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Abstract: Temperature and dissolved oxygen (DO) are of critical importance for sustainable
aquatic ecosystem and biodiversity in the river systems. This study aims to develop a
data-driven model for forecasting water quality in the Athabasca River using a seasonal
autoregressive integrated moving average model (SARIMA) for forecasting monthly DO
and water temperature. DO and water temperature observed at Fort McMurray and
Athabasca from 1960 to 2023 were used to train and test the model. The results show the
satisfied model performance of DO with a coefficient of determination (R2) value of 0.76 and
an RMSE value of 0.79 for training and 0.67 and 0.92 for testing, respectively, at the Fort
McMurray station. At the Town of Athabasca station, the RMSE and R2 of DO were 0.92 and
0.72 for training and 0.77 and 0.86 for testing, respectively. For the modeled temperature,
RMSE and R2 were 2.7 and 0.87 for training and 2.2 and 0.95 for testing, respectively, at Fort
McMurray and were 2.0 and 0.93 for training and 1.8 and 0.97 for testing, respectively, in
the Town of Athabasca. The results show that DO concentration is inversely proportional
to the temperature. This implies that the DO could be related to water temperature, which,
in turn, is correlated with air temperature. Therefore, the SARIMA model performed
reasonably well in representing the dynamics of water temperature and DO in the cold
climate river. Such a model can be used in practice to reduce the risk of low DO events.

Keywords: SARIMA model; water quality; dissolved oxygen; water temperature; aquatic
ecosystem; machine learning

1. Introduction
Water quality is of critical importance for sustainable economic development, aquatic

ecosystems, and biodiversity. However, human activities, economic development, and
climate change can change river systems, leading to water pollution, and loss of biodi-
versity [1,2]. Dissolved oxygen (DO) and water temperature are two key water quality
parameters for aquatic ecosystems and biodiversity. Aquatic species have a favored range
of temperature and DO that they favor as their habitats [3]. Any changes in stream tem-
perature and DO may have an adverse impact on aquatic biodiversity [4–6]. For example,
no fish can live below a dissolved oxygen concentration of 4 mg/L [7]. Furthermore, DO
plays a crucial role in the decomposition process of river organic matter. Therefore, DO is
an important indicator of water quality and the health of rivers. The water temperature
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significantly influences the timing of life cycle events, such as breeding, spawning, hatch-
ing, growing, and mortality in aquatic species [4,8]. It also impacts on the metabolic rates
of aquatic organisms. Warmer temperatures generally increase metabolic rates, leading
to higher growth rates and reproduction for many species. However, excessively high
temperatures can be stressful or lethal to some species, especially those adapted to cooler
environments. Therefore, sustainable management of river systems requires an under-
standing of how water quality in river systems responds to climate change and natural and
anthropogenic activities [9,10]. The ability to predict future trends and patterns of DO and
temperature is important for aquatic ecosystems and data-driven decision.

Modeling is a useful and powerful tool for predicting stream temperature and water
quality. Large efforts have been made in the literature to develop various water quality
models [11–13]. There are three main classes of water quality models: physics-based models,
statistical models, and machine learning models. Physics-based models are sophisticated
tools that are based on partial differential equations, such as QUAL2E, MAKE11, and the
Soil & Water Assessment Tool (SWAT) [11,14–16]. These models can simulate processes
of hydrodynamics, dispersion, and pollutant kinetics in streams and their impacts on DO
levels. However, running most of these models requires many input parameters, such as
topography, soil and vegetation properties, and meteorological data. In some situations, the
highly intensive data requirement limits the applications of the physics-based models [11].

The statistical models have been traditionally used for estimating stream temperature
and assessing water pollution [17–19]. These models are based on empirical regression
relationships between stream temperatures and meteorological parameters, such as the
widely used regression models between air and stream temperatures. However, with
the advent of remote sensing and monitoring networks, the datasets have become more
complex in amount and structures. Statistical models are difficult to tackle with increased
data complexity. The state-of-the-art statistical models of water quality are enhanced
using artificial intelligence (AI), such as genetic algorithms (GAs) and artificial neural
networks (ANNs) [20–22]. Statistical models are especially beneficial at sites and in regions
where deterministic models are inapplicable or impossible to implement. As a result,
machine learning and artificial intelligence have been increasingly applied for estimating
water quality. Different machine learning techniques have been used in the literature,
such as recurrent neural network (RNN) [23], long short-term memory (LSTM) [24,25],
autoregressive integrated moving average (ARIMA) [26,27], and quantile regression forest
(QRF) [28]. Khan and Valeo [29] (2016) used a fuzzy neural network (FNN) to analyze
DO and temperature. They found that that low DO events are better captured by FNN
compared to a non-fuzzy network. These data-driven models for water quality analysis and
forecasting are usually implemented to analyze time series data produced at monitoring
stations. The ARIMA is a long-established time series predicting model and is promising
to analyze seasonality, periodicity, and trends in time series data. Particularly, the seasonal
autoregressive integrated moving average model (SARIMA) is an extended ARIMA for
modeling seasonal data. Due to its powerful feature extraction capability, it has been
widely utilized for various time series analyses and forecasting [30–32]. However, it is still
insufficient to evaluate the effects of temperature on DO. Although a saturated DO may
inversely be correlated with water temperature in pure water, the inversed relation may
not be correct in some situations. DO in water bodies depends not only on temperature
but also on other factors, such as pressure, pH, phosphorus, or organic matter [33–35]. For
example, phosphorous can accelerate eutrophication, leading to a reduction in DO in rivers
and lakes. Insufficient oxygen is often caused by the decomposition of organic matter
and/or nutrient pollution [36]. Waterways depleted of DO can damage ecosystems or even
result in “dead zones” in larger bodies of water and fish death [37]. He et al. [38] showed
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that abiotic and biotic factors could affect biomass. This could lead to variation in DO from
river to river. It was reported that the spatial-temporal distribution of DO is heterogeneous
in the Athabasca River Basin [39,40]. Therefore, in some environments, there may not be an
inverse relation.

