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Abstract: Sulfur dioxide (SO2) can be of natural and anthropogenic origin and is one of the
sulfur compounds present in the atmosphere. Among natural sources, volcanoes contribute
with relevant annual outputs, and major eruptions lead to spikes in these outputs. In
the case of anthropogenic pollution, SO2 emissions are mostly correlated with the sulfur
content of fuels, which has been the focus of specific emission mitigation policies for
decades. Following other examples of cyclic and multi-year evaluations, an analysis of
SO2 at the Lamezia Terme (code: LMT) WMO/GAW (World Meteorological Organization—
Global Atmosphere Watch) station in Calabria, Southern Italy, was performed. The coastal
site is characterized by wind circulation patterns that result in the detection of air masses
with low or enhanced anthropic influences. The presence of the Aeolian Arc of active,
quiescent, and extinct volcanoes, as well as Mount Etna in Sicily, may influence LMT
observations with diffused SO2 emissions. For the first time in the history of the LMT, a
multi-year analysis of a parameter has been integrated with TROPOMI data gathered by
Sentinel-5P and used to test total tropospheric column densities at the LMT itself and select
coordinates in the Tyrrhenian and Ionian seas. Surface and satellite data indicate that SO2

peaks at the LMT are generally linked to winds from the western–seaside wind corridor,
a pattern that is compatible with active volcanism in the Tyrrhenian Sea and maritime
shipping to and from the Gioia Tauro port located in the same region. The findings of
this research provide the basis for enhanced source apportionment, which could further
differentiate anthropogenic sources in the area from natural outputs.

Keywords: sulfur dioxide; GAW; Lamezia Terme; Mediterranean basin; Tyrrhenian Sea;
Ionian Sea; surface measurements; TROPOMI; tropospheric column data

1. Introduction
Sulfur dioxide (SO2), sometimes spelled as sulphur dioxide, is one of the sulfur

compounds present in the atmosphere and can be natural or anthropogenic in origin [1–4].
Among natural sources of SO2, volcanoes contribute a significant emission rate [5–8].

The direct impact of volcanic eruptions on SO2 concentrations in the troposphere and
the stratosphere has been documented in the past few decades [9–12]. The Mt. Pinatubo
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eruption of June 1991 set a milestone in the implementation of plume-tracking technologies,
satellite data, airborne measurements, and global collaborative networks used to monitor
SO2 emissions from the volcano and the consequent diffusion [13–17]. The Hunga Tonga–
Hunga Ha‘apai eruption of 2022, which is considered the most explosive eruption of the
past 140 years, resulted in significant SO2 output that was promptly tracked with multiple
methodologies [18,19].

Wildfires, agricultural fires, and other forms of biomass burning also result in SO2

emissions, as well as the release of other sulfur compounds, which influence the overall
budget on a global scale [20–25]. Volcanic and wildfire emissions of SO2 have a direct
impact on the atmosphere’s ERF (effective radiative forcing), in conjunction with aerosols;
for this reason, SO2 is also the subject of evaluations meant for assessing the climate change
potential [26–28].

Anthropogenic emissions are primarily due to fossil fuels and their sulfur content,
whose impact on the environment does not affect all areas of the globe via the same
mechanisms [29]. Vehicular traffic has been a major source of anthropogenic SO2, and
regulations—in addition to new technologies—have led to the implementation of low-
sulfur fuels, which reduce the output from vehicles [30–33]. The oil and gas sector is also
linked to SO2 emissions at various stages [34]. Emissions from this sector are such that they
pose a health hazard for workers operating in the field of oil and gas [35].

