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Abstract: A major challenge in accidental or unregulated releases is the ability to identify
the pollutant source, especially if the location is in a large industrial area. Usually in such
cases, only a few sensors provide non-zero signal. A crucial issue is therefore the ability to
use a small number of sensors in order to identify the source location and rate of emission.
The general problem of characterizing source parameters based on real-time sensors is
known to be a difficult task. As with many inverse problems, one of the main obstacles
for an accurate estimation is the non-uniqueness of the solution, induced by the lack of
sufficient information. In this study, an efficient method is proposed that aims to provide
a quantitative estimation of the source of hazardous gases or breathable aerosols. The
proposed solution is composed of two parts. First, the physics of the atmospheric dispersion
is utilized by a well-established Lagrangian stochastic model propagated backward in time.
Then, a new algorithm is formulated for the prediction of the spacial expected uncertainty
reduction gained by the optimal placement of an additional sensor. These two parts together
are used to construct an adaptive decision support system for the dynamical deployment
of detectors, allowing for an efficient characterization of the emitting source. This method
has been tested for several scenarios and is shown to significantly reduce the uncertainty
that stems from the insufficient information.

Keywords: source term estimation; Lagrangian stochastic model; optimal sensor placement

1. Introduction
Air pollution modeling is the basic framework for better understanding, investigat-

ing, and regulating atmospheric air quality, as well as assessing the distribution of toxic
environmental pollutants. The focus of many studies is on environmental sources, such
as traffic and industrial sources containing inhalable aerosols up to 10 µm in diameter
(PM10), which are usually modeled as air-borne tracers at the city scale [1,2]. Such exposure
was found to be related to cardiovascular disease [3], risk of asthma among children [4]
and incidence rates of lung cancer among males [5]. Several field campaigns were held
in different urban regions around the world in which particulate matter concentrations
were measured at different heights, ranging from ground level up to several hundreds of
meters above ground. These have exhibited large spatial variability both horizontally and
vertically [6–9].

The realistic modeling of the transport and dispersion of pollutants at the city scale is
a very challenging problem. This is due to the non-uniform three-dimensional complex na-
ture of the turbulent flow field in the canopy layer and just above the canopy (known as the
roughness sub-layer, RSL) [10,11]. The RSL consists of the lowest part of the atmospheric
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surface layer from the ground up to two to five times the average height of the canopy
elements [10]. The main flow feature of the RSL is the inflected wind profile induced by
strong shear layers just above the rooftop level, separating high-speed to low-speed regions,
leading to mixing layer instability and canopy-scale turbulent eddies [11–14]. This flow
structure dominates the scalar, momentum and energy transfer in urban canopies and, in
particular, the transport of air flow and dispersion of the pollutant [15–17]. Moreover,
turbulence in canopies is non-local in nature since a large fraction of turbulent kinetic
energy is produced at the top of the obstacles and is then transported into the canopy layer
itself [11,18–20]. Recent direct Lagrangian measurement shows a fast Lagrangian velocity
de-correlation timescale due to the highly inhomogeneous nature of the flow within the
canopy [21–23]. This fast de-correlation was further shown to result in a quasihomoge-
neous flow regime, recovered well by a Lagrangian stochastic pollutant dispersion model
(LSM) formulated using a pre-assumed Gaussian shape of velocity fluctuations probability
distribution [21,22]. The LSM modeling approach has been found to provide a quantitative
modeling of pollutant dispersion in realistic heterogeneous urban environments [1,2].

The inertial sub-layer lies above the RSL and is the surface layer’s upper part, where the
flow can be approximated as horizontally homogeneous. The defining characteristic of the
inertial sub-layer is its turbulent kinetic energy (TKE) budget, which can be considered close
to “local equilibrium” between TKE production and dissipation [24]. In the inertial sub-
layer, since the atmosphere is both stationary and horizontally homogeneous, the turbulent
fluxes are approximately independent of height, allowing for the description of this layer
by the Monin–Obukhov similarity theory [10,25,26]. In addition, using the horizontal
homogeneity assumption, estimates for rooftop wind essential for pollutant dispersion
modeling can be derived with improved accuracy [27,28].

The ability to identify the location and emission rate of hazardous gasses or breathable
aerosols has great importance for the ongoing effort of reducing the effect of accidental or
unregulated releases. For example, the evaluation of the emission rate (which integrates into
the total gas released in some time interval) can be used for the verification of compliance
with regulatory standards in chemical industrial parks, intensive farming areas [29,30]
or odorous pollutants emitted from landfills [31], sparing the need for placing detectors
at specific suspected sites. In addition, fast and accurate identification of the source
location can improve the efficiency of the emergency response and the accuracy of the risk
assessment process in cases of accidental chemical releases.

