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Abstract: Microplastics have been found in the gastrointestinal (GI) fluid of bottlenose dolphins
(Tursiops truncatus), inhabiting Sarasota Bay, FL, suggesting exposure by ingestion, possibly via
contaminated fish. To better understand the potential for trophic transfer, muscle and GI tissues
from 11 species of dolphin prey fish collected from Sarasota Bay were screened for microplastics
(particles < 5 mm diameter). Suspected microplastics were found in 82% of muscle samples (n = 89),
and 97% of GI samples (n = 86). Particle abundance and shapes varied by species (p < 0.05) and
foraging habit (omnivore vs. carnivore, p < 0.05). Pinfish (Lagodon rhomboides) had the highest
particle abundance for both tissue types (muscle: 0.38 particles/g; GI: 15.20 particles/g), which has
implications for dolphins as they are a common prey item. Findings from this study support research
demonstrating the ubiquity of estuarine plastic contamination and underscore the risks of ingestion
exposure for wildlife and potentially seafood consumers.

Keywords: plastic pollution; bottlenose dolphin; One Health; contaminant; trophic transfer

1. Introduction

Microplastics are plastic particles less than 5 mm in diameter [1,2] and are found ev-
erywhere, including terrestrial [3], polar [4], freshwater [5–7], and marine environments [8].
Additionally, ref. [8] estimated that our oceans contain roughly 171 trillion plastic particles.
Microplastics enter the environment through various pathways, including degradation of
macroplastic litter [9–11], direct contamination as primary microplastics (i.e., microbeads
from personal care products; [12–14]), landfill and urban runoff [15–17], or via sewage and
wastewater discharge [18,19].

Although widespread, the extent of microplastic contamination is not spatially uni-
form, and the variability in contamination can be attributed to particle properties (e.g., den-
sity and surface area, [20–22]), degrees of urbanization [23–25], and oceanographic cur-
rents [26–28]. For instance, particles with a higher density are more likely to sink and
accumulate in sediment layers [20,22], and particles with larger surface areas may serve
as substrates for biofouling, which can also contribute to their descent in water [21,22].
Geographically, the impact of urbanization on marine microplastic pollution is evident,
with studies showing that waters surrounding urban centers are significantly more pol-
luted than those near rural coastlines [24,29], likely due to urban runoff and wastewater
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discharge [15,17,25]. Additionally, research has demonstrated that microplastic abundance
decreases as the distance from shoreline increases, in both rural and urban settings [23,25].
The influence of ocean currents is significant, with lower microplastic concentrations found
in regions with strong currents and higher concentrations in areas with slower-moving
currents, particularly noticeable in ocean gyres where both micro- and macro-plastics are
trapped and circulate indefinitely [26–28].

Although the distribution of marine microplastics varies, their widespread prevalence
makes all marine fauna vulnerable to exposure. Microplastics have been detected in multi-
ple tissue types (e.g., muscle, liver, gills, gastrointestinal tracts, “GI”; [30–33]) across a wide
range of taxa including jellyfish [34], bivalves [35–37], crustaceans [38], cephalopods [39],
turtles [40], marine mammals [41–50], and numerous fish species [30,31,51,52]. Studies
indicate that fish harbor the highest concentration of microplastics within their gastroin-
testinal tracts [53], with fibers being the most commonly observed shape [52,54]. Mi-
croplastic exposure in fish can occur via branchial intrusion in which particles enter via
the gills [32,53,55–57], as well as by incidental or direct ingestion [16,32,34,53,55,56,58–60].
For example, visually oriented predators can mistake microplastics for prey due to their
size and color resemblance [56,59,60], leading to higher gastrointestinal concentrations
than chemosensory foragers [56]. However, not all fish actively pursue microplastics or
confuse them for food; ingestion can also be an unintentional consequence of feeding in
contaminated water [55] or through trophic transfer. An experimental study demonstrated
that snowy sculpin (Myoxocephalus brandti) had higher concentrations of microplastics in
their gastrointestinal tracts when placed in tanks with mysids (Neomysis spp.) that had pre-
viously ingested microplastics, compared to tanks with only suspended microplastics [58].
Trophic transfer has also been observed in higher-order taxa such as grey seals (Halichoerus
grypus), in which analyses of scat samples revealed microplastic characteristics similar to
those found in their prey fish [48].