Shipping is among the main sources of anthropogenic SO2 [36–38], and air quality pa-
rameters in areas where ports are present are known to be affected by maritime traffic [39].
In the Mediterranean, the Suez Canal is a major hotspot for such activities, and a compara-
tive study between standard pollution levels and the levels during periods of exceptionally
low traffic, such as during the COVID-19 pandemic and the Ever Given incident, showed
relevant reductions in SO2 levels [40]. In the past few years, new technologies have been
implemented in the effort to model [41], and also mitigate [42], SO2 emissions related to
maritime traffic. The use of low-sulfur fuel in maritime shipping can effectively reduce the
degrees of pollution [43,44]. Aviation fuel is also affected by similar issues [45–47], and the
physical–chemical processes that occur at high altitudes in exhaust plumes have been the
focus of scientific research meant to assess the extent of aviation fuel-related pollution [48].
Most SO2 emissions related to aviation occur during the cruise phase and therefore have
an impact over wide regions in a short amount of time [49]. Many techniques have been
tested to provide accurate information on the impact of aircraft engine exhausts on the total
budget of anthropogenic emissions [50,51]. With the rise in SAF (sustainable aviation fuel),
sulfur content has been reduced, and the impacts of such emissions on the environment are
partially mitigated [52].

As a pollutant, SO2 is short-lived: depending on a number of environmental factors,
its persistence in the atmosphere may be limited to two days [53–56]. In the atmosphere,
chemical reactions between SO2 and other compounds occur [57]: following the reac-
tion with water droplets, sulfuric acid (H2SO4)—which is responsible for the acid rain
phenomenon—is released [58].

The effects of SO2 on human health are well documented [59]. SO2 affects the respira-
tory system [60] and also poses mental health concerns [61,62]. Globally, it causes more
than one million premature deaths every year [63] and prolonged exposure can negatively
affect pregnancies [64–67].

The adverse effects of SO2 have led to global mitigation policies that have managed to
reduce the annual rate of anthropogenic emissions [68]. In China, which is characterized by
significant SO2 outputs from transportation, industry, and other activities [69], assessments
of PCSO2 (Per Capita SO2) emissions [70] have demonstrated that, once applied, policies
can effectively reduce SO2 emissions [71,72]. It is worth noting, however, that the reduction
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in SO2 emissions may lead to an increase in the release of other pollutants resulting from
the burning process of alternate fuels such as coal [73].

In a work by Altamira-Colado and collaborators [74], a number of patents based on
the implementation of UAS (Uncrewed Aerial Systems, commonly referred to as drones)-
compatible SO2 detectors were reviewed, thus highlighting recent advances in environ-
mental monitoring technology and the possibility of pinpointing sources of SO2 emissions.
Overall, monitoring SO2 concentrations and their possible sources is therefore important in
the assessment of anthropogenic and natural pollution in a given area [75–77]. This study
is aimed at the multi-year characterization of SO2 variability at the World Meteorologi-
cal Organization—Global Atmosphere Watch (WMO/GAW) regional station of Lamezia
Terme (code: LMT) located in the southern Italian region of Calabria. After methane [78]
(2016–2022) and ozone [79] (2015–2023), SO2 is the third compound subject to a detailed
multi-year evaluation at the LMT. Using eight years of continuous surface SO2 measure-
ments (2016–2023), this study also integrates tropospheric column data obtained by satellite
to further assess the sources of emission in the area. This paper is divided as follows: Sec-
tion 2 described the LMT site, its peculiarities in the context of the Mediterranean basin, and
the instruments/methodologies used in this evaluation; Section 3 shows the results of the
analysis; and Sections 4 and 5 discuss and conclude the findings of this paper, respectively.

2. The Lamezia Terme Station and Surface/Tropospheric SO2 Databases
2.1. The WMO/GAW Regional Coastal Site of Lamezia Terme

Within the WMO/GAW network, the Lamezia Terme (LMT) regional coastal station
located in the municipality of Lamezia Terme in Calabria, Southern Italy, gathers continu-
ous data on a number of meteorological and chemical parameters in the atmosphere. Its
coordinates are 38.87 ◦N, 16.23 ◦E (Figure 1A), and it has been operated by the National Re-
search Council of Italy—Institute of Atmospheric Sciences and Climate (CNR-ISAC)—since
2015. The observation site is located at an elevation of 6 m above sea level, approximately
600 m from the nearby Tyrrhenian coastline of Calabria. The Catanzaro isthmus where
the station is located constitutes the narrowest point in the entire Italian peninsula, as the
distance between the Tyrrhenian and Ionian coasts is ≈32 km.

