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Abstract: Per- and polyfluoroalkyl substance (PFAS) contamination has emerged as a significant
environmental concern, necessitating the development of effective degradation technologies. Among
these technologies, ultrasonication has gained increasing attention. However, there is still limited
knowledge of its scale-up or on-site applications due to the complexity of real-world conditions
and its high energy consumption. Herein, we provide an overview of recent advancements in
the ultrasonic degradation of PFAS toward hybrid technologies. This review contains information
regarding the physical and chemical properties of PFAS, followed by an exploration of degradation
challenges, the mechanisms of ultrasonication, and recent experimental findings in this field. The key
factor affecting ultrasonication is cavitation intensity, which depends on ultrasonic frequency, power
density, and PFAS structure. Its main advantages include the generation of reactive species without
chemicals and the compatibility with other degradation technologies, while its main disadvantages
are high energy consumption and limited applications to liquid-based media. We also highlight
the integration of ultrasonication with other advanced oxidation processes (AOPs) to create hybrid
systems for enhanced degradation of PFAS in order to significantly improve PFAS degradation
efficiency, with enhancement factors ranging between 2 and 12. Finally, we discuss prospects for
scaling up the ultrasonic degradation of PFAS and address the associated limitations. This review
aims to deepen the understanding of ultrasonication technology in addressing PFAS contamination
and to guide future research and development efforts.
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1. Introduction

Per- and polyfluoroalkyl substances (PFAS) are a group of synthetic chemicals known
for their unique properties, including water and grease resistance, thus being widely used in
various industrial and consumer products [1]. However, their persistence, bio-accumulative
nature, and potential health effects have raised alarms [2]. Consequently, PFAS contamina-
tion has emerged as a significant environmental and public health concern [3].

The importance of PFAS remediation cannot be overstated. Effective remediation can
remove or reduce PFAS concentrations in soil, groundwater, and surface water, thereby pre-
venting further distribution and minimizing exposure to humans [4]. Various remediations
have been developed [5]. Among them, ultrasonication represents a promising degra-
dation technique because it is easy to apply, results in fewer intermediates/by-products,
requires less/no chemicals, and is compatible with other techniques [6]. Ultrasonication
involves the application of high-frequency sound waves to the contaminated water or
soil, creating cavitation of micro-bubbles that implode and generate intense local heating
and pressure changes [7]. These effects lead to the degradation of PFAS into less harmful
compounds [8–10]. As research and development in ultrasonication progress towards

Environments 2024, 11, 187. https://doi.org/10.3390/environments11090187 https://www.mdpi.com/journal/environments

https://doi.org/10.3390/environments11090187
https://doi.org/10.3390/environments11090187
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/environments
https://www.mdpi.com
https://orcid.org/0000-0002-2902-5178
https://doi.org/10.3390/environments11090187
https://www.mdpi.com/journal/environments
https://www.mdpi.com/article/10.3390/environments11090187?type=check_update&version=1


Environments 2024, 11, 187 2 of 18

field and scale-up applications, a unique perspective focusing specifically on the latest
advancements in operational parameters and the practical applications of ultrasonication
for PFAS degradation is needed to guide further research, as conducted herein.

In this review, we will provide an overview of PFAS contamination in Part 2, discuss
the challenges and options of PFAS degradation in Part 3, describe the ultrasonication of
PFAS in detail in Part 4, and provide some suggestions in Part 5.

2. PFAS Properties and Contamination

Chemically, PFAS are defined by strong carbon–fluorine (C-F) bonds [11], which are
among the strongest bonds in organic chemistry because fluorine is the most electronegative
element (−4). That is, when fluorine bonds to carbon, it forms the strongest covalent bond,
i.e., C-F (or a second one if compared to Si-F, i.e., 485–531 kJ/mol vs. 565 kJ/mol) [12]. This
contributes to their exceptional chemical stability and resistance to degradation in nature.
The big size of fluorine (compared to hydrogen) and its high electronegativity make the
C-F bond unique [5,13]. For example, the low polarizability of C-F bonds gives rise to
intermolecular interactions or Van der Waals interactions weaker than hydrogen–carbon
(C-H), which leads to decreased boiling points of PFAS in Figure 1a. The larger size of
fluorine than hydrogen leads to increased density of PFAS in Figure 1b. Both demonstrate
the properties and uniqueness of PFAS.
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were collected from websites, such as indexed Google.

As said, PFAS have been widely used in different applications. Consequently, PFAS are
globally detected, including the Artic [14], dated snow-cores from high mountain glaciers
on the Tibetan Plateau [15], and Australian Pinnipeds [16]. Additionally, PFAS are found in
cosmetics/personal care products [17], which are examples of non-point sources. Beyond
those non-point sources, previously used aqueous film-forming foam (AFFF) on sites can
lead to point sources [18].

The ban on perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS)
dating back to the early 2000s has led to the use of various alternatives, such as short chains
of perfluoroalkyl carboxylic acids (PFCAs) and perfluoroalkyl sulfonic acids (PFSAs),
like perfluorobutane sulfonic acid (PFBS) and perfluorobutanoic acid (PFBA); perfluoro-
2-propoxypropanoic acid (GenX); 6:2 fluorotelomer sulfonate (FTSA); polyfluoroalkyl
phosphate diesters (diPAPs); and perfluorinated sulfonamidoacetic acids (FOSAAs) [19].
Some of them, such as diPAPs and FOSAAs, are considered as PFAS precursors (are difficult
or unable to be monitored quantitatively) as they can degrade into other perfluorinated
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substances of PFAS that can be quantitatively monitored. Most of those PFAS precursors
or alternatives cannot be effectively and quantitatively detected, either due to the absence
of the standard or the testing protocol issue. The non-fluoro part in the precursors can be
degraded in the environment to release the detectable PFAS gradually and eventually. That
is, the detection and remediation of PFAS has kinetics and thermodynamics, resulting in
the remediation challenge.

