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Abstract: Water warming and nutrient pulses following extreme rainfall events, both consequences
of climate change, may have a profound impact on the biogeochemical dynamics of large temperate
rivers, such as the Po River (Northern Italy), affecting denitrification capacity and the delivery of N
loads to terminal water bodies. Manipulative experiments on denitrification kinetics were carried out
using dark laboratory incubations of intact sediment cores collected from the lower Po River. Denitri-
fication was measured along temperature and NO3

− concentration gradients using 15N additions, in
summer and autumn, the two seasons when climate change-induced warming has been shown to
be higher. The combination of increased temperatures and pulsed NO3

−-enhanced denitrification,
suggesting that electron acceptor availability limits the process. The direct link between climate
change-induced effects and the positive response of denitrification may have implications for the im-
provement of water quality in the coastal zone, as it may help to partially buffer N export, especially
in summer, when the risk of eutrophication is higher. Further research is needed to investigate the
quality and quantity of sediment organic matter as important drivers regulating river denitrification.

Keywords: climate change; nitrate pulses; temperature warming; denitrification; Po River

1. Introduction

As a result of human-induced climate change, extreme weather events are predicted
to increase in frequency and intensity over the coming decades [1]. Precipitation and
temperature anomalies are expected to alter both the magnitude and the timing of nutri-
ent delivery from the watersheds to the coastal systems, as well as the biogeochemical
dynamics of inland waters [2–4]. Intense rainfall generates large runoff and can mobilize
and transport high amounts of nutrients, mostly as nitrate (NO3

−) from agricultural fields,
resulting in large pulses to aquatic ecosystems [5–7]. Rivers are highly dynamic ecosys-
tems located at the interface between terrestrial and marine systems acting as nutrient
filters and buffering the anthropogenic impacts on coastal zones. Through a variety of
biogeochemical mechanisms, they determine the transformation, retention, or removal
of nutrient loads before they reach the open sea [8–10]. Denitrification is considered to
be a key anaerobic respiration leading to the permanent removal of bioavailable nitrogen
(N) [11], and freshwater systems are estimated to account for about 20% of total global
denitrification [12]. The process is carried out by a group of heterotrophic bacteria using
NO3

− as a terminal electron acceptor and reducing it to gaseous end-products (N2 and
N2O) which diffuse into the atmosphere [13]. It occurs mainly in hypoxic-anoxic sediments
and is supplied by NO3

− diffusing from the water column or produced in the oxic layer by
nitrification [14,15]. Water temperature and NO3

− availability appear to be the main factors
controlling denitrification, but little research has examined them together even though
aquatic ecosystems, especially rivers, are increasingly subject to NO3

− pulse inputs and
are gradually warming [6,16,17].
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The Po River is the largest river in Italy (Northern Italy) and the third Mediterranean
river whose waters are subject to climate warming, especially in summer and fall [17]. The
Po basin is one of the most intensively farmed and densely populated areas in Europe and
a hot spot for NO3

− pollution. In recent years, the effects of climate change have been
observed in the basin, including an increase in the frequency of intense rainfall events
with consequent sudden changes in runoff [18–20] and in the delivery and transformation
of N loads. While short-term heavy precipitation events may dramatically increase the
mobilization of NO3

−, the progressive warming of the waters of the Po River may stimulate
N dissipation processes and partially buffer the export of N to the coastal zones of the
Adriatic Sea. These intertwined effects on the processing and transport of riverine N loads
remain unexplored.

The aim of this work was to assess the combined effect of water temperature warm-
ing and NO3

− pulse addition on N removal via denitrification in the Po River through
controlled laboratory incubations of intact sediment cores. Summer and autumn were
selected being the seasons when the effects of climate change are most evident in terms of
temperature warming [18] and occurrence of extreme storm events [19,20]. In particular,
the Po River water temperature has warmed over the last three decades, with the most
pronounced signals in summer (+0.13 ◦C yr−1) and autumn (+0.16 ◦C yr−1), together with
the strongest increase in the number of warm days (+70–80%) [17].

