution test, comparing the UTC street (green) with the TC street (orange). We
observed that at distances of 1, 4, and 9 m from the pollution source, measured NO and
NO2 concentrations tended to approach the zero value for the TC street. The probability of
obtaining lower concentrations was then higher in the canyon street with the photocatalytic
coating, meaning that NOx concentration peaks were reduced due to the photocatalytic
process. The density function is an interesting statistical approach for assessing the effect of
an air remediation action on air quality.
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At a laboratory reactor scale, air depollution efficiency is assessed by a percentage of
degradation (Equation (1)). This percentage can also be calculated in field experiments by
comparing the active (with photocatalytic treatment) and control (without photocatalytic
treatment) areas over the same period, or before and after the application of a photocatalytic
coating/material. In our study, the percentages of NO and NO2 degradation were assessed
on the basis of Equation (1) ([NO2] was used instead of [NO] to calculate the percentage of
NO2 degradation) and by comparing the average concentration in the UTC street (control
area, [NO]initial and [NO2]initial) with the average concentration in the TC street (active area,
[NO]final and [NO2]final). The following degradation percentages were obtained in the TC
street: 62% for NO and 46% for NO2. This range of degradation percentages was within
that indicated by some previous studies. For example, Maggos et al. reported 36.7 to 83%
lower NOx concentrations in a canyon street with TiO2-treated panels compared to the
reference canyon street [40]. Cordero et al. studied the photocatalytic efficiency of urban
pavements at a pilot scale and obtained removal efficiencies up to 74% and 40% for NO and
NO2, respectively [52]. In a demonstration project for photocatalytic pavement reported
by Ballari and Brouwers, a 45% reduction in NOx concentration was observed under ideal
weather conditions (high radiation and low relative humidity) [53]. Guerrini and Peccati
showed an average NO abatement of 51% during a monitoring campaign carried out in Italy
comparing a reference area with a road section of an active surface of about 12,000 m2 [54].
However, literature studies also reported much lower efficiency values, making it difficult
to reach a common consensus on the effectiveness of the photocatalytic process under
field conditions. This wide variability in air depollution results is notably linked to the
influence of environmental conditions (wind, light irradiation, other pollutants, etc.), to
a much lower active surface/volume to be depolluted ratio than in a laboratory reactor,
to sampling points far from the active surface, and to variable field test methodologies
between studies [43].

Moreover, a major problem associated with the evaluation of the efficiency of photo-
catalytic materials under field conditions comes from the analytical tool used to measure
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changes in ambient NOx concentrations in order to map large areas with high spatial
and temporal resolution. The cost of a conventional NOx analyzer makes it difficult to
implement at different locations during a real-life experiment. The study presented here,
therefore, gave an overview of the photocatalytic NOx removal evaluated using low-cost
sensors, a technology that should be encouraged in the future to obtain a better representa-
tion of air pollution and the efficiency of remediation methods by covering a larger area.