Recently, the Environmental Protection Agency (EPA) of the United States of America
(USA) designated two PFAS hazardous substances (PFOA and PFOS with their salts and
structural isomers) under the Comprehensive Environmental Response, Compensation,
and Liability Act (CERCLA), also known as the Superfund law [20]. The designation of
PFOA and PFOS is largely associated to the substantial evidence that they may cause a
severe danger to the health and welfare of humans and the environment [20]. The proposed
new limit is 4 ppt (part per trillion) for PFOA and PFOS, with an exposure limit in drinking
water [21]. This low level of regulation also poses a degradation challenge.

3. Remediation and Degradation

PFAS remediation can be categorized as removal and degradation. Removal methods,
such as sorption using granulated activated carbon (GAC), reverse osmosis, and nanofil-
tration, are effective at separating PFAS from water or soil but do not break down the
compounds [10]. Instead, they transfer PFAS from one medium to another, leading to
the accumulation of PFAS in the environment or in treatment plants, necessitating further
treatment toward eventual degradation to effectively mitigate the risk. Unfortunately, the
chemical stability of PFAS poses a significant challenge for the degradation of the C-F
skeletons, as detailed below.

3.1. Degradation Challenges

Figure 2 shows the influence of the C-F bond on PFAS degradation. In (a), the high
energy of the covalent bond of C-F renders the degradation challenge. Specifically, the
breakdown of the CF3-CF3 bond is more energetically favorable than that of the C2F5-F
bond (414 kJ/mol vs. 531 kJ/mol) [22].
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Figure 2. Degradation processes of PFAS including the strength of the covalent bonds (a), the
degradation sub−steps (b), and the pathway (c). In (c), HPLC−MS (high−performance liquid
chromatography−mass spectrometry) monitors PFAS; F−ISE (fluoride−ion selective electrode)
measures the concentration of released fluorine as an end product [23], with permission. Copyright
2024 Elsevier.



Environments 2024, 11, 187 4 of 18

In Figure 2b, the breakdown of a single bond marks only the initial step in the mineral-
ization process, which necessitates numerous additional sub−steps to achieve degradation
to the end products, such as hydrogen fluoride (HF) and carbon dioxide (CO2). In (c),
different monitoring approaches, such as tracking the initial PFOA with high−performance
liquid chromatography−mass spectrometry (HPLC−MS), or monitoring the end product
HF with a fluoride−ion selective electrode (F−ISE), can yield disparate results, influencing
remediation performance. Additionally, during the degradation process of PFAS exem-
plified by PFOA, some intermediates may escape from the system, complicating mass
balance, such as by monitoring the amount of fluorine. The mass balance might become
worse through mechanisms like adsorption or evaporation. The presence of unknown
PFAS compounds in the “initial PFOA”, possibly originating from PFAS precursors, further
exacerbates the mass balance, especially concerning real environmental samples. Currently,
PFAS degradation techniques encompass various advanced oxidation processes (AOPs)
and non−AOPs. Studies on various AOPs, such as those presented in Figure 3 for PFAS
degradation, have been experimented [24–26] and extensively reviewed in [27–29]. There-
fore, in the following sections, we brief non−AOP technologies that have been employed
to destroy PFAS and then focus on the ultrasonic degradation of PFAS.
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Figure 3. Classification of different AOPs. Ozone (O3) can be enhanced by a catalyst and hydrogen
peroxide (H2O2). Similarly, UV can also be enhanced by H2O2, peroxydisulfate (PDS), or chlorine
(Cl2). C−AOP means catalytic AOP with help from the Fenton reaction, which can be activated by
photo or accelerated by catalysis, for example, with H2O2. Electrochemical AOPs (e−AOPs) can
employ electrodes, including BDD (boron-dopped diamond), tin (IV) oxide (SnO2), lead (IV) peroxide
(PbO2), and Magneli phase (Ti4O7). P−AOP (physical AOP) contains E-beam, as mentioned below,
ultrasonication, which is the main focus of this review, plasma, microwave, etc. This figure is based
on [30], with permission. Copyright 2018 Elsevier.

3.2. Degradation Option: Non−AOP

Innovative non−AOP methods have been reported, including thermal degradation,
ball milling, and E−beam, as discussed herein.
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3.2.1. Thermal Degradation

A high temperature is needed for PFAS mineralization, such as 600–1000 ◦C [31],
350–650 ◦C [32], or 150–550 ◦C [33]. Interestingly, a sodium hydroxide-mediated defluori-
nation method was developed to effectively destroy concentrated PFCAs within 24 h at
120 ◦C, achieving high fluoride ion recovery (78–100%) and minimizing fluorinated by-
products, with potential applicability to other PFAS [34]. Recently, 2D Gaussian modeling
has been used to visualize degradation kinetics, optimizing the process by considering
both time and temperature simultaneously, unlike traditional 1D methods [35]. It is crucial
to capture and treat hazardous by-products like HF because the by−products generated
can be toxic in potential.