Despite many successes, it is still unclear how the trends of water temperature and
DO change due to the effects of snow melting, glacial retreat, permafrost, and freeze thaw
cycles in cold river basins. Particularly, these changes may impact the aquatic ecosystems
and biodiversity. The sustainability of river basins depends on assessments and predictions
of water quality from river to river. The time series data not only trace the past variation,
but also arrest specific non-stationary, seasonal, and time-based events. There exists a
knowledge gap in cold river basins, with an inadequate understanding of temperature
and DO concentration. Therefore, several important issues remain to be addressed in
improving our understanding of the temperature and DO changes in high latitude cold
regions: (1) the dynamic performance forecast ability in river systems, and (2) data-driven
model performance uncertainties in forecasting stream temperature and DO monthly,
seasonally, annually under environmental variations.

Data-driven time series analysis and forecasting models would be beneficial for ana-
lyzing the temperature and DO concentration. This study aims to predict the trends and
evolution of dissolved oxygen concentration and temperature in the Athabasca River. To
reach this goal, the SARIMA is used to obtain a longitudinal profile of dissolved oxygen
and temperature in the river. It is trained and tested on the time series data from sampling
stations. The SARIMA model’s performance is statistically assessed and used for forecast-
ing. Finally, the impacts of water temperature and DO on fishes are analyzed to provide an
insight into the general mitigation strategies and policy recommendations. Data-driven
modeling and forecasting will improve understanding of datasets and inform a solution
for water management.

2. Materials and Methods
2.1. Study Area and Input Data

The Athabasca River is located in the Alberta province, west of Canada (Figure 1).
This river originates from the Columbia icefields and extends around 1500 km from the
southwest to the northeast into the Lake of Athabasca. It is drained by an area of about
160,000 km2, including several various urban regions, forestry, agriculture, coal, and oil and
gas industries. Average annual precipitation ranges from 1000 mm in the headwaters to
about 300 mm in the downstream area of the river basin. The mean annual temperature is
1.8–5.1 ◦C [41]. As one of the largest rivers in Alberta, the Athabasca River plays a pivotal
role in the economic development and ecosystem services of the northern Alberta region.
Water quality in the river is monitored through two stations. These stations were located at
U/S Fort McMurray (AB07CC0030: 56.72028◦ N latitude and −111.40556◦ W longitude)
over the period of 1976 to 2021 and in the Town of Athabasca (AB07BE0010: 54.72222◦ N
latitude and −113.28611◦ W longitude) over the period of 1987 to 2021. These two stations
are across a land use gradient (i.e., forest, oil and mining, built-up, and agriculture).
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Figure 1. Athabasca River and monitoring stations: Fort McMurray and the Town of Athabasca. 
Land use classes: URML: urban medium density, PAST: pasture; RNGE: range shrub land; AGRL: 
agricultural land; RNGB: grassland/herbaceous; FRSD: deciduous forest; FRSE: evergreen forest; 
FRST: mixed forest; WATR: water; BARR: barren land; SWRN: southwestern rangeland. 