2. Materials and Methods
2.1. Study Area and Sampling Procedure

The Po River is the biggest Italian river flowing, with an average discharge of 1500 m3 s−1,
from the Alps to the Adriatic Sea in Northern Italy (Figure 1) and has more than 140 tributaries
and a capillary network of artificial canals [21]. The Po River basin is the largest cultivated
area in Italy accounting for 35% of national agricultural production and the main source of
nutrient inputs to the northern Adriatic Sea [22–24], making its coastal waters sensitive to
eutrophication risk. The hydrological regime is characterized by two flood periods (spring
and autumn) and two low-water periods (winter and summer). However, in recent decades,
climate change affected this area with extreme events, such as the increase in heat wave
frequency, the warming of water temperature, and the occurrence of prolonged drought
periods [17,25]. In particular, the 2022 Po River hydrological drought was the worst in
the last two centuries. The average daily discharge at the closing section was for more
than three weeks below 168 m3 s−1, i.e., the historical minimum recorded in the 1961–2021
period, and reached a new record of 104 m3 s−1 on 24 July [25–27].

Figure 1. (a) Maps of the Po River Basin (red border), its main natural hydraulic network (light
blue lines), and (b) of the sampling site (black star), i.e., the closing section at Pontelagoscuro
(Ferrara province).
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The study site was the closing section of the Po River basin, i.e., in the Pontelagoscuro
locality (Ferrara province), right upstream of the deltaic system. Two sampling campaigns
were carried out on 20 July and 15 November 2022, representative of summer and autumn
conditions, respectively. In situ physicochemical parameters (temperature, oxygen con-
centration) were monitored using a multi-parameter probe (YSI 106 Model 85-Handheld
Dissolved Oxygen, Conductivity, Salinity and Temperature System, Yellow Springs, OH,
107 USA), at the time of sediment sampling (Table 1).

Table 1. Water and sediment features at Pontelagoscuro site during the summer and autumn
samplings. Standard deviations are reported in brackets.

Seasons Temperature
(◦C)

O2
(mg L−1)

NO3−

(µM)
OM
(%)

Density
(g mL−1)

Porosity
(%)

Summer 29 8.3 20
(2)

0.4
(0.03)

2.1
(0.1)

40
(3)

Autumn 14 10.2 135
(3)

1.7
(0.4)

1.8
(0.2)

60
(10)

In each season, 60 intact sediment cores (internal diameter 4.5 cm, length 20 cm)
were sampled for the measurement of denitrification rates along the temperature gradient
(15 cores were used for each of the 4 temperature treatments) and around 60 L of water
were collected for core maintenance, pre- and incubation procedures. Additional cores
(n = 5 for each season) were used for sediment characterization. Sediment samples were
transported to the laboratory submerged in four tanks, corresponding to the four tem-
perature treatments of each season, with site water continuously aerated using aquarium
pumps. Each target temperature was set in the early afternoon of the day before incubation
began to allow for acclimatization. The experimental temperatures were controlled in the
incubation tanks by a thermostat and continuously monitored by a multi-parameter probe.

The experimental temperatures were controlled in the incubation tanks by a ther-
mostat and continuously monitored using a multi-parameter probe [28]. Four different
temperature treatments were applied in each seasonal incubation, i.e., 21, 25, 28, and 32 ◦C
in summer and 9, 12, 16, and 20 ◦C in autumn. These threshold values were established
based on historical temperature data for the Po River in the last three decades [17; 18; 28]
and future predictions in the period of 2041–2070 [29]. The year 2022 was characterized
by strong temperature anomalies. The water temperature of the Po River was constantly
higher than the monthly mean values of the 2000–2021 period, with an average positive
anomaly of 2.5 ◦C throughout the summer and until mid-autumn [18; 27].