Recent studies of free-ranging bottlenose dolphins (Tursiops truncatus) in Sarasota
Bay, Florida, demonstrated prevalent exposure to plasticizers [61,62] and microplastic
ingestion [44]. Given previous evidence of microplastics in fish tissues and the potential for
trophic transfer, we suspect that dolphin microplastic and plasticizer exposure is likely due
to the consumption of contaminated prey. Building on initial findings from a study that
compared microplastics in fish tissues and dolphin gastric fluid [51], we sought to quantify
and characterize microplastics in a broader and more diverse sample of fish species, which
are part of the Sarasota Bay bottlenose dolphin diet. The findings from this study will
enhance our understanding of the types of microplastics that fish are exposed to, identify
microplastic trophic exposure risks for bottlenose dolphins and local seafood consumers,
and support ongoing efforts to monitor microplastic contamination in Sarasota Bay.

2. Materials and Methods
2.1. Study Location

The Sarasota Bay estuary (Figure 1) spans 50 miles along the central Gulf Coast of
Florida and connects to the Gulf of Mexico through four inlets or passes [63]. Although tides
are shallow (less than 2 feet), tidal exchange with the Gulf of Mexico is the dominant force
for water circulation within Sarasota Bay. Several tidal creeks empty into Sarasota Bay along
the eastern coast, with drainage areas varying in size (smallest: Palma Sola Creek, 900 acres;
largest: Phillippi Creek, 36,417 acres [64]). Daily freshwater inflow averages 11.33 m3/s,
and salinity throughout the Bay averages 30.00 ppt [65]. Sarasota Bay is an urbanized
watershed and consists of agricultural, residential, commercial, and industrial land uses, so
stormwater runoff due to the 45 inches of annual rainfall can be a significant contributor of
pollutants to the Bay [64]. In fact, nitrogen deposition from wastewater and stormwater
is the primary pollution concern for Sarasota Bay, but concentrations have been declining
in recent years as a result of changes in stormwater management and efforts to improve
wastewater treatment practices [64]. For example, septic systems have been transitioned to
centralized sewer systems and regional wastewater treatment plants have been converted
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to pump stations for transport to larger, centralized facilities. Sarasota County now has
three centralized wastewater treatment plants with capacities ranging between 3 and
12 million gallons per day, and reclaimed water is stored in tanks or ponds for residential,
municipal, and commercial irrigation practices throughout the county [66]. Each plant
has plans to become an advanced wastewater treatment (AWT) facility [66], which can
be over 90% effective in removing microplastics if employing both primary (i.e., physical
process) and secondary (i.e., biological process) treatment practices [67]. In 1989, the United
States Congress designated the bay as an estuary of national significance [68], leading
to initiatives aimed at reducing pollution, including measures such as plastic straw bans
and mandatory recycling protocols [69]. Despite these efforts, recent studies have found
evidence of microplastics within the gastrointestinal tracts of fish and dolphins inhabiting
the area [44,51].
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Figure 1. Fish collection locations in Sarasota Bay, FL, USA (September 2022–July 2023).