Data were downloaded from the Long-Term River Network for water quality moni-
toring in Alberta [42]. Real-world environmental data usually require preprocessing. 
Once the data were loaded on the Python interface, temperature and dissolved oxygen 
were extracted from the dataset and plotted. There were missing observations, and sam-
pling, sometimes, was irregular for temperature and DO concentration before 1990. These 
can cause analytical problems in data-based analyses. For example, Figure 2 shows a set 
of raw data of DO at U/S Fort McMurray. For Fort McMurray, the dataset covered from 
1960 to 2023. For Athabasca, the dataset covered from 1987 to 2023. The sampling dates 
were irregular between 1978 and 1990, and some data were missing. Particularly, in 1960, 
only a sample was collected. There were no samples between 1960 and 1978. There were 
missing data between 1980 and 1990. The irregularity of sampling frequency can cause a 
broken integrity of the time series and a poor fit with the models. Therefore, irregular data 
must be preprocessed before applying any machine learning models. Here, the interpolate 
function in Pandas identified missing values in the time series. The time intervals between 
adjacent existing values were calculated. These intervals were used to determine the dis-
tance between the missing values and the existing values. Secondly, there was a pattern 
repeated each year (mostly obvious for the temperature). These time series were seasonal 
(12 months). However, by looking at the dataset, there was more than a value sampled 
per year. Hence, to get a fully seasonal time series, a monthly mean of values was realized 
during the preprocessing step. To get a fully seasonal time series, one sample per month 

Figure 1. Athabasca River and monitoring stations: Fort McMurray and the Town of Athabasca.
Land use classes: URML: urban medium density, PAST: pasture; RNGE: range shrub land; AGRL:
agricultural land; RNGB: grassland/herbaceous; FRSD: deciduous forest; FRSE: evergreen forest;
FRST: mixed forest; WATR: water; BARR: barren land; SWRN: southwestern rangeland.

Data were downloaded from the Long-Term River Network for water quality monitor-
ing in Alberta [42]. Real-world environmental data usually require preprocessing. Once
the data were loaded on the Python interface, temperature and dissolved oxygen were
extracted from the dataset and plotted. There were missing observations, and sampling,
sometimes, was irregular for temperature and DO concentration before 1990. These can
cause analytical problems in data-based analyses. For example, Figure 2 shows a set of
raw data of DO at U/S Fort McMurray. For Fort McMurray, the dataset covered from
1960 to 2023. For Athabasca, the dataset covered from 1987 to 2023. The sampling dates
were irregular between 1978 and 1990, and some data were missing. Particularly, in 1960,
only a sample was collected. There were no samples between 1960 and 1978. There were
missing data between 1980 and 1990. The irregularity of sampling frequency can cause a
broken integrity of the time series and a poor fit with the models. Therefore, irregular data
must be preprocessed before applying any machine learning models. Here, the interpolate
function in Pandas identified missing values in the time series. The time intervals between
adjacent existing values were calculated. These intervals were used to determine the dis-
tance between the missing values and the existing values. Secondly, there was a pattern
repeated each year (mostly obvious for the temperature). These time series were seasonal
(12 months). However, by looking at the dataset, there was more than a value sampled
per year. Hence, to get a fully seasonal time series, a monthly mean of values was realized
during the preprocessing step. To get a fully seasonal time series, one sample per month
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was used for the same month. So, the group of values sampled in the same month was
replaced by their means. A linear interpolation function was used to fill the missing values:

xi = xi−1 + (xi+1 − xi−1) ·
ti − ti−1

ti+1 − ti−1
(1)

where xi is a value between xi+1 and xi−1, and ti is time at i. The missing values were
replaced with the interpolated values obtained in the previous step.
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Figure 2. A raw dataset of DO at U/S Fort McMurray.

2.2. Seasonal Autoregressive Integrated Moving Average Model (SARIMA)

The seasonal autoregressive integrated moving average (SARIMA) model is a pre-
dictive machine learning model used to analyze and forecast time series and extend basic
ARIMA models [43]. An ARIMA considers the past values using autoregressive (AR),
integrative differentiation (I), and moving average (MA) and forecasts future values. AR
utilizes observed data from previous time steps for a regression and predicts the value
at the subsequent step. An MA model is the forecast related to a linear combination of
previous forecast errors. Integrative differentiation (I) makes the time series stationary.
The SARIMA also uses past values but allows the incorporation of seasonal patterns. It is
suitable for analyzing time series with trends and/or seasonal components.

The parameters in the SARIMA model can be divided into two categories: seasonal
parameters (p, q, and d) and non-seasonal parameters (P, Q, D, S). p represents the maximum
lag in the model. This value was determined by a partial autocorrelation plot. P is the
value of autoregressive order which represents the number of previous data points taken to
realize the autoregression on the seasonal part of the model. This value was determined by
the number of non-negligible multiples of the season on the partial autocorrelation plot. q
is the number of past errors taken to realize the moving average on the non-seasonal part of
the model. This value was determined by an autocorrelation plot. Q is the number of past
errors taken to realize the moving average on the seasonal part of the model. This value was
determined by the number of non-negligible multiples of the season on the autocorrelation
plot. Uppercase D is a Boolean value which represents the order of seasonal integration.

The SARIMA (p, d, q) (P, D, Q) model can be expressed as [44]:

Φp(Bs)φ(B)∇D
s ∇d(xt) = θQ(Bs)θ(B)(wt) (2)
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where xt is the nonstationary time series value at time t, wt the usual Gaussian error at time
t, S the seasonality (12 months in this study), and B a backshift operator. ∇D

s and ∇d are
the ordinary and seasonal difference operators.