3.2.2. Ball Milling

Ball milling is a mechanochemical technique that degrades organics through mechani-
cal crushing or milling to generate high temperatures in specific areas [36,37]. For PFAS
degradation, milling agents like alumina (Al2O3), potassium persulfate (K2S2O8) [37], and
potassium hydroxide (KOH) [38] are used. Co-milling agents are crucial, but factors like
initial PFAS concentration and co-existing substances also matter. It can yield 88–97%
PFAS reduction [38]. However, it can generate fine particles, requiring additional mea-
sures for containment and disposal. The scale-up application is still in the early stage
of development.

3.2.3. E-Beam

The use of a high-energy electron beam (E−beam) is another technology employed
to remediate PFAS contaminants [39]. A defluorination efficiency of 36% was reported
in the presence of oxygen, suggesting that additives or co-existing substances and the
dissolved oxygen should be well-controlled [40]. Most likely, PFAS were reduced, rather
than oxidized, due to the E−beam’s action, which can potentially be harmful to the op-
erators. E−beam irradiation has a limited penetration depth and can also generate toxic
by−products.

3.3. AOP

Similar to the E−beam approach, AOP employs the high reactivity of radicals for
the degradation of organics based on the in−situ generation of radicals such as hydroxyl
radicals (•OH) and sulfate radicals (SO4

•−) [41]. Other radicals that can be generated
include superoxide (O2

•−), carbonate radicals (CO3
•−), chlorine radicals (Cl•− and Cl2•−),

etc. [30]. These radicals can react with organic contaminants including PFAS, enabling their
degradation and mineralization via redox reactions [41], eventually being converted to
carbon dioxide, water, and other inorganics or ions.

The AOP methods are graphically represented in Figure 3, which is based on the activa-
tion methods of the radicals, such as ozone (O3)-based, UV-based, catalytic (c-AOP) Fenton
reactions, electrochemical (e-AOP) and physical (p-AOP) methods such as ultrasonication,
etc. [30]. The above E-beam approach can also be categorized as p-AOP.

Table 1 compares the energy consumption and efficiency of different technologies for
PFAS degradation, highlighting the notable advantages of ultrasonication, including its
effective degradation of PFAS compounds and minimal by-product formation, compared
to other listed technologies.
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Table 1. Comparison of the energy consumption and highlights of various PFAS degradation
technologies.

Process
Energy

Consumption
(kWh/m3/Order)

Volume
(mL) Time (h) PFAS Highlights Degradation

Efficiency Reference

Non-AOP E-beam 31–176 10–100 PFOA
PFOS

Efficient for
concentrated streams

Production of
reducing species

52–88 [42]

Electrochemical
oxidation 64–98 80 6

PFOA
PFOS
6:2FTS

Polarity reversal can reduce
energy consumption

Polarity reversal effectively
mitigates fouling and aging

40–71 [43]

Ultrasonication 502–1644 500 1.5
GenX
PFOA
PFOS

No by-products in the samples
Effective PFAS degradation 70–90 [44]

AOP Plasma 23.2–213.4 35–45 1
PFOS PFOA

PFNA
8:2FTS

Small conversion to
quantifiable PFAS

Non-thermal air plasma
is promising

>90 [45]

Photochemical
(UV/Sulfite +

Iodide)
1.5 600 24 PFCAs PFSAs Enhanced degradation

Increased sulfate utilization
>90

>99.7 [46]

Microwave
and

iron-activated
persulfate (PS)

5714 50 8 PFOA

Synergetic effect with
zero-valent iron (ZVI) to

degrade PFOA
ZVI lowers the activation

energy of PS

68 [47]

From the above table, it can be seen that ultrasonication offers rapid and efficient
PFAS degradation under some optimized conditions due to its ability to generate high-
intensity acoustic cavitation and reactive species. It is worth noting that other technologies
might result in the formation of short-chain PFAS compared to the ultrasonication method.
However, further research to reduce the costs associated with electrical energy consumption
is critical, particularly towards field applications, as discussed below.

4. Ultrasonic Degradation of PFAS
4.1. Degradation Pathway

In ultrasonication, ultrasonic waves propagate through the liquids, generating micro-
bubbles and expansion [7]. During expansion, micro-bubbles are formed due to the energy
intensity that exceeds the molecular forces of liquid, and collapse during compression [7].
The collapse can generate a high temperature and pressure of approximately 5000 K and
1000 atm, respectively, sufficient to convert water vapor into H• + OH• radicals (towards the
indirect degradation of PFAS) and pyrolyze the fluorinated compounds (direct degradation
of PFAS) [7,28,48]. The pathway of PFAS degradation is proposed and represented in
Figure 4. The main affecting factors are listed in Table S2 (Supporting Information) and
summarized in Figure 5.

Because most PFAS behave as surfactants, they are likely to accumulate at the cav-
itation bubble–liquid solution interface, with the hydrophilic head oriented toward the
bulk liquid and the hydrophobic tail in the micro-bubble gas phase [49]. Also, because
PFAS molecules (such as those with a length of ~1 nm) [50] are smaller than the ultrasonic
micro-bubbles (ambient radius of 3.5 µm, for example, for a 300 kHz cavity under a bar
pressure of 4.6) [51], it is possible for PFAS to accumulate at the bubble surface before cavity
collapse [10].