2.2. Fish Collection

Fish for this study were collected via purse-seining from Sarasota Bay, FL (Figure 1)
by the Brookfield Zoo Chicago’s Sarasota Dolphin Research Program (SDRP) between
September 2022 and July 2023 as part of efforts to monitor seasonal abundance [70,71].
SDRP fish survey methods and procedures have been previously described [71,72]. Briefly,
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the study area for SDRP’s seasonal fish abundance surveys was chosen based on the spatial
distribution of the resident dolphins, covering estuarine waters from the Passage Key Inlet
at the southwestern edge of Tampa Bay (27.5528◦ N/82.7423◦ W) southward to Phillippi
Creek, south of Sarasota Bay (27.27096◦ N/82.53757◦ W). Five distinct habitat types were
characterized within this study area including creek/mangrove edge, seagrass beds, open
bay, sand flat, and nearshore gulf waters, based on location, water depth, and bottom
type (vegetated vs. unvegetated) [71]. Using a 200 × 200 m resolution sampling grid
originally created in ArcGIS 8.0 (Environmental Systems Research Institute, Redlands, CA,
USA), sampling stations were located at the centroids of each grid cell and habitat type
was identified at each centroid. Sampling stations were then chosen at random based on
habitat type. For the present study, fish were collected during surveys focusing exclusively
on seagrass habitat within Sarasota Bay, as the primary prey fish of resident dolphins
in Sarasota Bay are associated with seagrass habitat [71]. Twelve species were targeted
based on reports from stomach content analyses and observed feeding in the field [72,73];
these included hardhead catfish (Ariopsis felis), sheepshead (Archosargus probatocephalus),
menhaden (Brevoortia tyrannus), spotted seatrout (Cynoscion nebulosus), ladyfish (Elops
saurus), scaled sardine (Harengula jaguana), pinfish (Lagodon rhomboides), spot (Leiostomus
xanthurus), striped mullet (Mugil cephalus), Gulf toadfish (Opsanus beta), pigfish (Ortho-
pristis chrysoptera), and Atlantic thread herring (Opisthonema oglinum). Fish collection was
approved by Mote Marine Laboratory’s Institutional Animal Care and Use Committee
(IACUC, Permit nos. 22-09-RW2, 23-09-RW2) and Florida Fish and Wildlife Conservation
Commission Special Activity License nos. 19-0809A-SR and 22-0809-SR.

2.3. Sample Processing and Analysis

Dissections to remove muscle tissue and the gastrointestinal tract were conducted on
metal trays using stainless steel scalpels and forceps, and tissues were stored at −20 ◦C
glass jars until digestion [51]. To digest organic material, muscle and GI tissues were
incubated in a potassium hydroxide (KOH, 10%) solution at 60 ◦C [74] for 24–72 h. The
resulting digestate was vacuum filtered onto a GF/A 1.6 µm glass fiber filter within a
fume hood [51,75]. Samples containing large quantities of inorganic solids or durable
organic remnants (i.e., sediment, crustacean exoskeletons, bone, and scales) were pre-
filtered through 63 µm and 500 µm sieves prior to vacuum filtration. Filters were then
placed in covered petri dishes and stored in a cabinet to dry.

Suspected microplastics were visually identified under a Leica EZ4 microscope at
16–35× magnification [74–76]. Characteristics of suspected microplastics included ho-
mogenous coloring, absence of organic or cellular structures, and uniform thickness of
fibrous particles [74]. Suspected microplastics were categorized by color and shape. Fibers
appeared significantly longer than they were wide [2,77], foams were round and porous,
changing shape upon touch [2,77–79], films were flat with greater length and width than
depth [2,77,79], and fragments had distinct corners [2,77]. Tire wear particles (TWP)
were identified as black, rubbery fragments that retained their shape upon manipula-
tion [76]. Plastic testing was conducted with a heated (250 ◦C) soldering needle [75], which
causes plastic particles to bend or melt, as most polymers melt near a temperature of
250 ◦C [74,75,80]. Fourier Transform Infrared (FTIR) spectroscopy (Nicolet iS20, Thermo
Scientific, Waltham, MA, USA) was available for polymer determination; however, the
particle sizes in this study were smaller than the instrument’s detection threshold (500 µm
to 5 mm). Therefore, our findings report suspected microplastics identified via visual
characteristics and hot needle responses [44,51].