The characterization of the source parameters based on a comparison between real-
time measurements at static pre-deployed concentration detectors and a reliable dispersion
model is known as the source term estimation (STE) problem. A detailed review on possible
methodologies and approaches for solving this problem is beyond the scope of this paper,
and can be found in other places [32]. Briefly, the two most common approaches for
solving the STE problem are optimization or probabilistic approaches. In the optimization
approach, one seeks the optimal combination of the source parameters that minimizes
some regularized objective function that measures the discrepancy between the calculated
and observed concentrations [33]. On the other hand, in the probabilistic approach, the
probability density function of the source parameters is constructed based on Bayesian
inference theory [34,35].

One of the main difficulties in solving the STE problem in realistic scenarios is the lack
of sufficient measurements leading to non-uniqueness of the solutions. Clearly, adding
more information by increasing the number of detectors will gradually solve this problem,
but the deployment of a dense array of detectors for covering a wide area may not be
feasible. For example, about 40 detectors were used for covering an area of less than
200 m × 200 m in the the well-known Mock Urban Setting Trial (MUST campaign; [36]),
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which is frequently used for testing STE methods. Trying to maintain such a density of
detectors for a wider area may be impractical for many applications.

A possible solution for this difficulty can be found by using a network of mobile
detectors rather than that of static detectors, which has become possible in recent years
due to the accelerated development of drones and other mobile platforms. The use of
mobile network has two advantages: first, it allows one to spare the need for a pre-
deployed dense array of detectors. More than that, the possibility of an adaptive update
of the detector’s position enables the network to optimize the gained information as time
progresses. Moreover, since the general optimization problem of designing a network of
detectors by individually placing all of them simultaneously over a finite grid of points
is NP-hard [37], the extension of an existing detector network is a more approachable
problem. Therefore, one of the key ingredients for a successful implementation of such
an approach is the decision step, i.e., a mechanism for choosing the position of the next
measurement based on a given set of already measured concentrations.

Several strategies for such a dynamic deployment mechanism have been proposed.
For example, in the the ’Infotaxis’ approach [38], the searcher chooses the move that maxi-
mizes the expected reduction in entropy of the posterior probability field, which amounts
to having less uncertainty on the source parameters. In the ’Entrotaxis’ approach [39],
based on the maximum entropy sampling principles [40], the entropy of the predictive
measurement distribution is taken as the reward function, which guides the searcher to
where there is the most uncertainty in the next measurement outcome. Ristic [41] compared
a number of search strategies based on different information rewards functions for deter-
mining the location of a diffusive source in turbulent flows. Keats [42] applied the Bayesian
adaptive exploration (BAE) methodology [43,44], which provides a general methodology
for choosing how future experiments should be performed so that information about the
phenomenon of interest is maximized, thus also addressing the problem of adding a new
detector to an existing array of detectors.

In this study, we propose a new approach for the adaptive deployment of mobile
detectors. The general outline of this paper is as follows. First, the Lagrangian stochastic
dispersion model (LSM), a well-established, realistic and consistent modeling approach,
is utilized as the solution for the “Forward problem” (Section 2). As further discussed
in Section 2, the computational effort that is required for solving the inverse problem
can be reduced dramatically by introducing the backward time propagating LSM (BLSM)
rather than the standard LSM. Then, in Section 2.2, a new mechanism for choosing the
next measurement is presented, based on two sequential steps: first, a simple and efficient
mechanism is proposed for identifying the suspected points in the parameter space that
characterizes the source based on a given set of measurements. The method for the
construction of this sub-space, which will be referred to as a “degenerate space”, is given.
Section 2.2 also presents a decision mechanism for choosing the location for a new detector
based on a statistical evaluation of the expected degeneracy reduction as a function of the
detector’s position. These two steps can be combined iteratively to generate an adaptive
algorithm that exploits the given information from a set of “old” measurements to plan
the next measurement. The performance of this adaptive decision-making method was
examined on a quasi-steady-state release for several scenarios differing by the initial
locations of the detectors. The algorithm is shown to converge fast, sparing the need for a
large number of pre-deployed detectors (Section 3).
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2. Materials and Methods
2.1. The Lagrangian Stochastic Model

In order to solve the source estimation problem, one has to specify the underlying
turbulent pollutant dispersion model. In this work, a Lagrangian stochastic model (LSM)
developed at IIBR [1,2,21,45] has been used. This modeling approach is known to be able
to consistently describe tracer dispersion phenomena for different temporal and spatial
scales (near-field as well as far-field) and in rather complicated atmospheric scenarios, such
as non-homogeneous turbulent regimes, complex terrain and canopies (urban and vegeta-
tion) [2,46,47], and is known to be superior to advection–diffusion-based approaches [48].
The LSM has been described in detail in many articles (see, e.g., [2,16,49]). Briefly, the basic
idea is to propagate the position and velocity of the Lagrangian fluid particles according to
the Langevine equations:

dri = uidt (1)

dui = ai(r, u, t)dt + bij(r, u, dt)dWj(t)

where r and u are the position and velocity of the particles and dWi is a random increment
selected from a normal distribution with variance dt. The deterministic coefficients ai can
be determined via the Fokker–Planck equation by satisfying the well-mixed (necessary)
condition of Thomson [50]. According to the Kolmogorov–Obukhov similarity theory [51],
the stochastic term takes the form of bij =

√
(C0ϵ)δij, where ϵ is the average dissipation rate

of the kinetic energy [52]. An additional step needed to formulate the drift term ai is based
on a pre-assumed shape of the probability density function for the velocities. This was found
to be of a Gaussian quadratic shape in the highly inhomogeneous canopy flows case [21,22].