In terms of anthropogenic and natural SO2 emission hotspots, the area where the
LMT station is located is characterized by the presence of the Gioia Tauro port (52 km
S–SW from the site) [80] and volcanic activities [81] (Figure 1B). The Mount Etna volcano is
located in the nearby region of Sicily (160 km S-SW from the LMT) [82–85]. The Aeolian
Arc, which includes the Aeolian Islands and a number of underwater volcanoes [86], many
of which have not erupted in historical times, are also close to the LMT. Stromboli (88 km
W–SW from LMT) is the nearest active volcano and a well-documented source of SO2 in
the region [87,88]. Vulcano, located in the southernmost part of the Aeolian Islands, has
not experienced eruptions in the past few centuries but is subject to SO2 degassing in the
form of fumarole/vents, a phenomenon that also affects Stromboli and Mt. Etna [89–92].

Previous works based on preliminary data [93] and nearly a decade of LMT observa-
tions [78,79] have reported the influence of local wind circulation on the surface concen-
trations of many parameters. In fact, the site is characterized by two distinct wind axes: a
western “seaside” wind corridor normally yielding lower concentrations of pollutants, and
a northeastern “continental” corridor that is generally linked to the highest peaks observed
at the LMT, although notable exceptions have been reported [78,79,94]. The Lamezia Terme
International Airport (IATA: SUF; ICAO: LICA), which is located approximately 3 km north
from the WMO/GAW station, has an RWY 10/28 (runway 100–280 ◦N) orientation, and
local air traffic is constantly influenced by the same wind circulation patterns reported at
the LMT.
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Prior to the LMT’s continuous atmospheric observations, wind patterns were subject
to a number of studies. Locally, wind circulation is dominated by breeze regimes, which
also regulate the climate across all seasons, and the Marcellinara Gap in the middle of the
Catanzaro isthmus is responsible for channeling wind circulation between the Tyrrhenian
and Ionian coasts [95,96]. Although seasonal changes in wind circulation occur, the main
corridors at low altitudes are oriented on a NE–ENE/W–WSW axis, while NW large-scale
circulation is dominant at the 850 hPa layer [95]. Between November and February, daytime
circulation is mainly subject to large-scale forcing, and breezes dominate nocturnal flows; in
the other periods of the year (spring, summer, and October), daytime breezes are dominated
by both local and large-scale flows [96].
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pollution sources in a period of exceptionally low anthropic activities [94]. Furthermore, 
in considering the location of the site in the context of the Mediterranean basin, summer 
open-fire emissions [105,106] and Saharan dust events [107] have also characterized LMT 
observations. 

Figure 1. (A) Location of Lamezia Terme’s observation site (LMT) in the Mediterranean Basin on
NOAA’s ETOPO1 DEM (Digital Elevation Model) [97,98]. (B) EMODnet DEM map [99] showing
the location of the LMT in central Calabria and the SO2 emission hotspots present in the area: the
Gioia Tauro Port, Stromboli and Vulcano in the Aeolian Islands, and Mount Etna in Sicily. The main
underwater volcanoes in the arc are marked with dark blue labels. “Lametini” refers to the two twin
underwater volcanoes (LamN and LamS) named after the municipality of Lamezia Terme. Local
maps showing sources of pollution in the Lamezia Terme municipality area with greater detail are
available from D’Amico et al. (2024a) [78], (2024b) [100], (2024c) [94].
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Following the introduction of surface measurements of greenhouse gases (GHGs)
and other parameters at the LMT in 2015, additional campaigns targeted the enhanced
characterization of local wind circulation at low altitudes. Using a Zephir lidar 300, several
wind profiles have been observed at the site at various altitude thresholds, from 10 to
300 m above the ground level [101]. Additionally, based on the results of a short 2009
summertime campaign performed via the implementation of multiple techniques and
instruments, two evaluations of PBL (planetary boundary layer) variability at the site were
conducted [102,103]. These studies, however, lacked information on additional parameters,
which were, however, covered in a longer 2024 campaign on integrated PBL/GHG/aerosol
variability that demonstrated the influence of PBLH (PBL height) and wind regime cate-
gories on LMT observations [104].