2.4. QA/QC

Before each dissection, all tools were triple-rinsed with Milli-Q® purified water [2,74,75].
During the dissections, a petri dish containing a glass fiber filter was placed on the benchtop
to capture ambient microplastics, serving as a “dissection blank” [2,74]. This blank was
processed identically to the fish tissues to control for ambient contamination. Additionally,
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100% cotton lab coats dyed orange (an uncommon microplastic color) and clean nitrile
gloves were worn during dissection, digestion, filtration, and counting procedures to avoid
contamination by personnel [2,74,76]. For quality assurance and control (QA/QC), blanks
were collected at each step of the analysis. One lab/procedural blank without any tissue
was processed with each digestion batch to account for contamination during sample
processing [74]. To evaluate the efficiency of microplastic recovery, three positive controls
containing polyethylene films, polystyrene foams, and polyester fibers were included [2].
These controls demonstrated mean recoveries of 60% for films, 83% for foams, and 85% for
fibers. Finally, microplastic particles that matched the shape and color of those found in the
corresponding blanks were excluded from the total counts in the sample data [2,51,74].

2.5. Statistical Analysis

The proportion of muscle and GI samples with suspected microplastics was deter-
mined for all fish combined and by species. Particle counts were categorized by shape and
color and summarized for both tissue types across all species sampled. For each tissue
type, the particle load was quantified as the number of suspected microplastics per gram of
tissue [51]. Mean particle load was compared across species using a Kruskal–Wallis test
and between foraging habits (i.e., carnivore vs. omnivore) using a Mann–Whitney U test.
All statistical analyses were conducted using Statistica software (version 13, Tibco, Inc.,
Palo Alto, CA, USA), with statistical significance set at α = 0.05.

3. Results
3.1. Sample Characteristics

From September 2022 through to July 2023, 11 fish species were collected from 17 lo-
cations in Sarasota Bay (Figure 1). In total, 94 fish were screened for suspected microplas-
tics, with 2 to 24 individuals per species (Table 1). Muscle tissue (n = 89) mass varied
between species, with the largest belonging to the ladyfish (Elops saurus; n = 2; range:
100.20–117.30 g), and the smallest belonging to the Atlantic thread herring (Opisthonema
oglinum; n = 4; range: 0.90–9.20 g; Table 1). Among GI samples (n = 86), the hardhead
catfish (Ariopsis felis) had the largest tissue mass (n = 6; range: 11.40–48.90 g), and the scaled
sardine (Harengula jaguana) had the smallest (n = 8; range: 0.50–5.10 g; Table 1). For all fish,
the muscle tissue mass was higher than their GI sample counterpart (Table 1).

Table 1. Characteristics of fish screened for suspected microplastics. Characteristics include species,
foraging type [81] tissue sample counts, tissue sample mass (g), and mean particle load (# particles/g
tissue) for muscle and gastrointestinal (GI) samples.

Common Name
(Genus Species)

Foraging
Type 1

Muscle
Samples (n)

Muscle Mass (g)
Mean (sd)

Muscle Particle Load
(# Particles/g)

Mean (sd)

GI
Samples (n)

GI Mass (g)
Mean (sd)

GI Particle Load
(# Particles/g)

Mean (sd)

Hardhead Catfish
(Ariopsis felis) Carnivore 6 34.33 (14.45) 0.08 (0.06) 6 30.43 (16.69) 6.04 (4.67)

Sheepshead
(Archosargus probatocephalus) Omnivore 2 (16.40–47.40) * (0.06–0.27) * 2 (3.10–19.90) * (1.81–7.10) *

Menhaden
(Brevoortia tyrannus) Carnivore 5 30.18 (11.90) 0.11 (0.07) 4 12.30 (2.99) 2.70 (1.23)

Spotted Seatrout
(Cynoscion nebulosus) Carnivore 5 68.66 (78.83) 0.02 (0.05) 5 15.68 (11.81) 0.99 (1.29)