Bk(xt) = xt−k (3)

ΦP is the polynomial related to the autoregressive seasonal component (P).

ΦP

(
BS

)
(xt) = xt − Φ1 · xt−1·S − Φ2·xt−2·S − . . . − ΦP · xt−P·S (4)

φ is the polynomial related to the autoregressive non-seasonal component (p).

φ(B)(xt) = xt − φ1 · xt−1 − φ2 · xt−2 − . . . − φp · xt−P (5)

∇D
s is the operator for the polynomials related to the seasonal difference component.

When D = 1, a seasonal difference was applied to make the series stationary. When D = 0,
no seasonal difference was applied.

∇D
s (xt) =

(
1 − BS

)D=0
(xt) = 1 (6)

∇D
s (xt) =

(
1 − BS

)D=1
(xt) = xt − xt−s (7)

∇d is the polynomial operator related to the number of non-seasonal differences
applied to make the series stationary. In our case, d = 0. Hence:

∇d=0(xt) = xt (8)

θQ
(

BS) is the polynomial related to the seasonal moving average component (Q).

θQ

(
BS

)
(wt) = wt + θ1 · xt−1·S + θ2 · xt−2·S + . . . + θQ · xt−Q·S (9)

θ(B) is the polynom related to the non-seasonal moving average (q).

θ(B)(wt) = wt + θ1 · wt−1 + θ2 · wt−2 + . . . + θq · wt−q (10)

2.3. Statistical Evaluation of Model Performance

To assess the performance of the SARIMA model, a statistical performance analysis
is commonly used. There are different statistical model performance evaluations. The
coefficient of determination (R2) is one the most widely used metrices but is oversensitive
to high extreme values (outliers) and insensitive to additive and corresponding changes
between predicted values and actual data [45]. On the other hand, the root mean squared
error (RMSE) may give a small error variance but at the expense of significant model bias.
Thus, the statistical model performance evaluations should be incorporated into at least
one dimensionless statistic, such as R2, and one absolute error index, such as RMSE and
mean absolute error (MAE), with additional data. In this study, five metrics were used,
including R2, mean absolute percentage error (MAPE), RMSE, mean absolute percentage
error (MAPE), median absolute error (MDAE), and MAE.

The MAE is an index of closeness between predicted and actual values, regardless of
their direction, and can be expressed as:

MAE =
1
n

∗ ∑n
i=1|yi − ŷi| (11)
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where ŷi and yi are the actual and predicted values at the time ti, respectively, and n is the
number of observations. These metrics can be formulated as follows.

MDAE is the median of all the absolute differences between predicted and actual values:

MDAE = median(|y1 − ŷ1|, . . . |yn − ŷn| (12)

RMSE is the square root of the sum of square errors between predicted and actual values:

RMSE = SQRT
(

1
n
∗ ∑n

i=1(yi − ŷi)
2
)

(13)

Generally, the lower the RMSE, the better the model performance.
MAPE is the difference between modeled and actual values and can be calculated

using Equation (14):

MAPE =
100
n

∗ ∑n
i=1|yi − ŷi|/yi (14)

MAPE is effective because it is unaffected by actual and modeled values as dimension-
less values.

The Nash–Sutcliffe efficiency coefficient (NSE) is an index to measure the goodness of
fit of a model. The NSE can be expressed as:

R2 = 1 − ∑N
i=1(ŷi − yi)

2

∑N
i=1( ŷi − y )2 (15)

NSE indicates the deviation between predicted and observed values relative to the
total variation in the response variable. It ranges from 1 to −∞ with a value of 1 indicating
no difference between predicted and observed values, whereas lower values represent a
poorer predictive accuracy.

2.4. Implementation of the SARIMA Model

For the SARIMA model, we must determine both non-seasonal parameters (p, q, and
d) and seasonal parameters (P, Q, D, S). The initial values of several parameters, i.e., p,
d, q, P, D, and Q, should be determined to represent the autoregressive order and the
maximum lag, order of integration, the moving average order for the error of the time
series, the order of autoregression for the seasonal component of the model, the order of
seasonal integration, and the similar logic, respectively. The Dickey–Fuller (DF) test was
performed to determine these parameters [46]. First, parameters must be established by
using the Dickey–Fuller parameter. The autocorrelation function (ACF) is a metric of linear
dependence between observed data in a time series that are separated by a lag q. The partial
autocorrelation function (PACF) helps determine how many autoregressive terms p are
necessary. We used an autocorrelation plot and a partial autocorrelation plot to examine the
correlation and partial correlation between the time series and its different lags. Figure 3
shows the autocorrelation plot and the partial autocorrelation plot. In this figure, the
Dickey–Fuller parameter p is equal to 0. The p value between 0 and 1 indicates a positive
autocorrelation, while the value between −1 and 0 denotes a negative autocorrelation.
The closer the parameter p to 0, the more stationary the time series can be considered. A
variance stabilization should be applied when the variance grows with time. The null
hypothesis of the DF test is that there is a unit root in an AR model, implying that the
data series is not stationary. However, there were still too many significant peaks on the
correlation and partial correlation plots.
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To reduce the number of significant peaks, it is possible to apply to the time series a
non-seasonal integration. Significant peaks on autocorrelation and partial autocorrelation
plots allow us to determine the seasonal parameters P and Q, respectively, and the non-
seasonal parameters p and q, respectively. Hence, to decrease the p-value and to limit
the number of significant peaks, a seasonal integration was considered. The parameter
D is a Boolean value which represents the order of seasonal integration. If a seasonal
differentiation existed, D = 1. Otherwise, D = 0. Lowercase d is the number of non-seasonal
differentiations made. S is the season of the time series (12 months). It means subtracting
the time series by itself shifted of 12 months (the seasonality). On the autocorrelation and
partial autocorrelation figures, there are now less significant peaks. As one non-seasonal
integration was realized, the parameter d was equal to 1. The values of all parameters are
summarized in Table 1.