Prior to this research study and the assessment of possible volcanic activity influence
on the LMT, multiple local sources of pollution have been mentioned in the past as responsi-
ble for some of the peaks observed at the site. Landfills, agricultural and livestock farming,
the A2 highway, the SUF/LICA airport, and urban traffic in the town center have been re-
ported in various studies as possible sources of certain peaks [78,93,100]. Specifically, many
of the hypotheses on these sources were confirmed in an analysis of the first 2020 COVID-19
lockdown period, during which the restrictions introduced by the Italian government were
strict and allowed researchers to better assess a number of pollution sources in a period of
exceptionally low anthropic activities [94]. Furthermore, in considering the location of the
site in the context of the Mediterranean basin, summer open-fire emissions [105,106] and
Saharan dust events [107] have also characterized LMT observations.

2.2. Measurements of Surface Sulfur Dioxide and Meteorological Parameters

SO2 concentrations at the LMT observation site have been gathered with a Thermo
Scientific 32i (Franklin, MA, USA). The 43i model operates under the principle by which
SO2 molecules in ambient air absorb ultraviolet (UV) light, consequently becoming excited,
at a specific wavelength and emit additional UV light at a given wavelength during their
decay to a lower energy state. Specifically, sample air in the 43i model flows through a
hydrocarbon (HC) “kicker” that removes HC from gathered ambient air by forcing these
compounds to permeate through the kicker tube wall, while SO2 molecules are unaffected
by the filter. The standard flow rate is 0.5 L per minute. Ambient air is then channeled
toward a fluorescence chamber where UV light pulses excite SO2 molecules. A condensing
lens, following these pulses, focuses UV light on the mirror assembly, which contains four
selective mirrors that reflect only the wavelength capable of exciting SO2 molecules. As
described above, following the absorption of UV light, SO2 molecules decay and emit
UV at an intensity that is proportional to SO2 concentration within the chamber. Thanks
to a bandpass filter, only the wavelengths emitted by excited SO2 in sampled air can
reach the PMT (photomultiplier tube), which detects UV light emissions attributable only
to these decaying molecules. A photodetector located at the back of the fluorescence
chamber is configured to monitor UV light pulses and is connected to a compensation
circuit that counterbalances fluctuations in UV light. The sampled ambient air moves
from the chamber to a flow sensor, followed by a capillary and the exhaust bulkhead. The
instrument provides, at a rate of ten measurements per minute (one every six seconds),
observed SO2 concentrations and stores them in a record for further data analysis. The
detection limit is <0.5 ppb of SO2. In this research study, data were aggregated on an hourly,
daily, monthly, seasonal, or yearly basis depending on each evaluation.

A Vaisala WXT520 (Vantaa, Finland) instrument was used to gather data on key mete-
orological parameters (wind speed, wind direction, relative humidity, and air temperature)
at 10 m above sea level, with no obstacles nearby at the same elevation. The WXT520
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measures temperature in Celsius degrees with a precision of 0.3 ◦C via an RC oscillator and
two reference capacitors. Wind data were obtained using ultrasonic transducers placed on
a horizontal plane. Wind speed was measured with a precision of 0.3 m per second, while
wind direction had a precision of 3 degrees. Additional details on WXT520 measurements
at the LMT are available from D’Amico et al. (2024c) [94]. Data aggregation algorithms
were applied to meteorological data depending on the evaluation type (hourly, daily, etc.).

As described in Section 2.1, the LMT observation site is characterized by a daily cycle
that results in a clear differentiation between western–seaside and northeastern–continental
winds, which in turn result in differences in a number of parameters [78]. Figure 2A shows
a wind rose of hourly data gathered between 2016 and 2023, and the presence of two
distinct wind corridors is noticeable.
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The western wind corridor, which has virtually no obstacles in that direction for
hundreds of kilometers, has been used as a baseline to define an offshore cone aimed at
satellite data evaluation. The points TYR1–3 located 60 km west from the coast, point
TYR4 located 3 km west from the observatory, and point ION1 in the Ionian coast of the
Catanzaro isthmus are shown in Figure 2B. These points are considered representative of
the airmasses passing at the LMT observatory from both wind corridors. In particular,
due to local wind circulation in the isthmus being channeled through the Marcellinara
Gap, point ION1 is considered representative of eastern air masses prior to the influence of
anthropogenic emissions in continental Italy.