2.2. Measurement of Benthic Oxygen Fluxes along Temperature Gradients

Benthic oxygen flux (sediment oxygen demand, SOD) was measured according to
standardized protocols [30,31]. A Teflon-coated magnet driven by an external motor
(40 rpm) was inserted into each core and suspended a few centimeters above the sediment–
water interface to gently mix the water column. Sediments were incubated in the dark to
simulate in situ conditions where the turbidity limits the light penetration to the benthic
compartment [32]. Before incubation started, the water in the tanks was replaced with
fresh water to maintain dissolved nutrient concentrations close to those found in the field.
The water level in the tanks was lowered to a few centimeters below the top of the cores.
Oxygen concentration was measured inside each core using a multi-parameter probe and
each liner was then sealed with a gas-tight Plexiglass lid. Incubation lasted from 2 (summer
experiment) to 4 h (autumn experiment), and at the end of the incubation period, the O2
concentration in each core was measured again. These durations have been established on
the basis of pilot tests as the minimum time required to detect significant changes in solute
concentrations and to keep O2 concentrations at the end of the incubation within 20% of
the initial value, according to standard protocols [30].
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The dark flux of O2 (sediment oxygen demand, SOD; µmol O2 m−2 h−1) was calcu-
lated according to the following equation [31]:

SOD =
|([O2]f − [O2]i)|×V

A × t
(1)

where the brackets indicate the O2 concentration (µM) at the end (f) and at the beginning (i)
of the incubation; V (L) is the water column volume; A (m2) is the sediment surface; and t
(h) is the incubation time.

2.3. Measurement of Denitrification along Temperature and NO3
− Gradients

After the SOD measurement, the water in the tanks was replaced with fresh water,
and the intact cores were re-submerged for around 2 h to stabilize before the following
incubation. The Isotope Pairing Technique (IPT; [33]) was applied to measure denitrification
rates under increasing NO3

− concentrations at the four temperature treatments tested in
each season. The water level in the tanks was lowered to a few centimeters below the top
of the cores to isolate them. To obtain final 15NO3

− concentrations of 50, 100, 150, 200, and
250 µM, variable amounts of labeled NO3

− (20 mM Na15NO3 stock solution, 98%, Sigma
Aldrich, Inc. St. Louis, MO, USA) were added to the water phase of three replicates for each
NO3

− level. To simulate extreme storm events, which have become more frequent in the
Po basin in recent decades, an enrichment of almost 40% of the in situ NO3

− concentration
was established [34,35].

To calculate the 15N- enrichment of the NO3
− pool, a water sample was collected

from each core before and after (5 min) the labeled NO3
− addition. Water samples were

collected from each core using a 60 mL glass syringe, filtered through Whatman GF/F glass
fiber filters (pore size of 0.45 µm), transferred to 20 mL polyethylene scintillation vials,
and analyzed with a Technicon AutoAnalyser II using the cadmium reduction method
(detection limit of 0.4 µM; [36]). After the water sampling, the cores were capped with
gas-tight Plexiglass lids and incubated in the dark for 2 h and 4 h during the summer and
autumn experiments, respectively. The incubations were set to ensure the O2 consumption
was less than 20% of the initial concentration, a requirement for IPT application [33]. At
the end of the incubation, the sediment and water phases of each core were mixed to
homogenize the dissolved N2 pools in the aqueous phase and pore water. An aliquot of the
slurry was transferred to glass-tight vials (12 mL, Exetainer®, Labco Limited, Lampeter, UK)
and fixed with 200 µL of ZnCl2 (7 M) to stop microbial activity. The slurry samples were
analyzed by Membrane Inlet Mass Spectrometry (MIMS; Bay Instruments, Easton, MD,
USA; [37]) to determine the abundance of 29N2 and 30N2. The IPT is one of the most widely
used techniques for the measurement of denitrification in aquatic ecosystems [38–40]. The
measured production of 29N2 (p29) and 30N2 (p30) was used to calculate the denitrification
rates (µmol N m−2 h−1) according to principles and equations reported by Nielsen [33]
and reviewed by Steingruber et al. [39]. The denitrification of labeled 15NO3