In order to perform backward-in-time (BLSM) simulations, a slight modification of the
above forward Langevin model (Equation (1)) is needed [53,54]: the time increment dt will
be negative, and there is a sign reversal in the the “damping” part within the drift terms ai

(i.e., only in the part containing b2
ij).

By counting all ‘touchdowns’ of the stochastic particles in some volume that represents
the detector, one can calculate the probability density P f (r, t|r′, t′) of whether a particle
spreading from r′ at time t′ will reach the detector located at point r after time t. Flecsh and
Wilson [53] showed that, by modifying the Langevine equation (as stated above), one can
propagate the particles backward in time (BLSM), i.e., from the future to the past, and that,
for an incompressible fluid, the following relation holds:

P f (r, t|r′, t′) = Pb(r′, t′|r, t) (2)

where Pb(r′, t′|r, t) is the probability density function of whether a particle evolving from
the detector located at r and propagated backward in time will reach the ’source’ located
at point r′ at time t′. The transition probability for such a process can be related to the
ensemble averaged concentration [53,55] by

d(r, t) =
∫ t∫

−∞

S(r′, t′)P f (r, t|r′, t′)dt′dr′ (3)

where S(r′, t′) is the mass source density (kg m−3 s−1). The calculated concentration,
averaged over the detector’s volume vd, which is centered at position R, at stationary
turbulence and a sustained uniformly distributed source can be written as

d(R) =
q

Vd

∫
vd

∫
vs

∞∫
0

P f (r, t|r′, 0)dtdr′

dr (4)

where q is the emission rate and vs is the volume of the source.
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2.2. The Degenerate Space

Assume that the hypotheses space Θ about the source is discretized by setting a grid
of N cells. Each hypothesis will be labeled as θj = (rj, qj), where rj is the coordinates of the
center of the j’th cell and qj is the corresponding emission rate. We also assume that the
source is fully characterized by one and only one hypothesis θex ∈ Θ.

The concentration at the i’th detector, located at Ri due to a source characterized by
the j’th hypothesis, can be calculated by Equation (4):

d(Ri|θj) =
qj

V

∫
vi

∫
vj

∞∫
0

P f (r, t|r′, 0)dtdr′

dr =
qj

V

∫
vj

∫
vi

∞∫
0

Pb(r′, 0|r, t)dtdr

dr′ (5)

where vj is the j’th cell in the parameter space and vi is a small volume centered on Ri.
The last passage in Equation (5), due to the forward–backward relation, can be very useful
as will be seen later.

The model–measurement deviation σ represents the maximal discrepancy between
the measured concentration d and the calculated concentration if the source is characterized
by the exact hypothesis θex, i.e.,

d ∈ [d(R|θex)− σ, d(R|θex) + σ] (6)

In this work, we shall assume that the error has a linear dependency on the concentra-
tion in order to retain the relative error as fixed. In order to avoid unrealistic small errors
associated with low concentrations, a constant term σ1 will also be added, so the error
will be

σ(θ) =
√
(κd(R|θ))2 + σ2

1 (7)

where κ is some proportional constant.
Now, assume that we have measured concentration d. Which hypotheses are im-

portant in this case? Consider an arbitrary hypothesis θk. If it was the exact hypothesis,
the measurement outcome should be in the range described by Equation (6). This claim
can be reversed—if the R.H.S of Equation (6) does not hold, then θk is not the correct
hypothesis. Formally,

d /∈ [d(R|θk)− σ(θk), d(R|θk) + σ(θk)] ⇒ θk ̸= θex (8)

This is a good way to select the good hypotheses from the bad ones—for a given
measurement, eliminate all the hypotheses for which the constraint in Equation (6) does
not hold because they cannot be considered as the exact hypothesis. This is the basis
for the “Degenerate space”, defined as the set of all equally probable hypotheses for the
source. If there are M measurements, d1 . . . dM located at positions R1 . . . RM, define the
M-detectors degenerate space S(R1 . . . RM) as

S(R1 . . . RM) = {θk ∈ Θ | |d(Ri|θk)− di| ≤ σ(θk), i = 1 . . . M} (9)

where d(Ri|θk) designates the calculated concentration due to the k’th hypothesis at the
i’th detector’s position, calculated by Equation (5). The last equation can be written
recursively as

S(R1 . . . RM) = {θk ∈ S(R1 . . . RM−1) | |d(RM|θk)− dM| ≤ σ(θk)} (10)

which will be useful later.
The construction of S(R1...RM) by applying Equation (9) imposes a severe compu-

tational obstacle since, for every hypothesis in the parameters space, the expected con-
centration at every detector must be calculated, and then only the hypotheses for which
the criterion holds are included. The number of required LSM operations for this task is
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the number of different cells used to discretize the xy plane, which can be very large in
practical situations (for example, in the following analyzed cases, the number of xy cells
is 2.5 × 105). Since the time taken for a typical LSM simulation is typically about 30 min,
the total computational time could take weeks, even by operating on 100 parallel processors.