Following other studies based on multi-year evaluations on LMT data [78,79], the four
seasons were divided as follows: summer (JJA—June, July, August); fall (SON—September,
October, November); winter (JFD—January, February, December); spring (MAM—March,
April, May).

Additional details on the data gathered at the LMT during the observation period
2016–2023 are available in Table 1, which reports the coverage rate of Thermo Scientific
43i (“SO2”) and Vaisala WXT520 (“Meteo”) instruments and their percentages of the total
number of hours in each year. The “Combined” dataset, used for data evaluations ac-
counting for both SO2 concentrations and wind speed/direction, refers to instances of both
instruments fully operating at the same time, therefore resulting in overall lower coverage
rates. Due to maintenance, the SO2 dataset was affected by low rates in 2019, 2022, and 2023;
however, the high coverage rate of the Meteo dataset throughout the entire study period
ensured a minimum additional loss of coverage in the Combined set. Furthermore, wind
direction filters were applied to differentiate the western–seaside corridor (240–300 ◦N) at
the observation site of the LMT from the northeastern–continental corridor (0–90 ◦N).

Table 1. Coverage rates, shown as percentages compared to the actual number of hours, of the three
datasets used in this study. Both 2016 and 2020 are leap years, with 24 extra hours each.

Year Hours SO2 (%) Meteo (%) Combined (%)

2016 8784 95.53% 96.34% 93.54%
2017 8760 97% 93.8% 92.42%
2018 8760 80.59% 77.05% 58.21%
2019 8760 40.23% 98.59% 40.21%
2020 8784 93.47% 99.98% 93.46%
2021 8760 70.78% 99.74% 70.77%
2022 8760 66.65% 89.85% 65.34%
2023 8760 51.31% 96.3% 49.92%
Total 70,128 1 74.44% 2 93.95% 2 70.48% 2

1 Sum of all hours. 2 Average rate.

Data aggregation algorithms were used in R 4.4.0 using the ggplot2, ggpubr, tidyverse,
and dplyr libraries and their respective packages. The aggregations were based on the data
analyses performed on multi-year methane [78] and ozone [79] concentrations at the same
observation site. In this research, evaluations showing SO2 data alone were based on the
SO2 dataset from Table 1, while those combining SO2 concentrations with meteorological
data were based on the Combined dataset. All hours are in UTC.

2.3. Tropospheric Column Measurements of SO2

On 13 October 2017, the TROPOspheric Monitoring Instrument (TROPOMI) installed
onboard the Sentinel-5P satellite, under the ESA’s Copernicus program, was launched [108].
The satellite and instrument carried out detailed analyses on the SO2, CH4 (methane),
CO (carbon monoxide), O3 (ozone), NO2 (nitrogen dioxide), and HCHO (formaldehyde)
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concentrations in the atmosphere. The TROPOMI is a remote sensing instrument of
the “passive” type, equipped with a hyperspectral nadir sensor of several UV-Vis-NIR
spectrometers. Specifically, the advanced instrument relies on four spectrometers set
at two bands: SWIR (2305–2385 nanometers, nm); UV and Vis (270–495 nm); and NIR
(675–775 nm). The spatial resolution is in the 5–15 km range, with an option for 50 km at
wavelengths lower than 300 nanometers [109].

The instrument images a swath for about one second, yielding a spatial resolution at
the center of the swath of 7 × 7 km2. The results of the TROPOMI scans were processed
with an algorithm providing accurate vertical column densities, or VCDs, in molecules
per square centimeter (molecules/cm2) of the SO2, CO, and NO2 [110]. Study areas were
processed with one full scan, with an option for two partial scans; available data were used
in this research using level 2 TROPOMI products from 1 January 2020 to 31 December 2023,
in accordance with the recommendations and technical documents provided with these
products [111]. Column density data in molecules per square meter (molecules/m2) were
converted into molecules per square centimeter (molecules/cm2) using the multiplication
factor of 6.02214 × 1019 recommended by the ESA [112].