Environments 2024, 11, 187 7 of 18
Environments 2024, 11, x FOR PEER REVIEW 7 of 18 
 

 

 
Figure 4. Proposed degradation pathway of PFOA, with persulfate (S2O82−) used as an oxidant to 
enhance degradation (a) [6], with permission. Copyright 2020 Elsevier. Relation between power 
density and cavitation event (b) [52], with permission. Copyright 2021 Elsevier. In (a), the possible 
oxidants of radicals are suggested, along with the intermediates and products. Each cycle of reaction 
is initialized by ultrasonication (US) irradiation (as the rate−controlling step), followed by radical 
oxidation, and ends with the generation of a PFAS intermediate (Cn−1F2n−1COOH, including PFHpA 
(C6F13COOH), PFHxA (C5F11COOH), PFPeA (C4F9COOH), and PFBA (C3F7COOH)), with one less 
CF2 unit. The initial step for PFOA degradation involves the rapid cleavage of the carboxyl group 
without releasing F−, followed by the pyrolytic degradation of the remaining molecule. In (b), the 
left side of the figure shows that high frequency typically results in an abundance of cavities with a 
small radius, low radial velocity, and low compression ratio. Conversely, the right side shows that 
low frequency produces fewer cavities with a large radius, high radial velocity, and high compres-
sion ratio.  

Figure 4. Proposed degradation pathway of PFOA, with persulfate (S2O8
2−) used as an oxidant to

enhance degradation (a) [6], with permission. Copyright 2020 Elsevier. Relation between power
density and cavitation event (b) [52], with permission. Copyright 2021 Elsevier. In (a), the possible
oxidants of radicals are suggested, along with the intermediates and products. Each cycle of reaction
is initialized by ultrasonication (US) irradiation (as the rate−controlling step), followed by radical
oxidation, and ends with the generation of a PFAS intermediate (Cn−1F2n−1COOH, including PFHpA
(C6F13COOH), PFHxA (C5F11COOH), PFPeA (C4F9COOH), and PFBA (C3F7COOH)), with one less
CF2 unit. The initial step for PFOA degradation involves the rapid cleavage of the carboxyl group
without releasing F−, followed by the pyrolytic degradation of the remaining molecule. In (b), the
left side of the figure shows that high frequency typically results in an abundance of cavities with a
small radius, low radial velocity, and low compression ratio. Conversely, the right side shows that low
frequency produces fewer cavities with a large radius, high radial velocity, and high compression ratio.

Environments 2024, 11, x FOR PEER REVIEW 8 of 18 
 

 

 
Figure 5. Radar chart of recent studies on the ultrasonication of PFAS. The degradation performance 
is defined as either the removal percentage or the defluorination percentage of PFAS. Power is con-
verted by multiplying power density (W/mL) by volume (mL). The PFAS concentration is the initial 
one. The temperature is either controlled using a cooling system or due to Joule heat. The circled 
area marks the mainly optimized operational parameters. References [6,23–25,44,53–57] 

The degradation mechanism of PFAS by AOPs is not clear. It is generally assumed 
that two steps occur subsequently, as shown in Figure 4a: (i) the direct cleavage of carbon–
carbon (C-C) bonds to remove the head functional groups of PFAS and to generate PFAS 
C-F backbone radicals that enable the subsequent indirect steps, and (ii) the generated 
PFAS radicals are attacked by the highly AOP radical, such as •OH and SO4•−, to gradually 
destroy the C-F bonds towards full mineralization. The first step is usually the rate-control 
step and needs a high energy input to initiate the PFAS degradation process. In Figure 4a, 
the initiation is activated by ultrasonication. The ultrasonic process also generates radicals 
for the subsequent reaction to gradually shorten the carbon chain of the C-F backbone 
towards full mineralization. 

Figure 4b demonstrates that high frequencies generate a higher number of cavities 
compared to low frequencies, enhancing PFAS degradation by creating favorable condi-
tions for redox reactions and promoting mass transportation. In an ultrasonication system, 
the frequency determines the size and collapse intensity of micro-bubbles, influencing 
radical production [58]. In brief, low frequencies (20–100 kHz) produce large bubbles, 
while mid-frequencies (100–1000 kHz) result in a higher cavity population due to rapid 
diffusion and quick bubble collapse [9,10]. High frequencies (above 1000 kHz) reduce OH• 
radical populations due to faster compression cycles and smaller bubbles [59,60]. 

4.2. Affecting Factors 
Figure 5 presents the radar chart of recent studies on the ultrasonication of PFAS. 

Each axis represents one parameter: frequency (kHz), volume (L), power density (W/mL), 
PFAS concentration (mg/L), treatment time (h), temperature (°C), and degradation (%). 

Figure 5. Radar chart of recent studies on the ultrasonication of PFAS. The degradation performance
is defined as either the removal percentage or the defluorination percentage of PFAS. Power is
converted by multiplying power density (W/mL) by volume (mL). The PFAS concentration is the
initial one. The temperature is either controlled using a cooling system or due to Joule heat. The
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The degradation mechanism of PFAS by AOPs is not clear. It is generally assumed
that two steps occur subsequently, as shown in Figure 4a: (i) the direct cleavage of carbon–
carbon (C-C) bonds to remove the head functional groups of PFAS and to generate PFAS
C-F backbone radicals that enable the subsequent indirect steps, and (ii) the generated
PFAS radicals are attacked by the highly AOP radical, such as •OH and SO4

•−, to gradually
destroy the C-F bonds towards full mineralization. The first step is usually the rate-control
step and needs a high energy input to initiate the PFAS degradation process. In Figure 4a,
the initiation is activated by ultrasonication. The ultrasonic process also generates radicals
for the subsequent reaction to gradually shorten the carbon chain of the C-F backbone
towards full mineralization.