A significant reduction in the computational time can be achieved by introducing a
backward Lagrangian stochastic model (BLSM) [33,56–58]. This is since a single BLSM
simulation enables the calculations of the concentration at a specific detector from all the
cells in the xy plane of the parameter space (see Equation (5)). Hence, the number of BLSM
simulations is the number of detectors rather than the number of xy cells, which is much
smaller, leading to a dramatic reduction in the total computational effort. To conclude, the
degenerate space can be calculated efficiently by M BLSM simulations by combining its
definition and the right part of Equation (5) as d(Ri|θk).

2.3. Adaptive Degeneracy Reduction

Now, let us take another step forward. After the construction of S(R1 . . . RM), we
are allowed to perform another measurement in any place we wish. Where should we
place the new measurement? Clearly a “good” measurement will dramatically reduce the
degenerate space, while a “bad” one leaves the degenerate space as almost the same. This
intuition can be quantified by a small or large (up to 1) value of the reduction factor, defined
as Γ(RM+1) =

|S(R1 ...RM+1)|
|S(R1 ...RM)| . Note that the reduction factor can be calculated only after the

new detector has been deployed at RM+1 since the measurement dM+1 is a crucial part of
the degenerate space definition.

How can we predict the expected reduction as a function RM+1 of before the deploy-
ment of the new detector? Although it cannot be calculated directly, in Appendix A, we
show that the probability that the reduction factor will be smaller than some positive num-
ber α, designated by Pr(Γ(RM+1) ≤ α), can be bound from below by an accessible quantity.
Formally, for every position RM+1 and for every 0 < α < 1, the following inequality holds:

Pr(Γ(RM+1) ≤ α) ≥ Pr(γ(RM+1) ≤ α) (11)

where Pr(γ(RM+1) ≤ α) can be calculated directly from the M-detectors degenerate space
and the BLSM as explained in the Appendix A. One possible strategy that can be taken from
here is to search for the candidate R∗

M+1 that maximizes Pr(γ(RM+1) ≤ α). Although this
choice does not necessarily maximize Pr(Γ(RM+1) ≤ α), we are guaranteed that

Pr(Γ(R∗
M+1) ≤ α) ≥ max

RM+1
Pr(γ(RM+1) ≤ α) (12)

What is the meaning of this criterion? Equation (12) ensures that the probability that
the reduction factor is smaller than a chosen α is larger than the optimized value. For the
rest of this paper, we shall use α = 0.2, meaning that the reduction in degenerate space
is at least by a factor of 5. As we shall see later, in many cases, the probability of such a
reduction will be larger than 0.6.

Equation (12) can be used iteratively, where, in every cycle, the degeneracy of the
previous step is used to deploy the new detector. A schematic description for such an
algorithm is the following:
While Nd > toll :

1. Prediction: based on S(R1 . . . RM), use Equation (12) to estimate R∗
M+1;

2. Measurement: deploy the new detector at R∗
M+1 and measure dM+1;

3. Reduction: use Equation (10) to construct the new degenerate space S(R1 . . . RM, R∗
M+1);

4. Calculate Nd = |S(R1 . . . RM, R∗
M+1)| and return to step 1.
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where Nd is the number of degenerate points in every cycle, Ntoll is the tolerance level,
that is, the minimal number of points required for the termination of the algorithm, and α

should be specified by the user.

3. Results
3.1. Numerical Details

Since our main interest in this section is the study of the proposed decision mechanism
for the deployment of a new detector based on previous measurements, we shall focus on
the relatively simple meteorological scenario and use the same dispersion model used for
the source estimation to generate the input concentrations (’synthetic data’). In all examined
cases, the external wind is 2 m/s in the east direction in neutral stability. Unless mentioned
otherwise, the source is located at the center of a 10 km × 10 km grid composed by cells of
20 m × 20 m and the emission rate of the source is 1 kg/min. The Lagrangian stochastic model
is used to calculate the concentration based on 400,000 Lagrangian particles. It is important to
note that, in the context of these test cases, which focus on pollutant dispersion analysis for a
period not exceeding one hour, we assume that the prevailing averaged wind and turbulent
fluxes remain stationary ([59] [Chap. 2]).The LSM, however, is designed to model realistic
environmental conditions, including non-homogeneous turbulence (see Section 2).