Downloaded products were processed with an algorithm programmed in MATLAB-
R2016a, based on a number of steps that have also been used in a summer campaign on
formaldehyde tropospheric column data at the LMT [113]. Specifically, the steps were the
following: TROPOMI products were downloaded in netCDF format and parsed through;
coordinates and time were extracted from the products and converted; data on the tropo-
spheric gas density were extracted from the matrix and stored in a georeferenced array;
the entire dataset was filtered; and all data with a Quality Assurance Value (Qa) lower
than 0.5 were excluded. Qa, and its related qa_value flag in the dataset, is a data quality
value ranging from 0 to 1 that accounts for several factors. As per the recommendations,
only data with Qa >0.5 were used for further evaluation in this study, representative of the
following conditions: Solar Zenith Angle (SZA) ≤ 70◦; air mass factor > 0.1; cloud radiance
fraction at 340 nm <0.5; surface albedo ≤ 0.2; no error flag; no snow/ice warning. In this
work, tropospheric column data from the LMT’s coordinates, as well as the coordinates of
the TYR1–4 and ION1 points shown in Figure 2B, were selected, and their coverage rate is
reported in Table 2. Additional details on the algorithm and its evaluations are available
from Barrese et al. (2024) [113].

Table 2. Coverage rate, shown as a percentage of the total number of days in a given year, of
TROPOMI satellite data on SO2 concentrations; 2020 was a leap year, with one extra day.

Year Days Sat. SO2 (%)

2020 366 38.25%
2021 365 34.52%
2022 365 42.73%
2023 365 38.08%
Total 1461 1 38.39% 2

1 Sum of days. 2 Average rate.

In order to show the large-scale influence of natural sources such as volcanoes in the
area, Level 3 (L3) products were used to generate yearly maps of SO2 [114]. Specifically,
maps referring to the period 2020–2023 were generated based on the COvariance-Based
Retrieval Algorithm (COBRA) developed to compensate for a number of artifacts in Dif-
ferential Optical Absorption Spectroscopy (DOAS) of SO2 via the retrieval of one specific
parameter, which was the SO2 Slant Column Density (SCD) [115,116].
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3. Results
3.1. Daily Cycles of Sulfur Dioxide at LMT

As described in Section 2, the LMT observation site is affected by local wind circulation
patterns, which results in peculiar daily cycle for gases and aerosols at the site. The
characterization of daily cycles based on multi-year data on methane [78] and ozone [79]
showed two distinct behaviors. Figure 3 shows the results of SO2 daily cycle analysis at
the LMT.

Environments 2025, 12, x FOR PEER REVIEW 10 of 34 
 

 

 

 

 
 

 

Figure 3. (A) Daily cycle of SO2 at the LMT based on the year of evaluation. (B) Seasonal daily cycle. 
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Overall, the daily cycle of SO2 is unlike the cycles observed for methane and ozone,
although ozone shows a similar behavior in diurnal peaks [79]. In this case, the peaks are
narrowed down in a specific time window (11:00–15:00 UTC). The behavior of SO2 with
respect to the daily cycle at the LMT demonstrates the importance of compound-specific
evaluations using multi-year datasets, as the variability of each observed compound at the
site possessed certain distinctive properties.

3.2. Bivariate Analysis with Wind Direction and Speed

In integrating the data shown in the wind rose based on 2016–2023 hourly averages
(Figure 2), which is thus representative of eight years of local wind circulation at the
LMT, a total of four seasonal wind rose scatter plots of SO2 are shown in Figure 4. These
plots, which integrate the daily cycle evaluations seen in 3.1, show SO2 concentrations
from the western–seaside wind corridor at wind speeds higher than their northeastern–
continental counterparts. Supplementary Materials S1A–H cover seasonal patterns in each
year between 2016 and 2023.
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Figure 4. Total (top) and seasonal (bottom) wind rose scatter plots of observed SO2 mole fractions at
Lamezia Terme (LMT), with respect to wind speeds and directions. In order to optimize visualization,
the color scale bar’s maximum value of 0.2+ ppb is defined based on the average reported value of
0.217 ppb (see Section 3.5).