Ladyfish (Elops saurus) Carnivore 2 (100.20–117.30) * (0.04–0.15) * 2 (20.60–25.00) * (0.68–1.16) *

Scaled Sardine
(Harengula jaguana) Carnivore 8 6.46 (2.03) 0.15 (0.12) 8 2.39 (1.49) 10.87 (5.51)

Pinfish (Lagodon rhomboides) Omnivore 24 15.01 (15.02) 0.38 (0.64) 25 4.50 (1.78) 15.20 (22.79)

Spot (Leiostomus xanthurus) Carnivore 5 26.24 (2.83) 0.07 (0.05) 4 5.13 (0.86) 0.91 (0.97)

Gulf Toadfish (Opsanus beta) Carnivore 12 7.06 (3.75) 0.38 (0.56) 12 5.61 (2.86) 4.66 (5.14)
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Table 1. Cont.

Common Name
(Genus Species)

Foraging
Type 1

Muscle
Samples (n)

Muscle Mass (g)
Mean (sd)

Muscle Particle Load
(# Particles/g)

Mean (sd)

GI
Samples (n)

GI Mass (g)
Mean (sd)

GI Particle Load
(# Particles/g)

Mean (sd)

Pigfish
(Orthopristis chrysoptera) Carnivore 16 10.19 (7.19) 0.23 (0.18) 15 4.16 (3.76) 4.45 (5.45)

Atlantic Thread Herring
(Opisthonema oglinum) Carnivore 4 4.3 (3.55) 1.08 (0.92) 3 3.63 (1.06) 11.61 (11.08)

* Minimum and maximum are presented.

3.2. Microparticles in Muscle Samples

Suspected microplastic particles were found in 82.02% (n = 73) of the muscle samples
observed. Overall, particle counts in muscle tissue were relatively low; 75.28% of muscle
samples contained <10 particles (Table 2). Among the particle shapes observed, single
fibers were the most common (71.91%), followed by films (26.97%), fragments (11.24%;
both non-TWP and TWP), foams (5.62%), and fiber bundles (3.37%; Table 2). No mixed
bundles were present. Among the colors observed, yellowed and transparent particles
were found in the muscles of every species screened (Figure 2).

Table 2. Suspected microplastic abundance in muscle tissue of fish collected from Sarasota Bay, FL
(n = 89).

Particle Shape
Total Muscle Samples with

Particle Shape
n (%)

Particle Shapes in Muscle
Samples with <10 Particles

n (%)

Particle Shapes in Muscle
Samples with 10–50 Particles

n (%)

Fiber Bundles 3 (3.37) 3 (3.37) 0
Single Fibers 64 (71.91) 63 (70.79) 1 (1.12)

Films 24 (26.97) 24 (26.97) 0
Foams 5 (5.62) 5 (5.62) 0

Non-TWP Fragments 10 (11.24) 9 (10.11) 1 (1.12)
TWP Fragments * 10 (11.24) 10 (11.24) 0

* TWP (tire wear particle).
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Figure 2. Suspected microplastic colors by species for GI samples (a) and muscle samples (b). From
left to right the colors are black, blue, brown, gray, green, orange, red, pink, purple, transparent/white,
yellow, yellowed, and multi-colored. From top to bottom the species are Af: hardhead catfish (Ariopsis
felis); Ap: sheepshead (Archosargus probatocephalus); Bt: menhaden (Brevoortia tyrannus); Cn: spotted
seatrout (Cynoscion nebulosus); Es: ladyfish (Elops saurus); Hj: scaled sardine (Harengula jaguana); Lr:
pinfish (Lagodon rhomboides); Lx: spot (Leiostomus xanthurus); Ob: Gulf toadfish (Opsanus beta); Oc:
pigfish (Orthopristis chrysoptera); and Oo: Atlantic thread herring (Opisthonema oglinum).
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3.3. Microparticles in Gastrointestinal Samples