As mentioned in Section 2.2, the construction of the degenerate space at each cycle
requires the specification of the error dependency on the concentration. In order to estimate
this relation, a series of 30 identical LSM operations was performed, differing by their
random seeds. Based on these calculations, the ratio between the standard deviation and
the average concentration was calculated at seven typical points located downstream of
the source position. This ratio, averaged over these points, is 0.15 ± 0.14, which implies
that the proportional constant should be κ = 0.3. In addition, the fixed term in the error
expression (see Equation (6)) was taken as σ1 = 10−8.

3.2. Testing the Adaptive Source Algorithm

We shall examine the adaptive source term estimation algorithm, specified in
Section 2.3, in six cases differing by the initial arrangement of the first two pre-deployed
detectors and the source parameters. The concentration map generated by operating the
Lagrangian stochastic model for the source located at (5000, 5000) is shown in Figure 1.
A different marker is used to designate the pair of detectors of the first four cases. In the
first case (plus marker), the first two detectors are pre-deployed along the same line parallel
to the wind direction. In the second case (circle), the detector is aligned with the same
line perpendicular to the external line. In cases 3 (star) and 4 (triangle), the symmetry is
removed. The fifth case is similar to the fourth case but the source location is shifted to
(4000, 5200). In the sixth case, the setup is identical to the third case, but the emission rate
is 2 kg/min.

In all cases, the input concentration for the source estimation process is taken as the
value of the map at the detector’s positions. Full analysis for cases 1 and 4 can be seen in
Figures 2 and 3 and shall now be described.

Case 1: In the upper-right panel of Figure 2, a map of Pr(γ(R3) ≤ 0.2) is shown
based on the available measurements at the first two detectors located at R1 = (6500, 5000),
R2 = (8000, 5000) (also shown as black crosses on the map). One can easily see two
stretches of preferred points and a wide non-preferred regime enclosed by these two
stretches. The position of the third detector is chosen at (6000, 4700), for which the criterion
is maximized. The effect of this choice on the degeneracy reduction can be seen in the
upper-right panel of Figure 2. The degenerate space before and after the third measurement
can be seen in blue and black points, respectively. Note that the wide and spread-out
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original space that contained 8704 points has been reduced to a narrow diagonal stretch
containing only 460 points.

Figure 1. The concentration map (normalized by the source total emission) generated by a source
located at (5000 m × 5000 m) is shown. The positions of the two detectors for the first four cases are
also shown, each case represented by different markers (plus marker for case 1, circle for case 2, star
for case 3 and triangle for case 4).

Figure 2. Case 1 analysis: each row describes a cycle of the algorithm, starting from two detectors
located at (6500, 5000) and (8000, 5000). In the left side of each row, the expected reduction according
to the criterion described in Equation (12) is shown for all possible locations of the new detector.
The already deployed detectors, used for the construction of the degenerate space in the beginning of
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the cycle, are designated by black crosses. The degenerate space before (blue) and after (black) the
deployment of the new detector can be seen in the right panel of every row. The actual reduction gained
by the procedure can be seen by the difference between the two colors. After two cycles, the degenerate
space is reduced almost entirely to the correct source parameters, represented by the red dot.

Figure 3. Case 4 analysis: the same analysis as described in the previous figure, starting from two
detectors located at (6500, 5000) and (8000, 5700).

The first row in Figure 2 describes the first cycle in the operation of the adaptive
algorithm for case 1. The next row can be understood in a similar way—in the left panel, a
map of the predicted reduction is formed based on the degenerate space of the previous
iteration (note that a new black cross was added at the optimized position of the previous
cycle), and a point that optimizes this map is chosen as the position of the new (fourth)
detector. The effect of the new measurement can be shown in the right panel in the second
row. As before, blue points represent the degenerate space before the addition of the new
detector, which is the outcome of the last cycle, and black points represent the remaining
points after the addition of the new information.

Note that the initial arrangement of the detectors along a line parallel to the wind
direction led to a very large and spread-out initial degenerate space. Nevertheless, every
addition of the detector dramatically reduces the size and shape of the degenerate space
of the last cycle, so, after the deployment of two new detectors, the degenerate space
is condensed to the small proximity of the source, represented by the red dot in the
lower-right panel.

The performance of the adaptive algorithm along two cycles for the first case is
summarized in the upper part of Table 1. For each cycle, the number of degenerate points,
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as well as the averaged source parameters and their corresponding standard deviations, is
shown (the actual source position and emission rate were subtracted from the averages).
One can clearly see fast convergence to the correct value in all these criteria.

Case 4: In Figure 3, a similar analysis for the fourth case (triangle markers in Figure 1)
is shown. The asymmetric deployment of the first two detectors dictates an asymmetric
shape of the probability map. In addition, the regime of high probability is far more narrow
and difficult to predict intuitively without a detailed calculation. In this case, the initial
averages and standard deviations of all parameters are large, as can be seen in the first row
of case 4 in Table 1. Adding new detectors dramatically reduces the error of all parameters,
as can be seen in the following rows of the table, as well as by comparing the blue and
black points in the figure.