4.2. Laboratory-Scale Durability Assessment

The question of durability was mainly assessed by quantifying changes in the perfor-
mance of the photocatalytic coating over time, the performance evaluated being either the
self-cleaning capacity (water contact angle) or the air depollution property (degradation of
a pollutant) [55–57]. Performance loss can be reversible, as in the case of nitrate species or
dirt build-up on the surface which can be washed away by rain [58], or irreversible, as in
the case of abrasive wear, weathering, or other mechanisms (carbonation of cementitious
materials, destruction of polymer binder) [32,59]. The adherence of the photocatalytic
coating to the surface is a crucial parameter, especially for asphalt surface applications
where abrasive wear is expected in real life due to road traffic. This subject was notably
investigated by Wang et al. [60] and Mahy et al. [61], which showed a high dependence
of the mechanical resistance on the surface functionalization method. In our work, the
coating was applied to walls, meaning that abrasive wear may be limited. The results
showed that the nylon brush had no effect on the air depollution capacity of the coating.
The test carried out with the 3M Scotch Brite® abrasive pad, which is a much more severe
mechanical aggression, led to a 30% reduction (ρE = 0.69) in photocatalytic activity only
after 1000 cycles (Figure 6a). The application of photocatalytic coatings to the exterior
surface of a building can suffer from weathering caused by prolonged exposure to sunlight,
humidity, rain, or manual washing [56,62]. The accelerated weathering test carried out
in the QUV panel was designed to simulate the coupling effects of these factors, such
as LRVision’s own immersion/drying procedure. The results showed a clear negative
influence on coating durability from 252 h for the QUV test (ρE = 0.22). This accelerated
weathering test reproduces the damage caused by sunlight, rain, and dew that occurs over
months or years outdoors with a high degree of severity that may not represent actual
conditions. As Baudys et al. pointed out, the relationship between the QUV and outdoor
exposure can be misleading because the UV intensity received by the sample in the QUV
panel is brighter and shorter, and it does not take into account the fact that natural UV light
is extremely variable and can be attenuated due to cloud cover, shading, and changes in the
course of the solar spectrum changes throughout the year [63]. In particular, they estimated
that, under the specific UV irradiation conditions set in the QUV chamber and for the city
of Prague, QUV lamps are 12 times brighter than solar UV. The immersion/drying test
gave rise to less severe weather conditions (notably the absence of UV irradiation), with a
clear reduction in air depollution capacity observed from the last number of cycles tested,
i.e., 20 cycles (ρE = 0.36).

5. Conclusions

The development of photocatalytic coatings based on the semiconductor TiO2 is a
research field where many challenges remain in producing a material with long-lasting
high performance at an industrial scale. Durability is essential for assessing the viability
of photocatalytic surfaces but receives less attention in the literature. The same applies to
the evaluation of their efficiency under real-life conditions. The aim of this article was to
present further results on these two aspects of the photocatalytic process.

The air depollution property of a TiO2-based photocatalytic coating was evaluated
under real-life conditions at the scale of a canyon street. A diesel vehicle was used to
artificially inject pollution into a wall-coated canyon street and a control (untreated) canyon
street. NOx concentration was measured by air quality stations providing multiple sam-
pling points in the canyon streets at different distances from the pollution source. The raw
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data were used for statistical analysis. The results showed that the canyon street whose
walls were coated had lower NO and NO2 concentrations than the control canyon street,
this effect being more pronounced in the vicinity of the pollution source (at 1 m). NOx
concentration also fell naturally with distance from the source due to the dilution effect.
This means that such a remediation process could help to meet the WHO NO2 guidelines
and improve air quality, particularly near high-traffic areas.

The resistance of the photocatalytic coating to mechanical abrasion and accelerated
weathering was then tested on the scale of a laboratory reactor. The coating tested exhibited
good mechanical durability, although a 30% reduction was observed under the most severe
conditions, i.e., after 1000 abrasion cycles with a 3M Scotch Brite® abrasive pad. The
air depollution capacity of the coating was reduced by 65% for the highest number of
cycles during the immersion/drying test. The most significant reduction in air depollution
efficiency was observed during the QUV test, where simulated accelerated weathering
conditions can be far from real outdoor exposure.

In future studies, it will be absolutely necessary to further investigate the real-scale
application and durability of the photocatalytic process, and to use automatic monitoring
systems such as sensors, in order to optimize data collection over a longer period of time
and a wider geographical area.

Author Contributions: Conceptualization, J.H., C.F. and E.R.; methodology, J.H. and C.F.; formal
analysis, J.H. and C.F.; investigation, J.H., C.F. and E.L.; writing—original draft preparation, J.H. and
C.F.; writing—review and editing, J.H.; visualization, J.H., C.F. and E.L.; supervision, J.H. and E.R.;
project administration, J.H. and E.R.; funding acquisition, J.H. and E.R. All authors have read and
agreed to the published version of the manuscript.
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