Figure 4b demonstrates that high frequencies generate a higher number of cavities
compared to low frequencies, enhancing PFAS degradation by creating favorable conditions
for redox reactions and promoting mass transportation. In an ultrasonication system, the
frequency determines the size and collapse intensity of micro-bubbles, influencing radical
production [58]. In brief, low frequencies (20–100 kHz) produce large bubbles, while mid-
frequencies (100–1000 kHz) result in a higher cavity population due to rapid diffusion
and quick bubble collapse [9,10]. High frequencies (above 1000 kHz) reduce OH• radical
populations due to faster compression cycles and smaller bubbles [59,60].

4.2. Affecting Factors

Figure 5 presents the radar chart of recent studies on the ultrasonication of PFAS. Each
axis represents one parameter: frequency (kHz), volume (L), power density (W/mL), PFAS
concentration (mg/L), treatment time (h), temperature (◦C), and degradation (%). The
data from each study form a unique polygon, allowing for the easy comparison of how the
different studies align or differ in terms of these parameters.

The radar chart analysis of ultrasonication parameters for PFAS degradation reveals
some important insights as follows. (i) The standard deviation values (estimated by calcu-
lating the specific parameters from all cited references) reveal the extent of variation for
each parameter, such as power density (0.9), treatment time (3.7), degradation percentage
(6.3), PFAS concentration (8.4), temperature (22.2), volume (28.7), and frequency (246.6).
(ii) In Figure 5, power density shows the least deviation, indicating that this parameter is
relatively consistent across different studies or that high-power density is always needed.
(iii) In contrast, treatment time, degradation efficiency, and PFAS concentration exhibit
moderate variability, suggesting that while effective degradation can be achieved, opti-
mization is needed. (iv) Parameters such as temperature and volume show high deviation,
indicative of the challenge towards scale-up application without new tests, such as pilot or
trial projects. (v) Notably, frequency exhibits the highest deviation, indicating substantial
variation in different studies, either due to the variation in the instrument or owing to the
fabrication approach. Overall, the chart underscores the consistency of certain parameters
while pointing out (via a red circle) areas requiring more investigation for improved ultra-
sonication efficacy (not just degradation efficiency but also energy consumption efficiency),
the lowest PFAS concentration that can be reached, the treatment volume and duration,
the costs, etc. By identifying optimal ranges and interactions among these variables, it
is possible to maximize degradation efficiency through the development of robust and
scalable protocols.

4.2.1. Frequency

Comparing the PFAS degradation rates (3.4 × 10−4–5.7 × 10−4 min−1) at low fre-
quencies (such as 28 kHz and 40 kHz) [61,62], the rates (6.8 × 10−3–0.032 min−1) at
mid frequencies (200 kHz and 358 kHz) show more efficiency in degrading PFAS [55,63].
GenX, a different PFAS, degrades faster than PFOA and PFOS at a mid-high frequency
(580 kHz) [44], suggesting the effect of the PFAS type, as discussed below.
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As shown in Table S2 (Supporting Information), several mid-frequency tests result
in a more effective PFAS degradation. For example, degradation percentages of 97% and
94% were observed for PFOS at 400 and 500 kHz, respectively, compared to 91% observed
at 1000 kHz [55]. Similar results were observed in [44,64], where a higher degradation
of PFOS and PFOA was reported at the mid-frequency zone than at the high-frequency
zone. The reason for higher degradation at mid frequencies is because the number of
active sites on the interface of the cavitation micro-bubble used for adsorption increases at
such mid-frequencies. This results in greater mass transportation from the bulk solution
to the cavitation bubble interface, leading to more extensive decomposition by interfacial
pyrolysis [9]. This step is usually the rate-control one, as discussed above.

4.2.2. Power Density

Figure 4b shows that with increasing power density, the compression ratio and radial
velocity of micro-bubbles increase, leading to more intense pressure differences and more
effective cavitation events. Higher acoustic power, which represents the energy emitted
by a power source, increases the number of collapse cavities and OH• production [58,65].
For a constant solution volume, increased power also enhances intensity and mass transfer
rates due to turbulence from bubble collapse [66]. As shown in Table S2 (Supporting
Information), various power densities were used for PFAS remediation. Power density (up
to 1 W/mL) was mostly used for PFAS degradation, except for PFAS degradation in soil
slurry media, where a power density as high as 3.33 W/mL was used. In the latter case, the
high energy requirement is associated with the strong hydrophobic interaction between
PFAS and soil organic matter [67].

4.2.3. Structural Effect of PFAS (Terminal Head) and pH

In terms of the functional headgroup, PFCAs degrade faster than PFSAs of the same
carbon chain length due to the larger size and greater shielding effect of the sulfonic group
(-SO3H) compared to the carboxyl group (-COOH) [1,10]. This was demonstrated by Vecitis
and colleagues, who reported a faster degradation rate for PFOA (0.041 min−1) than PFOS
(0.027 min−1) [68]. However, in samples containing both PFOS and PFOA at concentrations
beyond saturation, PFOS degrades faster [68,69]. More research is needed to confirm the
mechanism behind it, as indicated in Figure 4a.