A summary of all six cases is shown in Table 1. The number of cycles is limited
by the demand that the number of degenerate points is lower than some small number
(taken as 100 points in this work). One can see that, in all cases, a rapid decrease in the
number of suspected points occurs after the first iteration (i.e., by adding the third detector).
Furthermore, both the averaged parameters (after subtraction of the exact values) and
the standard deviation of the degenerate space reduce along the procedure (the errors
in the y direction are typically much smaller than the x direction because the wind is
aligned along the x axis). Note that the search was conducted in a parameter space of
10,000 m × 10,000 m, so the relative error of every spatial parameter, normalized by the
corresponding length scale, at the end of the algorithm operation is very small. More than
that, the resolution of the source estimation is limited by the size of the grid cells used to
predict the concentration from the LSM operation, which was 20 m × 20 m for the spatial
coordinates and 0.15 for the emission rate in these cases. Therefore, in all cases, the errors
are within a deviation of three spacial cells at the most. Note that since the wind direction
is aligned along the x axis, the errors in this direction (both the average and standard
deviation) are much larger than along the y axis.

Table 1. The results of the adaptive source estimation algorithm for six cases are shown in the table.
For every case, the first row describes the features of degenerate space before applying the adaptive
algorithm based on two pre-deployed detectors. In every row, the number of degenerate points (Nd),
the averages of the source parameters (after subtraction of the exact value) and their corresponding
standard deviations are shown.

Cycle Ndetectors Nd ⟨x⟩ − xsor ⟨y⟩ − ysor ⟨q⟩ − qsor σx σy σq

CASE 1
2 8704 231 0 3.76 400 210 4.24

1 3 460 130 32 0.68 296 72 0.92
2 4 32 32 0 0.12 45 0 0.19

CASE 2
2 2583 896 0 3.53 1062 22 3

1 3 235 87 0.6 0.75 394 11 1.2
2 4 12 45 0 0.18 27 0.0 0.12

CASE 3
2 2183 30 30 3.9 630 139 3.1

1 3 73 39 11 0.21 74 12 0.25
2 4 31 30 12 0.06 40 12 0.15

CASE 4
2 3762 451 87 3.5 604 171 3.9

1 3 441 56 24 0.35 186 53 0.45
2 4 43 13 5 0.12 60 8 0.18
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Table 1. Cont.

Cycle Ndetectors Nd ⟨x⟩ − xsor ⟨y⟩ − ysor ⟨q⟩ − qsor σx σy σq

CASE 5
2 2743 428 2 3.5 771 102 3.22

1 3 245 120 4 0.21 188 19 0.25
2 4 24 70 5 0.08 94 13 0.14

CASE 6
2 3060 2 50 5.3 575 117 3.3

1 3 158 49 10 0.46 78 12 0.49
2 4 63 28.5 11 0.19 39 12 0.32

4. Discussion
In this paper, we have presented a new approach for an adaptive deployment of

detectors that aims to reduce the existence of many hypotheses with approximately the
same probability for describing the source parameters. This adaptive approach relies on two
concepts: the identification of the suspected points based on current measurements and the
prediction of the effect of the new detector’s position on the degenerate space reduction.

The construction of the degenerate space defined in Section 2.2 can be intuitively
thought of as the intersection of the detectors’ “iso-surfaces”, which are the sets of all
points in the parameter space that will retrieve the actually measured concentration in
every detector. This idea is somewhat similar in its character to the approach presented
by Keats [34], who demonstrated how the ‘regimes of influences’, generated by solving
the adjoint diffusion–advection equation for every detector, can be used to select the
possible locations of the source. There is, however, a significant difference between the two
approaches, since the construction of these regimes does not rely on the concentrations that
were actually measured, in contrast to the definition of the degenerate space given before.
Furthermore, to the best of our knowledge, this idea was not implemented quantitatively
for the BLSM in the form of Equation (10). The estimation of the effect of the new detector’s
position on the degenerate space reduction, which is the heart of the adaptive algorithm, is
novel and does not rely on Bayesian design techniques.

How should the adaptive method developed in this study be tested? The straight-
forward answer may be to calculate the actual reduction by deploying the new detector
at the proposed location, measure the concentration and calculate the new degenerate
space formed by this deployment. Then, this outcome could be compared with the actual
reduction formed by the deployment of the new detector at other places. Note, however,
that all the points in the degenerate space can serve as the source and each one of them
will reproduce a similar degenerate space. If the starting point would be a different point
taken from the degenerate space, applying the previously mentioned test may lead to a
completely different reduction. Therefore, a better test for the performance of the proposed
mechanism is to compare the actual obtained reduction as a function of the detector’s
position, averaged over all equally probable hypotheses.