Table 1. Parameters of the SARIMA model.

Features/Parameters p q d S P Q D

Temperature (◦C) 3 2 1 12 1 0 1

Dissolved oxygen
concentration (mg/L) 4 4 1 12 1 0 1

It was not necessary that these parameters (p, q, P and Q) in the models were consid-
ered. To compute the optimum combination of parameters, a grid search method was used.
First, a list was made for parameters p, q, P, and Q. The value of each parameter in this list
was filled with integers from 0 or 1. For example, if p = 4 for the DO concentration, the list
would be [1, 2, 3, p = 4]. The Akaike’s Information Criterion (AIC) was applied further for
determining the values of these parameters. It is used to determine which model is best
for a dataset. The AIC is a model selection tool that measures the quality of a statistical
model for a given data set. A model with a lower AIC is more parsimonious or has a better
balance of model fit and generalizability. Every combination of parameters [p, d, q, P, D, Q,
s] was tested on 96% of the dataset. Model forecasting demonstrated reliability in the short
term (3 to 4 years). Hence, temperature and dissolved oxygen predictions were carried out
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for a span of approximately two years, representing roughly 4% of the complete dataset.
The best parameter combination is the one associated with the lowest AIC. Table 2 shows
the optimal parameters to fit and forecast temperature and DO time series (trained on 96%
of the dataset). It can be found that the temperature model fitted better with p = 1, q = 1,
P = 1, Q = 1 and the DO model fitted better with p = 4, q = 2, P = 0, and Q = 1 (Table 2).
Regarding parameters D, d, and s, d was equal to 1 because one non-seasonal integration
had been realized. D was equal to one because a seasonal integration had been realized (if
no seasonal integration is realized, D is equal to 0). The season parameter, s, was equal to
12 (months). Finally, of these models, we plugged the set of the best values into Equation (1)
for the fittest model in this study.

Table 2. Optimal parameters to fit and forecast temperature and DO time series (trained on 96% of
the dataset).

Rank Parameters (p, q, P, Q) AIC

Temperature

0 (1, 1, 1, 1) 2593.3

1 (3, 1, 1, 1) 2593.4

2 (2, 1, 1, 1) 2593.9

3 (1, 2, 1, 1) 2594.1

Dissolved oxygen

0 (4, 2, 0, 1) 1664.7

1 (4,2, 1, 1) 1665.1

2 (3, 1, 0, 1) 1665.2

0 (4, 2, 0, 1) 1664.7

3. Results and Discussion
The modeled outputs were compared with the observed values. Therefore, the tem-

perature and DO from the monitoring station, Fort McMurray, were employed for the
model training and testing to evaluate the model performance. The model performance
was evaluated using the metrics of RMSE, MAE, and MDAE during model training and
testing. Then, the model with the same values of parameters was examined using the
temperature and DO data from the Town of Athabasca for the validation.

3.1. Model Training and Testing

To assess the efficiency of the model, datasets were separated into training and testing
parts. Several groups of data ratios were tested for training/testing: 70%/30%, 80%/20%,
90%/10%, and 96%/4%. For 80%/20% and 90%/10%, the RMSE of the temperature
were 1.99 and 2.92 in training and 2.07 and 1.81 in testing, respectively, in Athabasca.
Furthermore, the RMSE of DO were 0.78 in training and 0.59 and 0.51 in testing, respectively,
in Athabasca. Finally, 96%/4% was the best ratio and the RMSE of DO was 0.92 for training
and 0.77 for the testing at Athabasca. Different types of errors were calculated on these
training and testing parts (Table 3). Table 3 summarizes the performance statistics of the
model for the temperature simulations for the two monitoring stations. Table 3 shows
training and testing metrics for temperature. It can be observed that the RMSE and NSE
were 2.7 and 0.87 for training and 2.2 and 0.95 for testing, respectively, at Fort McMurray.
In contrast, the RMSE and NSE were 2.0 and 0.93 for training and 1.8 and 0.97 for testing,
respectively, in the Town of Athabasca. The testing performances were better than the
training counterparts at both stations. This is because the testing data were of higher quality.
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Therefore, the resulting model performance for the temperature simulations was satisfied
in both training and testing.