Among the 86 GI samples screened, 96.51% (n = 83) contained at least 1 suspected
microplastic particle. Microparticles were more abundant in GI samples; 60.05% of samples
contained 10 particles or more (Table 3). In fact, nearly 300 suspected microplastics were
observed in the GI tissue of a single hardhead catfish (Table 3). Particle shapes observed in
GI samples varied, but similarly to muscle samples, single fibers were the most common
(82.56% of samples screened; Table 3). Films and fiber bundles were also commonly
observed (62.79% and 48.84%, respectively), while fewer samples contained fragments
(non-TWP: 32.56% and TWP: 16.28%), mixed bundles (12.79%), and foams (4.65%; Table 3).
GI particle colors were also variable, but similarly to muscle samples, transparent and
yellowed were commonly observed across all species (Figure 2).

Table 3. Suspected microplastic abundance in GI tissue of fish collected from Sarasota Bay, FL (n = 86).

Particle Shapes
Observed in

GI Tissue

Total GI Samples
with

Particle Shape
n (%)

Particle Shapes in
GI Samples with

<10 Particles
n (%)

Particle Shapes in
GI Samples with

10–50 Particles
n (%)

Particle Shapes in
GI Samples with
51–100 Particles

n (%)

Particle Shapes in
GI Samples with
101–300 Particles

n (%)

Fiber Bundles 42
(48.84) 26 (30.23) 15 (17.44) 0 1 (1.16)

Single Fibers 71
(82.56) 40 (46.51) 25 (29.07) 2 (2.33) 4 (4.65)

Film 54
(62.79) 40 (46.51) 11 (12.79) 0 3 (3.49)

Foam 4 (4.65) 4 (4.65) 0 0 0
Non-TWP
Fragment 28 (32.56) 25 (29.07) 2 (2.33) 1 (1.16) 0

TWP Fragment * 14 (16.28) 14 (16.28) 0 0 0
Mixed Bundle 11 (12.79) 6 (6.98) 5 (5.81) 0 0

* TWP (tire wear particle).

3.4. Comparisons across Species

For both muscle and GI samples, the mean particle load (# particles per gram of tissue)
was compared across species to account for differences in sample mass. Samples from
sheepshead and ladyfish were excluded from species comparisons due to their limited sam-
ple size (n = 2; Table 1). Significant differences in mean particle load were observed across
species in both muscle (Kruskal–Wallis, p = 0.006) and GI tissues (Kruskal–Wallis, p = 0.003).
Additionally, mean particle load was consistently higher for GI samples, compared to mus-
cle tissue (Table 1). Particle abundance was highest in pinfish for both tissue types (n = 24;
muscle: 0.38 particles/g; GI: 15.20 particles/g), and high particle loads were also observed
in the Atlantic thread herring (n = 4; muscle: 1.08 particles/g; GI: 11.61 particles/g).

Among the three species with the highest mean particle load for muscle samples
(pinfish, Atlantic threadfin herring, Gulf toadfish), fibers were most abundant (Figure 3).
Other common particle shapes in muscle samples from these fish included films (pinfish
and Atlantic threadfin herring), non-tire wear fragments (pinfish), and tire wear fragments
(Gulf toadfish; Figure 3). For the fish with the highest particle loads in GI samples (pinfish,
Atlantic threadfin herring, scaled sardine), fibers and films were most abundant (Figure 3).