− (D15) was
calculated from p29 and p30, as follows:

D15 = p29 + 2 × p30 (2)

Assuming a binomial distribution of 28N2, 29N2 and 30N2, Nielsen ([33]) derived the
following equations for the calculation of denitrification of unlabeled 14NO3

− (D14) and of
total denitrification (Dtot):

D14 = D15 ×
p29

2 × p30
(3)

Dtot = D14 + D15 (4)
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Denitrification of the 14NO3
−/15NO3

− mixture diffusing from the water column into
the sediment (DW

tot) was calculated as follows:

Dtot
w =

D15

ε
(5)

where ε is the isotopic NO3
− enrichment, calculated as:

ε =

[
NO−

3
]

a −
[
NO−

3
]

b[
NO−

3
]

a
(6)

In Equation (6), the brackets indicate concentrations (µM), and the subscripts a and b
refer to after and before the 15NO3

− tracer addition, respectively.
Denitrification of NO3

− produced within the sediment by nitrification, i.e., coupled
nitrification-denitrification (Dn), was obtained by difference:

Dn = Dtot − Dtot
w (7)

Under the assumption that DW
tot follows a linear increase with higher 15NO3

− tracer
concentrations, the rate can be extrapolated back to tracer-free conditions in order to obtain
the denitrification rate (DW) of ambient nitrate (14NO3

−) diffusing from the water column
to the sediment:

Dw = Dtot
w ·(1 − ε) (8)

2.4. Sediment Characterization

The additional sediment cores were used to determine sediment features at each
seasonal sampling. The upper 0–1 cm sediment layer was extracted, homogenized, and
analyzed for bulk density (g mL−1), measured as the weight of a known volume of fresh
aliquot (5 mL), and porosity (%) after oven drying at 50 ◦C for 72 h. Powered aliquots of
the dried sediment were transferred to a muffle furnace at 350 ◦C for 3 h to determine the
organic matter content (OM, %) as loss on ignition.

2.5. Statistical Analysis

Linear regression was applied to determine the relation between water temperature
and SOD and between 15NO3

− and D15, using the software SigmaPlot 15.0 (Systat Software,
Inc., San Jose, CA, USA). Denitrification rates of 15NO3

− were analyzed using linear mixed-
effect (LME) models to detect differences in applied temperature [28] and NO3

− level in
each seasonal experiment. In the LME test, a random effect was applied to consider all
replicate samples at each temperature and nitrate gradient. The sample size was equal in all
tests. The LME test was run in rStudio (rStudio-2023.06.0-421) using the nlme package [41].
The focus of the test was to compare the differences in process rates at different temperatures
and 15NO3

− concentrations and the correlation between the two factors by considering the
season as a fixed factor. For all tests, the overall significance level was set at p ≤ 0.05.

The response of Dw
tot to increasing NO3

− concentrations was fitted to a linear model or
a non-linear model representing an exponential curve or the Michaelis–Menten kinetic [42]:

Dtot
w =

Dtot
w max·

[
NO−

3
]

Km +
[
NO−

3
] (9)

where Dw
tot max (µmol N m−2 h−1) is the maximum denitrification rate, [NO3

−] is the
sum of ambient 14NO3

− and added 15NO3
− (µM), and Km is the Michaelis–Menten or

half-saturation constant (i.e., the NO3
− concentration at which Dw

tot = 1/2 Dw
tot max).
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3. Results and Discussion
3.1. River Sediment Oxygen Demand along Seasonal Temperature Gradients