Table 3. Errors of temperature forecasting model.

Metrics
RMSE ◦C MDAE ◦C MAE ◦C NSE

Fort McMurray

Training part error 2.7 1.3 1.9 0.87

Testing part error 2.2 0.8 1.5 0.95

Town of Athabasca

Training part error 2.0 0.7 1.3 0.93

Testing part error 1.8 0.5 1.2 0.97

Table 4 shows the performance statistics of the model for the DO simulations for the
two monitoring stations. It can be observed that the RMSE and NSE were 0.76 and 0.79 for
training and 0.67 and 0.92 for testing, respectively, at Fort McMurray. In contrast, the
RMSE and NSE were 0.92 and 0.72 for training and 0.77 and 0.86 for testing, respectively, in
the Town of Athabasca. It is obvious that the testing values were better than the training
ones. This demonstrates that the SARIMA model was general once its parameters had
been optimized. After the parameters of the model had been obtained/adjusted using the
dataset from Fort McMurray, the model could also perform well in the Town of Athabasca.
The testing performances were better than the training ones at both stations.

Table 4. Errors of the DO forecasting model.

Metrics
RMSE MDAE MAE NSE

Fort McMurray

Training part error 0.76 0.3 0.47 0.79

Testing part error 0.67 0.47 0.58 0.92

Town of Athabasca

Training part error 0.92 0.49 0.68 0.72

Testing part error 0.77 0.43 0.58 0.86

3.2. Temperatures Effects

Figure 4 shows a comparison of the temperature between the observed time series and
the modeled results at the Fort McMurray station. The blue curve represents the observed
temperature time series, while the red one represents the modeled temperature. There are
three bands delimiting different portions. The green band represents the training period.
The red band indicates the testing. Finally, the gray part represents the prediction via the
extrapolated values. It can be found that the model fitted well the observed data in both the
training and the testing parts. Figure 4 shows the correlation plots of the modeled results
and observed data in training and testing. It can be found that the R2 value was 0.87 for
the training and 0.95 for the testing, respectively. It means that the model accounted for a
major part of the variation in the observed values and captured the seasonality, the trend,
and the variation of the values well.
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The model fitted well the observed data in both the training and the testing parts.
This is confirmed by the low errors encountered during training and testing. Regarding
the prediction, the trend was constant for the next two years. Indeed, the model did not
catch any increasing or decreasing trend in the training. The maximal annual predicted
temperatures were slightly lower than the previous year’s temperature peaks. It is because
the model had slightly overestimated the observed values at the end of the training. Hence,
it had reduced the predicted peak values. Regarding the model transition values (the
increasing or decreasing parts of the model curves), they overall fitted well the actual values.
The reason for this is that, from one year to the other, the monthly average temperature had
approximately the same variation. Thus, by giving the right season parameter (12 months)
to the model, it will catch the transition values and place them in the right period.

Without loss of generality, we checked if the model was potentially suitable for other
sampling stations or not; the sampling station used to test this generalization was in the
Town of Athabasca. The temperature from the observed data and the simulated results
was compared in Athabasca from 1985 to 2023. It can be found that the model fitted well
the observed data in both the training and the testing parts. Figure 5 shows a comparison
of temperature between the observed time series and the modeled results at the Town of
Athabasca station. It can be found that NSE value was 0.95 for the training and 0.95 for
the testing, respectively. It should be noted that the R2 values were better in the Town of
Athabasca than those at Fort McMurray. This can be explained by the fact that the observed
data from the Town of Athabasca were more regular than those from Fort McMurray. It
means that the model accounted for a major part of the variation of the observed values and
captured the seasonality, the trend, and the variation in the values well. Thus, the quality
of the data is important for the training and testing of the SARIMA model. The model
efficiency on another station was due to a similar temperature amplitude and seasonal
variation. Again, the model accounted for a major part of the variation of the observed
values and captured the seasonality, the trend, and the variation in the observed values
well. Hence, at least between the two stations studied, stream temperature was scarcely
influenced by external factors.
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Figure 5. A comparison of actual and forecasted temperature in the Town of Athabasca (trained
on 96% of the dataset): (a) correlation figure and linear regression of the temperature time series
(training portion) (NSE = 0.95, slope = 0.86, intercept = 0.91) and (b) time series.