In the upper panel of Figure 4, the averaged actual reduction is shown for different
possible positions for the third detector in the first case along two lines, (x, 5000) and
(x, 5500) (an error bar was added to indicate the standard deviation associated with the
average at every point). The average reduction for the preferred point, chosen by the
criterion mentioned in Section 2.3, is also shown as a green rectangle. In the lower panel,
the same analysis is shown for the second case. One can see that the best outcome is
obtained for the proposed position in both cases. In the first case, the difference between
the preferred and other points can be dramatic for most of the examined points (note that
the averaged reduction for the preferred point is less than 0.1, i.e., on average, less the 10%
of the degenerate points survived the elimination induced by the third measurement). Note
that, in this case, because the first two detectors are positioned along the line parallel to the
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wind direction, there is a preference for breaking the symmetry in the deployment of the
third detector as can be seen by the sequence of red squares with low average reduction.

In the second case, the difference is less dramatic, although the reduction for the
preferred point is still significantly lower than all other points (0.12). In addition, a similar
trend between the two lines can be seen, induced by the symmetric deployment of the
first two detectors along the axis perpendicular to the wind direction (see the circles in
Figure 1, which represents the position of the detectors in the second case). Hence, a
different behavior can be seen between the two cases: while, in the first case, choosing
the preferred point is crucial, the second case is less sensitive to the position of the third
detector (although the preferred point is still optimal). We should emphasize that the actual
averaged reduction can be used only for analysis of the results, not as a design criterion.

Figure 4. The actual reduction, averaged over all possible hypotheses in the first cycle of the first and
second cases, is shown for different points along the line (x , 5000) and (x, 5500) and for the preferred
point (located at (6000, 5300) in the first case and at (6200, 4600) in the second case). Note that the
best performance is achieved for the preferred point (green point).
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In addition, we compared the reduction obtained by deploying the third detector at
the proposed position to the reduction obtained by randomly choosing its position. The re-
duction averaged over 200 random choices taken from a box of [3000, 10, 000]× [4000, 6000]
is 0.6, much larger than the reduction obtained for the proposal position (0.05).

The effect of the detector’s number and its arrangement on source estimation accuracy
was addressed by [60], who used the results from a wind tunnel experiment as input
for gradient-based source estimation using a Gaussian dispersion model. In their work,
11 different sets of four detector configurations were used to estimate the source parameters
in a similar setup as taken here (homogeneous external wind is 1.3 m/s). As can be seen
in the first row of Table 1, in Rudd’s paper, the error in the source position divided by a
typical length scale, taken as the averaged distance between the source and detectors, is
about 0.19 and 0.24 for four and five detectors, respectively. In order to compare our results,
we normalized the error of the second cycle (after four detectors had been deployed) with
the averaged distance (∼2000 m), yielding an almost an order of magnitude smaller error
in all six cases.

As mentioned in Section 2.2, the use of a BLSM instead of a standard (forward) LSM
enables a linear dependency of the computational effort required for the construction of
the degenerate space with the number of detectors. Furthermore, replacing the underlying
dispersion model with a more complex and costlier model will not dramatically increase
the computation effort required for the task (as long as an ‘adjoint’ dispersion model,
analog to the BLSM, is available). The computational bottleneck of the proposed adaptive
algorithm is the double loop (over all hypotheses in the parameter space) required for the
calculation of Equation (12). Increasing the dimensionality of the parameter space will
increase the number of hypotheses. Typically, every degree of freedom was discretized to
Ni cells (500 cells for the special parameters and 100 for the emission rate in this work).
So, the number of hypotheses is expected to grow as Πd

i Ni . Therefore, the scalability
of the algorithm is expected to grow exponentially with the number of parameters d,
limiting the applicability of the algorithm to a relatively small number of parameters.
It should be noticed, however, that, in this work, a dense grid was used, which can be
easily diluted under mild prior assumptions. For example, the width of the dispersion
in the y direction in this case is much smaller than in the x direction as can be seen in
Figure 1. Therefore, the relevant range in the y direction can be significantly reduced.
In addition, the spatial cell size (20 m × 20 m in this study) can be increased at the expense
of resolution. Furthermore, the computation of each case was performed on a standard
off-the-shelf single i-7 processor and took a few hours to complete. It should be noticed
that the calculations of Equation (11) for different candidates (RM+1) are independent, such
that parallel computing can be applied linearly with the processor number. To conclude,
for reasonable computational resources (∼200 processors), the algorithm can be used in
real time for problems characterized by up to five source parameters.

One mandatory requirement for operating this procedure is prior knowledge of the
noise functional form. If this form is unknown, then a calibrating procedure of the detector
is required as a preliminary step. In this work, an “almost linear” form of the noise (see
Equation (7)) was taken, which corresponds to the work of Keats and Yee [42]. Naturally,
as κ and σ0 increase, more hypotheses will satisfy the condition described in Equation (9),
so the degenerate space will become larger. Besides increasing the computational bur-
den, this might require more cycles in order to reach the tolerance level of the algorithm.
Furthermore, all the environmental conditions, such as the wind, turbulence parameters
and stability state, should be supplied as an input before or during the operation of the
procedure. Hence, for practical use, it is important to incorporate this algorithm in a wider
meteorological framework.