Water temperature warming significantly affected the benthic metabolism of the
Po River, mainly by stimulating oxygen consumption because of increased respiration
activity at higher temperatures, which agrees with previous outcomes in freshwater sedi-
ments [7,43,44]. In situ O2 concentrations were different in summer and autumn sampling,
with higher values in autumn than in summer (8.3 and 10.2 mg L−1, respectively; Table 1),
reflecting differences in gas solubility in relation to water temperature. The water of the Po
River is well mixed in the section studied and along the whole of its upstream course, due to
the high energy of the flow and its tortuous course. In fact, the O2 concentrations measured
at the time of sediment sampling, as in other seasons [18], were close to 100% satura-
tion. Along the experimental temperature gradients, the SOD ranged between 56 ± 7 and
813 ± 149 µmol O2 m−2 h−1 and between 926 ± 141 and 1584 ± 337 µmol O2 m−2 h−1 in
autumn and summer, respectively. In both seasons, the sediment oxygen demand followed
a linear trend with temperature (p < 0.05 in summer, p < 0.001 in autumn; Figure 2), with
a rise of ~55 and ~69 µmol O2 m−2 h−1 for an increase of one degree of temperature in
summer and autumn, respectively, highlighting a temperature dependence for microbial
respiration [45].

Figure 2. Sediment oxygen demand (SOD; µmol O2 m−2 h−1) measured along the water temperature
gradients. Average values ± standard deviations are reported (n = 15). The dashed lines show the
statistically significant trends indicated on the right.

3.2. Influence of Water Temperature and NO3
− Concentration on Partitioning between Dw and Dn

Denitrification rates increased significantly along the experimental temperature gra-
dients set in the two seasons, with the magnitude and partitioning between Dw and Dn
strongly determined by NO3

− availability in the water column (Figure 3), similar to the
previous results for the Po River sediments [28]. Summer denitrification rates measured
at in situ NO3

− concentration ranged between 15 ± 7 µmol N m−2 h−1 (at 21 ◦C) and
49 ± 7 µmol N m−2 h −1 (at 32 ◦C), with Dw contributing to a minor fraction of the overall
rate (18–38%) due to low NO3

− availability in water (~20 µM). In contrast, higher water
NO3

− concentrations in autumn (~135 µM) resulted in a dominance of Dw (77–95%) to
total denitrification rates, which varied between 9 ± 4 µmol N m−2 h−1 (at 9 ◦C) and
65 ± 12 µmol N m−2 h−1 (at 20 ◦C). Dn showed a positive response along the temperature
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gradient in summer, varying from 10 ± 7 to 40 ± 7 µmol N m−2 h−1 and accounting
for 62–82% of the total rates, while Dw did not exhibit the same upward trajectory and
remained below 10 µmol N m−2 h−1 across the whole temperature gradient. In contrast, in
the autumn experiment, Dw was systematically higher than Dn, increasing 7-fold with an
11 ◦C warming of water temperature.

Figure 3. Denitrification rates measured along the temperature gradients in (a) summer and (b) au-
tumn at ambient NO3

− concentrations. Rates are split in the contribution of Dw (denitrification of
water column NO3

−) and Dn (denitrification of NO3
− produced by nitrification in the oxic sediment

layer). Average values ± standard deviations (n = 15) are reported.

The positive effect of temperature on denitrification is well known for various aquatic
ecosystems, including riverbed sediments [46,47]. The biological reaction rate generally
increases by two or three times for each 10 ◦C increase in temperature, as was also found in
the present work. Water warming affects N removal via denitrification both as a direct effect
on enzyme activity and as an indirect effect on sediment redox conditions [14,48,49]. Thus,
higher water temperatures may reduce both O2 solubility and increase sedimentary O2
consumption, limiting O2 penetration and extending the hypoxic-anoxic layer suitable for
denitrifying bacteria [43,50]. As temperature increases, microbial activity accelerates con-
suming all available O2, resulting in the use of other electron acceptors to degrade organic
matter [11,14]. The warming of the water increased sediment respiration and anaerobic
processes and this, together with high NO3

− concentrations in the water column, played
an important role in enhancing denitrification, specifically favoring the prevalence of Dw
over Dn. Increasing temperature may have also triggered the enzyme kinetics of nitrifying
bacteria. The ammonia required for this process is derived from the mineralization of
organic N, which is stimulated at higher temperatures [15,51].