Each fish species was grouped by feeding habit (i.e., carnivore, omnivore, herbi-
vore [81]; Table 1), for additional comparisons of particle load. Herbivores were not
included in the analysis, as none of the species screened were herbivorous. Despite
the larger sample size and sample masses for carnivorous fish species (n = 63), mean
particle load was significantly higher among omnivorous fish (n = 26) for GI samples
(14.40 vs. 5.12 particles/g; Mann–Whitney U test, p = 0.03). No significant differences in
mean particle load were observed for comparisons of muscle tissue between omnivorous
(0.36 particles/g) and carnivorous (0.25 particles/g) fish (Mann–Whitney U test, p = 0.11).
It should be noted, however, that the majority of omnivorous fish (92%) were pinfish.
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4. Discussion

Microplastic contamination of fish commonly consumed by Sarasota Bay dolphins
was substantial. Suspected microplastics were observed in 82% of muscle samples (n = 73)
and 97% (n = 83) of GI samples (Tables 2 and 3), which is higher than some previous
studies at other sites. For example, ref. [9] found suspected microplastics in only 35% of
GI samples from Nile tilapia (Oreochromis niloticus), African sharptooth catfish (Clarias
gariepinus), common Carp (Cyprinus carpio) and Crucian carp (Carassius carassius; n = 125).
Similarly, ref. [82] observed microplastics in approximately 25% of muscle samples and 40%
of GI samples from red mullet (Mullus barbatus; n = 82) and pontic shad (Alosa immaculata;
n = 82). Other studies have provided results in a similar range to ours; ref. [53] observed
microplastics in 100% of sin croaker (Johnius dussumieri) GI samples (n = 188) from Mumbai,
India, and, ref. [83] found microplastics in 100% of both GI and muscle samples screened
from painted combers (Serranus scriba) sampled near the Tunisian coast. The high propor-
tion of fish with suspected microplastics in our study could be attributed to Sarasota Bay’s
location. To our knowledge, systematic studies of microplastic pollution in Sarasota Bay
have not been performed; however, research by [84] suggested that the neighboring Tampa
Bay could contain up to 4 billion microplastic particles. Also, Sarasota Bay is an urban
estuary that receives freshwater input from multiple sources. Since freshwater tributaries
can carry agricultural and urban runoff, ref. [85] suggests that they may serve as substan-
tial conduits for estuarine microplastics. Additionally, these freshwater creeks can create
mixing zones with saltwater from the ocean, potentially trapping debris and acting as a
sink for microplastics [86].

Consistent with previous studies [57,82,87], particle counts were higher in GI samples than in
muscle tissue, as ingestion is a primary exposure route for microplastics [16,32,34,53,55,56,58–60].
Studies of fish from Turkey, Iran, and Tunisia have shown similar results, with lower
concentrations in muscle tissues compared to GI and stomach samples [82,87,88]. The
mechanism by which particles enter muscle tissue remains unclear, but it is theorized that
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they escape the GI tract through cellular gaps in the stomach lining [89]. This translocation
hypothesis was demonstrated in European sea bass (Dicentrarchus labrax) fed fluorescently
labeled particles (1–5 µm; [89]).

Despite all fish being collected within Sarasota Bay (Figure 1), particle abundance
varied across species. These findings are consistent with research by the authors of [9],
which demonstrated variable contamination in fish sampled from different sites within
the same body of water. Differences in foraging habits could help explain this variation by
species. For example, studies have shown that benthic fish (such as catfish) ingest more
plastic than surface feeders [9,90], likely due to higher concentrations of microplastics
in sediment compared to surface waters [20–22]. Additionally, as microplastics undergo
weathering and biofouling, they can sink [20–22], increasing the likelihood of consumption
by fish that feed lower in the water column.

Our findings suggest that diet may influence contamination, as particle load was
higher among omnivorous fish. However, caution is warranted in interpreting this result
because the majority of omnivorous fish in our study were pinfish, which had the highest
particle abundance. Although pinfish are considered omnivorous, seagrasses, a significant
component of their diet [91], could be a substantial sink for microplastics. For example, [92]
observed microplastic particles on 75% of examined seagrass blades. Similar trends of
higher particle counts in omnivorous fish have been reported in other studies [59,90], where
the authors hypothesize that the diverse diet of omnivorous fish increases their chances of
ingesting particles. Microplastics have been detected in plants, various fish species, and
lower trophic organisms [30,31,92,93], all of which could be food sources for omnivorous
fish. Lastly, while some studies suggest that fish may inadvertently consume microplastics
that resemble their typical food in color or shape [56,59,60], our results do not support this
theory, as we did not observe color preferences among different species.