Environments 2025, 12, 18 14 of 18

5. Conclusions
The need for an adaptive source term estimation method is critical in real-life scenarios

where the available information is expected to be small, and thus the deployment of a
sparse array of static detectors will be inefficient. In this study, a novel method for an
adaptive STE is presented. The method is based on a simple and fast identification of the
relevant hypotheses based on a given set of measurements, and then exploiting these data
to choose the next measurement position. The method was tested on six cases differing by
the initial arrangement of the first two pre-deployed detectors, and was shown to retrieve
the source location and emission rate accurately and efficiently.

The focus of this study was on presenting the new methodology and testing it on
a small initial number of pre-deployed detectors for a relatively simple meteorological
scenario. We should emphasize that, since the underlying dispersion model is an LSM,
which is known for its ability to accurately describe pollutant dispersion in many com-
plicated scenarios, it can be implemented for realistic scenarios. One future extension
of this work is testing the performance of the algorithm in cases where the wind is non-
stationary and heterogeneous and the source has a time-dependent release profile. A further
comparison of this algorithm’s numerical performance with that of the Bayesian adaptive
exploration method is currently being investigated in scenarios analogous to those analyzed
in this study.
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Appendix A. Derivation of the Probability of Reduction Factor Estimation
How can we predict the expected reduction as a function RM+1 of before the deploy-

ment of the new detector? If θj = θex and the measurement outcome is dM+1, then the new
degenerate space will be

S(RM+1|θj) = {θk ∈ S(R1 . . . RM) | |d(RM+1|θk)− dM+1| ≤ σ(θk)}

and the conditioned reduction factor will be defined as

Γ(RM+1|θj) =
|S(R1 . . . RM+1|θj)|

|S(R1 . . . RM)| (A1)

(we omitted the dependency of the reduction factor on the already deployed detectors
(R1 . . . RM) since their positions cannot be changed in contrast to the position of the new
detector). As mentioned before, this is not useful since dM+1 can be known only after the
deployment and measurement of the new detector at RM+1. Therefore, define the readily
attainable set:

s(RM+1|θj) = {θk ∈ S(R1 . . . RM) |
∣∣d(RM+1|θk)− d(RM+1|θj)

∣∣ ≤ σ(θk) + σ(θj)}

https://doi.org/10.5061/dryad.4mw6m90fb
https://doi.org/10.5061/dryad.4mw6m90fb
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and its corresponding conditioned reduction factor:

γ(RM+1|θj) =
|s(R1 . . . RM+1|θj)|
|S(R1 . . . RM)| . (A2)

Now, let us relate γ(RM+1|θj) to Γ(RM+1|θj). By definition, for every θk ∈ S(RM+1|θj),

|d(RM+1|θk)− dM+1| ≤ σ(θk).

In addition, since we assumed that θj = θex, then, from (6),∣∣d(RM+1|θj)− dM+1
∣∣ ≤ σ(θj).

The combination of the last two inequalities leads to

|d(RM+1|θk)− d(RM+1|θj)| ≤ |d(RM+1|θk)− dM+1|+ |d(RM+1|θj)− dM+1|
≤ σ(θj) + σ(θk).

So, we have shown that θk ∈ s(RM+1|θj) and therefore S(RM+1|θj) ⊆ s(RM+1|θj),
which implies that, for every θj,

Γ(RM+1|θj) ≤ γ(RM+1|θj). (A3)

Now, consider the probability that, if we randomly choose a hypothesis from
S(R1 . . . RM), the reduction factor and its estimator will be smaller than some small number
α. Since all points are equally probable, this can be calculated as

Pr(Γ(RM+1) ≤ α) =

∣∣{θj|Γ(RM+1|θj) ≤ α}
∣∣

|S(R1 . . . RM)| , (A4)

and its “companion”:

Pr(γ(RM+1) ≤ α) =

∣∣{θj|γ(RM+1|θj) ≤ α}
∣∣

|S(R1 . . . RM)| . (A5)

From Equation (A3), we know that, for every θj for which γ(RM+1|θj) ≤ α, we obtain
Γ(RM+1|θj) ≤ γ(RM+1|θj) ≤ α, so {θj|Γ(RM+1|θj) ≤ α} ⊆ {θj|γ(RM+1|θj) ≤ α}, and we
have shown that

Pr(Γ(RM+1) ≤ α) ≥ Pr(γ(RM+1) ≤ α). (A6)

Clarification of the last claim can be seen by the following example. Assume that
we have 100 points and we obtain Pr(γ ≤ 0.2) = 0.6. Therefore, there are 60 points
for which γ(RM+1|θj) ≤ 0.2 and 40 points for which γ(RM+1|θj) ≥ 0.2 . For each
point from the first class, we know that Γ(RM+1|θj) ≤ γ(RM+1|θj) ≤ 0.2 and therefore
Pr(|Γ(RM+1) ≤ 0.2) ≥ 0.6.
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