Solution pH significantly impacts PFAS degradation, with an optimal pH of around
4.0 for PFOS [56] and 4.3 for PFOA [70]. Low pH reduces the recombination of OH•

radicals and deprotonation of PFAS terminal groups [56] for example, facilitating a better
accumulation at the water–bubble interface, thus enhancing degradation [71]. These
findings underscore the complex interplay of chemical properties and environmental
conditions in the PFAS degradation.

4.2.4. PFAS Concentration

The degradation of PFAS is believed to occur at the bubble–water interface due to
their hydrophobic nature [48]. The critical micelle concentration (CMC) indicates the effect
of the concentration [72]. However, the CMC is usually in mM [73], much higher than
the PFAS in the environmental samples (µM or less), suggesting that micelle formation is
unlikely without high concentrations of co-existing surfactants.

As the water–bubble interface becomes saturated, there is a rate transition from the
pseudo-first order to the zero order. For example, in [72], the ultrasonication kinetics of
PFOX (X = A for PFOA, or S for PFOS, for example) transitioned from the pseudo-first
order at low initial concentrations (<20 µM) to zero-order kinetics at high concentrations
(>40 µM). Similar results were observed in [69], where PFOX followed the pseudo-first
order at lower concentrations (<2.34 µM and <400 pM, respectively) and the zero order at
higher concentrations (>23.60 µM and >400 pM, respectively). The detailed mechanism is
still not clear but might be related to the accumulation at the water–bubble surface.
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4.2.5. Solution Volume and Treatment Time

For a constant power input, increasing the solution volume can reduce the power
density, thereby resulting in a decline in degradation performance [52]. It was reported
that a decrease in the volume of solution from 500 mL to 200 mL at 575 kHz, 860 kHz, and
1140 kHz increases the degradation rate by 2.7 times, 3.8 times, 1.8 times for PFOS and
3.1 times, 4.5 times, 3.9 times for PFOA, respectively. The effect of liquid height on ultra-
sonication efficiency shows that the sonoluminescence becomes vertically elongated and
narrows as the liquid height increases [74]. In the meantime, the location of the transducer
(on the top or the bottom and via a probe or transducer) and reactor geometry determine
the direction of propagation of the ultrasonic power [75]. For scale-up applications, the
configuration of setup should be balanced among the degradation performance, fabrication
and cost.

On the other hand, treatment duration or time is inversely correlated to PFAS degra-
dation efficiency. In an ultrasonication system, prolonged duration usually increases the
PFOA degradation percentage, regardless of whether the process follows first-order or
zero-order kinetics [76]. However, from an economic point of view, to reduce energy costs,
short treatment time should be employed and the ultrasonic approach should be combined
with other processes like electrochemistry, as discussed later [77].

4.2.6. Additives

The low degradation rate of PFAS at low frequencies (20–100 kHz) can be enhanced by
the addition of additives such as oxidant [6,71,76]. The use of persulfate (such as K2S2O8),
which is activated as a radical of SO4

•−, can enhance the degradation of PFOA [6]. Similar
enhancement was reported with permanganate, where the degradation rate constant of
PFOA is higher in the presence of permanganate than in its absence [76]. Iodate radical
(IO•

3
−) and CO3

•− have also been introduced to ultrasonication to enhance PFOA degra-
dation. Periodate was used to activate IO•

3
− [71], and sodium bicarbonate was used to

activate CO3
•− [78]. Beyond the oxidant additive that can be helpful for PFAS degrada-

tion, some additives are present as co-constituents with PFAS and compete with PFAS
degradation, thereby interfering with the degradation process.

4.2.7. Co-Existent Inorganic Constituents and Co-Existent Contaminants

In the application of sonication, inorganic substances might have some effects [48].
For example, a study showed that the PFAS ultrasonic degradation rates in groundwater
are 20.5–29.7% lower than those in Milli-Q water [79]. The presence of inorganic anions
shows Hofmeister effects on the ultrasonic degradation of PFOX, with ClO4

− > NO3
− >

Cl− > HCO3
− > SO4

2−, with ClO4
−, NO3

−, and Cl−, enhancing the rates, while HCO3
−

and SO4
2− showing negative effects. Regarding the effects of cations, Na+, Ca2+, and Mg2+

were negligible in PFOA degradation [79]. However, Cu2+, Fe2+, and Fe3+ ions could hinder
PFOA degradation in the permanganate-ultrasonication system [76]. The reason is not
clear yet.

There is potential competition at the bubble–water interface by co-existent organic
contaminants. Also, the evaporation of volatile organic compounds (VOCs) consumes the
destructive ultrasonic energy through the endothermic process [80]. However, the presence
of organic compounds like carbon tetrachloride (CCl4) in the water matrix is believed to
improve the ultrasonic degradation of organic pollutants [81], including PFAS. This is due
to the formation of hypochlorous acid (HOCl), chlorine-type radicals (Cl• and •CCl3), and
chlorine (Cl2) from the sonication of CCl4, in addition to HO• radicals. More research is
needed on this topic.

4.2.8. Dissolved Gas

In the presence of gas, the production of OH• in water occurs in the following order:
Kr >Ar > He > O2 [82]. That is, the ultrasonic degradation of PFAS under Ar shows faster
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degradation rates than under air [49,62,76]. However, on an industrial scale, the cost
associated with the use of Ar should be considered.