4.1. Significance of Findings

Our previous studies observed ingested microplastics in Sarasota Bay dolphins [44],
and the results of this study provide insights into possible sources of their exposure.
We detected suspected microplastics in every fish species examined, all of which are
commonly consumed by bottlenose dolphins in Sarasota Bay, Florida, with pinfish being the
species most frequently found in Sarasota dolphin stomach contents [72,73,94]. Considering
the evidence of trophic transfer in marine mammal studies [48,95], it is possible that
contaminated fish could be a substantial source of microplastic exposure for Sarasota
Bay dolphins. Although the impacts of microplastic exposure are not yet understood for
dolphins and other marine mammals, in vitro laboratory studies suggest that adverse
health effects such as inflammation [96,97], reproductive impairment [98,99], neurological
impairment [100,101], and metabolic issues [102,103] are possible.

Additionally, our findings of microplastics in these fish are concerning for seafood
safety. In 2021, Florida was ranked 11th in the United States for the highest production of
fresh seafood, accounting for 4.2% of the national total value [104]. The species examined
in our study hold commercial value or are sought after for sport fishing [105]. The most
contaminated species in our study, the pinfish, is commonly used as bait fish in both
commercial and recreational fishing [106,107]. Through trophic transfer, these larger com-
mercial species, such as spotted seatrout, could become contaminated, thereby increasing
exposure risk for seafood consumers [108].

4.2. Strengths and Limitations

One challenge for microplastic research is the potential contamination from ambient
particles [109]. To mitigate and monitor ambient contamination, several precautions were
implemented, such as wearing 100% cotton laboratory coats, rinsing instruments with
filtered water, and collecting laboratory and procedural blanks. Additionally, a conservative
approach to blank correction was adopted in which sample particles resembling the shape
and color of suspected microplastics in blanks were excluded from abundance counts and
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particle characterization. This method enhanced the reliability of findings by reducing the
likelihood of reporting ambient or procedural contaminants as suspected tissue particles.
Particle size was also a limitation of this study, as suspected microplastics were too small
to confirm their polymer composition using FTIR, which requires particles to be between
500 µm and 5 mm in diameter. Due to this constraint, particles suspected to be microplastics
were identified using microscopy and the hot needle method. The hot needle test is less
reliable than FTIR analysis because it depends on specific reactions in plastic that can vary
(e.g., burning, melting, curling; [110]). Although the hot needle test is not as precise as
FTIR, it can still effectively identify microplastics when used by individuals familiar with
plastic reactions to heat [110].

5. Conclusions

Plastic pollution is a persistent and widespread issue, leading to ubiquitous microplas-
tic contamination. In this study, we examined the muscle and GI tissues of 11 fish species
and found suspected microplastics in each one. These fish are commonly consumed by
bottlenose dolphins in Sarasota Bay, Florida, suggesting a trophic exposure route for dol-
phins and other apex predators. Some species examined are also commonly used as bait
fish for commercial fishers, suggesting a risk to seafood safety. However, we detected the
fewest particles in fillet tissue, indicating a lower exposure risk compared to apex predators
that consume whole fish. Additionally, particle loads were higher in omnivorous fish
compared to carnivorous fish, possibly due to their varied diet. Therefore, microplastic
exposure through trophic transfer could be higher for apex predators and seafood con-
sumers that eat omnivorous fish. While suspected microplastics are abundant in many
of these fish, their small sizes may limit plastic confirmation by standard methodologies
(e.g., FTIR). Future fish studies should employ methods that use smaller size thresholds
(e.g., micro-Raman spectroscopy).
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