3.3. Climate Change-Related Factors Controlling Denitrification

A collective study of several aquatic ecosystems confirmed the importance of tem-
perature in controlling denitrification, but several other environmental factors have been
shown to modulate its seasonal patterns [8]. Many studies have investigated the drivers
of denitrification in isolation by manipulating temperature, NO3

−, organic carbon, and
other temperature-sensitive variables in laboratory assays [13]. However, climate change is
expected to simultaneously alter several environmental factors that regulate denitrification.
This highlights the need for studies that examine the effects of multiple controls, especially
in large eutrophic rivers subject to extreme weather events.

The results of the present experiment showed that the combination of warmer tem-
peratures and increased NO3

− availability enhanced denitrification rates demonstrating
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that the process was not saturated along the 15NO3
− gradient. Rates of 15NO3

− con-
sumption measured in summer (Figure 4a) ranged between 15 ± 5 (50 µM, 21 ◦C) and
125 ± 20 µmol N m−2 h−1 (250 µM, 32 ◦C). Summer rates were generally higher than
the autumn rates (Figure 4b) measured along the same NO3

− gradient but at lower
temperatures. Indeed, D15 measured in autumn varied from 4 ± 3 (50 µM, 14 ◦C) to
74 ± 7 µmol N m−2 h−1 (250 µM, 20 ◦C). The response of D15 to increasing labeled 15NO3

−

concentrations followed a linear relation for all the temperature treatments tested in summer.
It can be inferred that in lowland river stretches, during summer and autumn, denitrifica-
tion may be constrained by the availability of electron acceptors. The sole exception to this
trend was the highest temperature (32 ◦C) when the pattern along the NO3

− gradient was
more erratic despite the highest rates being measured at the maximum NO3

− concentration
(250 µM) (Figure 4). The addition of 15NO3

− also stimulated D15 in autumn; in fact, the
reduction rates increased linearly along the 15NO3

− gradient for all temperatures, except
at the lowest one (9 ◦C), confirming a microbial limitation at colder temperatures [52,53].
A breakpoint in the temperature response of denitrification may occur, reflecting the fact
that rates decrease non-linearly at lower temperatures [11,54]. The LME statistical test
(Table 2) showed the dependence of D15 from both temperature (p < 0.001) and NO3

−

availability in the Po River (p < 0.001), both in summer and in autumn. Moreover, there
was a significant interaction between NO3

− treatment and temperature, suggesting that
the effect of substrate availability on denitrification was dependent on temperature as a
key regulator of the enzymatic activity and of redox conditions [13,48].

Figure 4. Denitrification rates of the 15NO3
− (µmol N m−2 h−1) measured along the labelled NO3

−

concentrations (µM) gradient in (a) summer and in (b) autumn at the different seasonal temperatures.
Average values ± standard deviations (n = 3) are reported. The dashed lines show the statistically
significant trend indicated on the right of the fitted curve.

Table 2. Effect of the factors (temperature and concentration of added 15NO3
−) and their interaction

on denitrification of labeled tracer (D15) in summer and autumn, based on linear mixed effects (LME)
models. F test value and significance level (p) are reported.

Season Temperature
(◦C)

15NO3−

(µM)

Temperature
×

15NO3−

F p F p F p

Summer 33.0 <0.001 115.7 <0.001 3.6 0.05

Autumn 202.3 <0.001 51.6 <0.001 32.6 <0.001
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The lowest temperature treatment tested in summer (21 ◦C) was only one degree
different from the highest temperature tested in autumn (20 ◦C). However, in autumn D15
rates were slightly higher, on average, under non-limiting NO3

− concentrations (250 µM)
(Figure 4). This underlines that other factors affecting denitrification may have varied
seasonally. Sediment organic matter was more available in autumn (Table 1), which may
have promoted denitrification. Sediment organic matter stimulates the process directly by
providing substrate (i.e., electron donors) to heterotrophic denitrifiers, and indirectly by
increasing O2 consumption, reducing the thickness of the oxic zone [11].