4.2.9. Other Factors: Configuration, Reactor Geometry, and Co-Occurring PFAS

The impact of reactor geometry on PFAS destruction was studied in [83], which
showed that placing the transducer along the bottom and side wall of the reactor had no
significant impact on ultrasonication activity. Moreover, using dual transducers (side and
bottom) did not produce a synergistic effect but instead reduced ultrasonication activity
due to disturbances caused by the interaction of ultrasonic fields from both transducers.

The impact of co-occurring PFAS in solution during ultrasonication treatment was
studied on six PFAS compounds (PFCAs (C4, C6, and C8) and PFSAs (C4, C6, and C8))
in [84]. The study showed that long-chain PFAS decreased at a faster rate than short-chain
PFAS, due to the lower hydrophobicity of short-chain PFAS. Similar results were reported
in [63,68,83]. Additionally, PFCAs degrade faster than PFSAs of the same chain length, as
stated earlier [8,10,68]. Overall, the results suggest that the hydrophilic functional group
contributes to the rate of PFAS degradation [84]. Also, Shende and colleagues experimented
on the degradation of 13 PFAS mixtures (PFCAs (C4–C14) and PFSAs (C6–C8)) [54]. The
authors reported a higher rate of breakdown of PFAS mixtures than that of individual PFAS.
The authors compared the G-value (the efficiency of chemical reactions induced by ultra-
sonic energy) for the degradation of the 13 PFAS mixtures (14.23 × 1013 molecules/kJ) to the
G-value for PFOA degradation by the electrochemical method (7.07 × 1013 molecules/kJ)
and plasma (1312 × 1013 molecules/kJ). They suggested that the ultrasonic degradation
of PFAS mixtures is a variable alternative, although it is less energy-efficient compared to
plasma method.

4.3. Ultrasonication Combined with Other Techniques as the Hybrid Method

Recent research has explored the use of AOPs in conjunction with ultrasonication as
hybrid techniques to further enhance degradation efficiency. In Figure 3, ultrasonication
can be combined with other AOPs, as shown in Figure 6, including electrochemistry [77],
UV [85], photocatalyst [61], and others. Hybrid approaches in the degradation of PFAS
are important because they leverage the strengths of multiple techniques to achieve more
efficient and effective PFAS breakdown. Some degradation techniques, while powerful,
have limitations in terms of efficiency and completeness when used alone.

Ultrasonication is compatible with other AOP approaches because it does not require
chemicals. As a p-AOP, it degrades PFAS by cavity-generating micro-bubbles that can be
easily combined with other chemical-based AOPs, such as ozone-based, UV-based, c-AOP,
and e-AOP which use electrochemistry reactions. Ultrasonication is commonly used in labs
for cleaning and dispersion purposes; so, it is generally available in most labs, particularly
for low-frequency (e.g., 20–40 kHz) applications. Cleaning and dispersion, realized by the
sound wave-based micro-bubble compression/collapse, can also benefit other AOPs, such
as by accelerating mass transportation (to replace stirring in most cases), homogenizing
the solution, targeting and cleaning the electrode surface (to avoid fouling and poisoning),
assisting with the activation of catalysis (such as oxidants to radicals), etc. Intrinsic PFAS
degradation by ultrasonication can be thus enhanced or be used to enhance the combined
techniques (to be expressed by an enhancement factor, as discussed below). Furthermore,
the combination can also inherit the advantages of only using AOP toward a synergistic
effect to increase degradation efficiency, decrease energy consumption, and shorten the
treatment time. These can all help with scale-up applications towards site remediation.

Table S3 (Supporting Information) shows the ultrasonication hybrid, which is summa-
rized in Figure 6. The comparison of the degradation efficiency of the hybrid method to the
efficiency of ultrasonication or other technologies is represented in Figure 6a. Similar to
Figure 5, the data from each study form a unique shape (triangle) (Figure 6b), allowing for
the easy comparison of how the different hybrid studies align or differ.
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Figure 6. Degradation efficiency of different ultrasonication hybrid methods (a) and radar chart of
ultrasonication hybrid methods for PFAS degradation (b). Ultrasonication with electrochemistry [77],
UV [85,86], photocatalysis [61], persulfate [6,87], and biochar/ferrate [88]. The enhancement factor
specifies how many times PFAS were degraded compared to US (ultrasonication) or other technolo-
gies, which has an enhancement factor of 1. The number of PFAS includes different types, such as
PFOA and PFOS. References [6,61,77,85–88].

4.3.1. Ultrasonication/Electrochemistry

The hybrid system of electrochemistry and ultrasonication studied in [77] shows that
the synergistic effect between the Magnéli-phase Ti4O7-based electrochemistry process and
the ultrasonication system operated at 130 kHz, 100 W, and 0.83 W/mL. For 6 h degradation
of 50 µM PFOA can improve the defluorination of PFOA. They reported that the hybrid
yielded a defluorination of 63.5%, which is higher than the sum (43% and 5.5%) achieved
by electrochemistry and ultrasonication alone, respectively. The synergistic effect was
attributed to improved mass transfer, activated electrode surface, and enhanced production
of radicals, as proposed above. The robustness of the hybrid was extended to three real
samples of AFFF.