Stream water temperature can affect a wide range of aquatic organisms from inverte-
brates [47] to salmonids [48,49]. Many cold-blooded organisms and fishes prefer a specific
range of temperature, affecting their habitats and distribution within streams [4,50]. Shift-
ing thermal regimes from the preferred thermal range can inversely affect the habitats
of the aquatic organisms [10,51]. For example, stream temperature can directly affect the
development of salmonid eggs [52]. Stream temperatures show that the seasonal changes
tend to be higher during summer and lower in winter. However, some yearly changes can
be found. From 1982 to 1997, there were much lower temperatures in some years at Fort
McMurray (Figure 4). This is because of the exceedingly small number of samples and big
data gaps. However, the model did capture the valleys in temperature. This implies that
the model would be useful for ecosystem assessment in a changing climate.

3.3. Effects of Dissolved Oxygen

Figure 6 shows a comparison of the dissolved oxygen between the observed data and
the modeled results at Fort McMurray. The blue curve represents the observed DO time
series while the red one represents the modeled DO time series. There are three bands
delimiting different portions: Training (green), testing (red) and prediction (grey). It can be
found that the model fits well the observed data with NSE values of 79% for the training
and 92% for the testing, respectively. It can be found that the DO is very irregular due to
missing samples, particularly from 1976 to 1990. This leads to the modeling difficulty of
fitting the observed values. However, the model catches well the pattern and the trend
of the seasonality with slightly low amplitudes. This is consistent with the results of the
process-based models [14]. Figure 6a shows the correlation plot of the modeled results and
the observed data in the training and testing sets that confirms the good performances.
Furthermore, it can be found that DO ranged from 8 mg/L to 14 mg/L. However, DO
showed a high peak of 16 mg/L in 1983 and a low valley of 6 mg/L in 1980.
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cause it frequently limits the survival and growth of fish in rivers and lakes. DO deter-
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DO is an indicator of the most studied water quality in freshwater ecosystems because
it frequently limits the survival and growth of fish in rivers and lakes. DO determines the
suitability of the stream for the habitat and survival of the fishes. River water having DO
concentrations < 2 mg/L and a BOD >15 mg/L are considered severely polluted, making
the survival of aquatic organisms difficult [53]. For fishes, about 4 mg/L of minimum DO
is necessary for the survival of the fishes in water [54–56]. Oxygen-depleting substances
reduce the available DO. During winter, the river becomes covered with meters of ice,
implying that these waters might have a lower oxygen level, possibly affecting some
aquatic organisms. This might explain that environmental protection was insufficient in
the 1960s–1980s. It can be observed that the lower valley of DO was in the 1980s. Figure 7
shows the effects of stream temperatures on DO at Fort McMurray from 2016 to 2022. The
DO level was inversely proportional to water temperature. During summer months, the
rate of biological oxidation is highly increased, and warm water holds less DO than cool
water. The DO concentration could be at its minimum due to the higher temperature.
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some aquatic organisms. This might explain that environmental protection was insuffi-
cient in the 1960s–1980s. It can be observed that the lower valley of DO was in the 1980s. 
Figure 7 shows the effects of stream temperatures on DO at Fort McMurray from 2016 to 
2022. The DO level was inversely proportional to water temperature. During summer 
months, the rate of biological oxidation is highly increased, and warm water holds less 
DO than cool water. The DO concentration could be at its minimum due to the higher 
temperature. 
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The model was examined against the data of the dissolved oxygen concentration in
the Town of Athabasca using the same values for the parameters from Fort McMurray
station. Concerning the model generalization, the average errors in the training and testing
parts were, respectively, around 0.7 mg/L and 0.6 mg/L. Figure 8 shows a comparison of
the DO between the modeled results and the observed data. It can be found that the model
fitted well the observed data in both the training and the testing parts. The model caught
well the pattern and the trend of the seasonality with slightly low amplitudes. According
to the correlation plots made with the modeled results and the observed data, the model
performed well during the training and testing. Indeed, the NSE value was 0.72 for the
training and 0.86 for the testing. Furthermore, it can be found that DO ranged from 8 mg/L
to 14 mg/L. However, DO showed a high peak of 14 mg/L in 1983 and a low level of
7 mg/L in some years. This implies that the DO levels were better in the Town of Athabasca
than at Fort McMurray.
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3.4. Discussion

In these regions, atmospheric temperature has a great gradient, and its difference
in this region can change from 35 ◦C in summer to −40 ◦C in winter [57]. The high
difference can impact on DO levels. The two monitoring stations are geographically far
away and have different land use and land cover regimes. The Fort McMurray station
is surrounded by industries, homes, and residences. In contrast, the Town of Athabasca
station is in the middle of the stream, in a rural and agricultural area. This might affect
the evolution of DO concentrations. While the model parameters, e.g., p, q, d, S, P, Q, D,
were calibrated only using the data from Fort McMurray, it still captured the pattern of
temperature and DO using the same model parameters at Athabasca. This demonstrates
its ability and robustness in predicting temperature and DO in cold climate regions if the
model parameters are calibrated carefully.