In autumn, over the whole temperature gradient, the response of Dw
tot (i.e., denitrifica-

tion of the 14NO3
−/15NO3

− mixture diffusing from the water column into the sediment) to
total NO3

− availability (ambient 14NO3
− + added 15NO3

−) showed asymptotic rates. This
indicates the saturation of denitrification capacity, as shown by Michaelis–Menten curves
(Figure 5). The kinetics of denitrification at high NO3

− concentrations are quite uncertain,
where either electron acceptor saturation or limitation by other controlling factors may
occur [8,13], such as organic matter in sandy sediments of the Po River (Table 1). At the
lower summer temperature (21 and 25 ◦C), a saturation over 220 µM was observed, while
the increase in denitrification was exponential at the highest temperatures (28 and 32 ◦C).
With increased electron acceptor availability, denitrification is released from substrate limi-
tation, potentially allowing a greater response to temperature increase. The linear positive
response may also be due to increased mineralization rates. This would release organic
compounds and create a temperature-induced O2 deficiency, which in turn may reduce the
width of the oxic layer, resulting in a thinner diffusion path length for NO3

− [14,43].

Figure 5. Denitrification of the 14NO3
−/15NO3

− mixture diffusing from the water column
into the sediment (DW

tot, µmol N m−2 h−1) as a function of NO3
− concentration (ambient

14NO3
− + added 15NO3

−) in (a) summer and in (b) autumn at the different tested temperatures.
Average values ± standard deviations (n = 3) are reported. The dashed lines show the statistically
significant trend indicated on the right of the fitted curve.

The observed denitrification rates compare well to those previously reported for
several aquatic ecosystems of the Po River Basin [27]. Pulse NO3

− additions resulted in
an immediate stimulation of denitrification rates in the Po River sediments suggesting
that the denitrification potential was only partially expressed. These results are consistent
with other studies describing the dependence of denitrification on NO3

− availability in
freshwater sediments [55,56], as well as its control by other factors, such as organic matter
content in sediments [43,57–61].

In the context of climate change, the sensitivity of denitrification to NO3
− concentra-

tions has important effects on water quality. The river self-depuration capacity supported
by sediment denitrification appeared to be highly responsive to both temperature and
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NO3
− availability with implications for water quality improvement in the Adriatic Sea,

due to the potential reduction in N loads especially when riverine nutrients trigger the
most eutrophication.

4. Conclusions

Manipulative laboratory experiments demonstrated that water warming and pulse
NO3

− addition resulted in a stimulation of denitrification leading to permanent N removal
in the Po River sediments. The direct link between climate-induced water temperature
increase and the positive response of denitrification may have implications for the im-
provement of water quality in the Adriatic Sea, as it may contribute to partially buffer N
loads, especially in summer when the eutrophication risk is higher. Challenges remain
in scaling up NO3

− removal via denitrification from sediment cores to ecosystems, and
future studies are needed to explore the natural heterogeneity influencing the spatial and
temporal variation of N cycling in river sediments. Interactions among NO3

− availability,
temperature, organic carbon, and discharge are important to consider when assessing the
changes in river self-depuration capacity under future climate scenarios. Exploring these
might provide a more nuanced understanding of the river’s response to environmental
changes. The efficiency of rivers as nutrient filters depends on factors other than the kinetics
of denitrifiers, such as water residence time, which decreases during high-flow events.
Finally, comprehensive experiments should be planned to fully understand the role of
carbon limitation in controlling nitrous oxide production via incomplete denitrification.
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