4.3.2. Ultrasonication/UV

A hybrid system of ultraviolet (UV, @185 nm)-assisted ultrasonication (600 kHz)
was conducted in [85] to defluorinate PFOS under an air atmosphere. They reported
a synergistic defluorination of 88% of PFOS (10 mg/L), which is 12% higher than that
achieved using only an ultrasonication system operated at 100 W and 0.2 W/cm2 for 4 h.
The authors also observed that the UV-assisted ultrasonication system generated lower
intermediates than the ultrasonic system alone, suggesting that the hybrid system can
degrade both the PFOS and its intermediates more effectively.

Panchangam and colleagues combined an ultrasonication system (40 kHz) with a
commercial UV system (254 nm) [61]. The degradation efficiency of the PFOA of the hybrid
was reported at 64%, higher than when the hybrid system was run in sequential mode and
photocatalysis (25% and 22%, respectively). More hybrid research can be expected in the
coming years.

4.3.3. Ultrasonication/Oxidant

The synergistic effect of ultrasonication and persulfate has been considered. This
hybrid system promotes the activation of SO4

•−, E◦ = 2.6 V) [6], which can enhance PFAS
degradation through radical attack of indirection degradation. The addition of persulfate
to ultrasonication thus increases the degradation of PFAS. After a 6 h treatment, the defluo-
rination percentages of PFOA by persulfate (0.77%) and ultrasonication (14.6% at 20 kHz
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and 20% at 43 kHz) alone increased to 33.2% and 38.3%, respectively, compared to the
hybrid [6]. Later, Lei and colleagues reported a ~100% defluorination percentage when
both frequencies were used with persulfate-coupled ultrasonication [87]. Furthermore,
surfactants including sodium dodecyl sulfate (SDS), cetyltrimethylammonium bromide
(CTAB), and Triton X-100 were used to enhance the degradation as well. Although the de-
fluorination percentage is low, the study showed that an indirect persulfate/ultrasonication
system at low frequency is a potential ultrasonication hybrid, which can be explored to
further enhance the defluorination of PFAS.

4.3.4. Multiple Ultrasonication

A triple ultrasonication hybrid was formed in a study, combining rice straw biochar-
assisted ultrasonication with ferrate (Fe VI) [88]. This combination achieved a higher
defluorination (93%) after 10 h of treatment at 43 kHz and 0.25 W/mL, compared to other
hybrid methods tested (ultrasonication/biochar and ultrasonication/Fe VI hybrids), which
achieved 28% and 49% defluorination, respectively. The hybrid induces an increase in the
specific surface area of biochar, enhancing its capacity for PFOA adsorption, and promotes
the generation of •OH and intermediate iron species (Fe (V) and Fe (IV)), enhancing the
degradation of PFOA. The reusability of the biochar was tested, and defluorination was
reduced by ~14% after five cycles. Overall, the ultrasonication/biochar/Fe (VI) hybrid
system enhances PFOA defluorination. However, additional technology will be required to
destroy the PFOA adsorbed on the spent biochar.

4.3.5. Ultrasonication/Foam Fractionation

Foam fractionation/ultrasonication hybrid is a potential method for PFAS destruc-
tion [23]. The authors ultrasonicated foam fractionate, that is, the concentrated and sepa-
rated PFAS-containing foam, and observed a reduction of ~97% in the total PFAS levels
after 3 h of treatment at 0.75 W/mL and 580 kHz. These findings underscore the feasibility
and effectiveness of coupling ultrasonication with the currently applied PFAS remediation
plants. Most of the current plants only remove PFAS from the environment and yield the
concentrated PFAS, as said. The concentrated PFAS can be easily degraded, for example,
by ultrasonication. This two-step approach of hybrid holds significant promise for address-
ing PFAS contamination in various environmental settings, with potential for scale-up or
site applications.

5. Prospects and Future Directions

As PFAS remediation continues to evolve, there are several prospects and directions
for future research on ultrasonication technology, as proposed below.

(i) The refinement and optimization of ultrasonication equipment and techniques to
enhance its efficiency and effectiveness for scale-up or on-site applications.

(ii) The development of cost-effective and scalable ultrasonication solutions for PFAS re-
mediation in various matrices and contamination scenarios. Currently, its widespread
implementation may be hindered by a liquid-based matrix only.

(iii) The integration of ultrasonication with other remediation methods and technologies
to form hybrid systems. However, the complexity of the hybrid system and the extra
input of energy should be considered.

(iv) The challenges and limitations associated with ultrasonication-based PFAS degrada-
tion, including a better understanding of PFAS degradation mechanisms, the optimiza-
tion of operating parameters, and the assessment of potential by-products towards
mass balance. Collaborative interdisciplinary research involving experts from chem-
istry, engineering, environmental science, and toxicology will be essential in advancing
our knowledge and capabilities in this field.

(v) Addressing regulatory and safety concerns regarding field applications of ultrasoni-
cation technology for PFAS degradation will be paramount. Compliance with envi-
ronmental regulations and safety standards is crucial to ensure the responsible use of
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ultrasonic treatment methods. This includes the careful consideration of the genera-
tion of by-products, potential impacts on surrounding ecosystems, and the effective
management of treated effluents.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/environments11090187/s1, Table S1. List of abbreviations and acronyms
used in this work; Table S2: Summary of recent studies on ultrasonic degradation of PFAS; Table S3:
Ultrasonication hybrid for PFAS degradation. References [6,23–25,44,56,59,60,65,75,83–85,87–92] were
cited in the Supplementary Materials.
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