In contrast to process-based models, the SARIMA model requires relatively few input
data points and less technical users’ expertise, and, therefore, requires less computing
power. It has benefits for temperature and DO forecasting in data-scarce cases, since it can
make reasonably accurate forecasts even with limited data. The data-driven models are
relatively more adaptable and dynamic. To create river-specific models for watershed man-
agement, the model covers a wide range of input variables, allows the use of pre-existing
water quality statistics, and captures nonlinear interactions. However, the data-driven
model has limitations since it has no explicit representation of the underlying physical
processes. This makes it hard to understand how variations in land use or climate affect
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the underlying physical processes and identify the main factors in management and re-
search, a phenomenon which may limit their interpretability and generalizability in certain
cases. Monitoring instrument malfunctions and sampling difficulties might introduce data
anomalies or losses, especially after extreme cold weather events, a phenomenon which
may lead to significant data gaps, such as the one for the Athabasca River. Furthermore,
measured data are not error-free due to measurement uncertainty. The SARIMA model
could manipulate irregularities either to fill or exclude the corresponding data points using
the Pandas library. However, this is not an optimal process for training if water quality
data follow a time series pattern. Furthermore, the length and frequency of data are often
limited by sampling and resources in many situations. Nowadays, the monthly sampling
or the lower frequency sampling need to be improved to be spatially and temporally rep-
resentative. Due to the low sampling frequency, data-driven models are sensitive to the
quality and representativeness of the training data. The SARIMA model performance may
be affected due to biases or outliers in the time series data. For example, the SARIMA
model missed seasonal changes in temperature due to missing data at Fort McMurray in
the 1980s and 1990s. Furthermore, it did not capture the seasonal pattern of the DO at Fort
McMurray from 1960 to 1990. Annual peaks, valleys, and patterns were not real due to
data gaps. Therefore, for insufficient datasets, it is more difficult to train the model for each
component, requiring more data for training. Hence, the model must be regularly trained
on further data. However, with a larger dataset, the model performed well at this station
when these irregular sections of the data corresponded to a lower percentage of the total
data during the testing period.

The forecasting of the SARIMA model is only reliable in the short to medium term,
but not in the long term. However, such SARIMA models are still useful for aquatic
ecosystem management, since the model can capture patterns and connections directly
from the available data if DO concentrations fall below a threshold value. Short-term
forecasting can provide insights into outcomes and potential risks that can potentially occur
in a given situation in advance and make data-based decisions optimal for specific risks.
This offers opportunities for cost-effective solutions to prevent water quality crises, such as
reestablishing oxic conditions, as part of risk management. With the rapid accumulation of
monitoring data and the advancements in computer techniques, there is the potential to
enhance the performance of data-driven models for dissolved oxygen (DO) modeling in
the near future.

4. Conclusions
Temperature and DO are two of the most important indicators of water quality in water

resource management, owing to their extensive effects on aquatic ecosystems. In this study,
we established a SARIMA model, optimized the parameters of the model, and performed
the preprocessing and purification of misleading data. The two monitoring stations with
different land uses, Fort McMurray and the Town of Athabasca, were employed for the
model training and testing to evaluate the model performance. It was found that data
uncertainty and irregularity did affect the model performance and accuracy. Particularly,
if the data are insufficient, this could lead to biased results. With the data increased, the
SARIMA model fitted the data well and the stochastic seasonal fluctuation and patterns
were successfully captured, except for some irregular extreme values after training. The
results show that, for the modeled temperature, the RMSE and R2 were 2.7 and 0.87 for
training and 2.2 and 0.95 for testing, respectively, at Fort McMurray. In contrast, the RMSE
and R2 were 2.0 and 0.93 for training and 1.8 and 0.97 for testing, respectively, in the Town
of Athabasca. It can be observed that, for the modeled DO, the RMSE and R2 were 0.76
and 0.79 for training and 0.67 and 0.92 for testing, respectively, at Fort McMurray. In
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contrast, the RMSE and R2 were 0.92 and 0.72 for training and 0.77 and 0.86 for testing,
respectively, in the Town of Athabasca. Therefore, the resulting model performance for the
temperature simulations was satisfying during both training and testing. The proposed
SARIMA model was satisfying in terms of capturing non-linear temporal correlations
for the trend of temperature and DO change. After the parameters of the model were
obtained/adjusted using the dataset from Fort McMurray, the model could also perform
well in the Town of Athabasca. The testing performances were better than the training
counterparts at both stations. This demonstrates that the SARIMA model was general once
its parameters had been optimized.

The application of time series forecasting models and analysis methods can be em-
ployed to extract essential information concerning temperature and dissolved oxygen (DO)
which is crucial for the well-being of aquatic ecosystems. These techniques enable the
creation of site-specific predictive models for temperature and DO, facilitating cost-effective
monitoring of river health and offering insights for region-specific management strategies
across various land use and land cover gradients. Moreover, the model and methodology
are transferable to the prediction of temperature and DO in other aquatic environments
like lakes and rivers.
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