D’Amico et al. (2024a) [78] showed that methane concentrations at the LMT from the
northeastern–continental sector follow a hyperbola branch pattern (HBP), with low wind
speeds correlated with high concentrations and, vice versa, high wind speeds yielding
very low mole fractions. The same pattern was not observed from the western–seaside air
corridor. An identical analysis was performed by D’Amico et al. (2024d) [79] on surface
ozone and did not show any evidence of a similar pattern. Eight years of continuous surface
SO2 records at the LMT were tested, as shown in Figure 5, with respect to wind speeds and
wind corridor. Figure 5A,B refer to the W and NE sectors, respectively, while Figure 5C
considers all data, including those falling outside the W and NE filters. Supplementary
Materials S2A1–H3 cover the entire 2016–2023 period.

As already reported for the daily cycle, the observed behavior of SO2 at the LMT
observation site is different from that of methane and surface ozone. Specifically, the
variability of SO2 with respect to wind speed at the site from all sectors is not as well
defined as that observed for methane [78].
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Figure 5. SO2 concentrations and wind speed variability on a wind corridor basis. (A) Western
“seaside” (240–300 ◦N); (B) northeastern “continental” (0–90 ◦N); (C) total data, including those
falling outside the two wind direction filters.

3.3. Evaluation of Weekly Cycles of SO2 at LMT

Multi-year evaluations of compounds at the LMT have also been conducted on the
weekly cycles as possible indicators of natural vs. anthropogenic sources [78,79,100]. In
the case of SO2, considering the implementation of satellite data that were not used in
similar research studies on the LMT, weekly cycles were assessed and are shown in Figure 6.
Supplementary Materials S3A1–H3 cover surface data at the LMT from each year within
the entire 2016–2023 observation period.
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Figure 6. Weekly cycle evaluation of surface and tropospheric column SO2 at the LMT and the TYR-
ION coordinates, with the dotted horizontal lines showing the averages. (A) Surface, western 
“seaside” corridor (240–300 °N); (B) surface, northeastern “continental” corridor (0–90 °N); (C) 
surface, total data; (D) column, at LMT; (E) column, based on averages of TYR points; (F) column, 
ION1. 

The analysis of surface data does not shown specific weekly patterns, with the 
exception of a number of spikes falling outside weekends. Tropospheric column data are 
more heterogeneous and show various fluctuations mostly affecting the LMT and ION 
data. At the LMT, weekly trends and their respective seasonal changes have been 
observed frequently, especially in the case of greenhouse gases and aerosols; the absence 
of a well-defined weekly variability pattern is linked to natural sources, which tend to be 
spread equally over the course of a standard week [100]. 

Figure 6. Weekly cycle evaluation of surface and tropospheric column SO2 at the LMT and the
TYR-ION coordinates, with the dotted horizontal lines showing the averages. (A) Surface, western
“seaside” corridor (240–300 ◦N); (B) surface, northeastern “continental” corridor (0–90 ◦N); (C) surface,
total data; (D) column, at LMT; (E) column, based on averages of TYR points; (F) column, ION1.

The analysis of surface data does not shown specific weekly patterns, with the ex-
ception of a number of spikes falling outside weekends. Tropospheric column data are
more heterogeneous and show various fluctuations mostly affecting the LMT and ION
data. At the LMT, weekly trends and their respective seasonal changes have been observed
frequently, especially in the case of greenhouse gases and aerosols; the absence of a well-
defined weekly variability pattern is linked to natural sources, which tend to be spread
equally over the course of a standard week [100].
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3.4. Variability During the Observation Period

After specific evaluations aimed at daily, weekly, and seasonal trends, in conjunction
with the cross-analysis with wind data, the multi-year variability of SO2 at the LMT was
assessed, and the results of the surface data are shown in Figure 7. The plots are based on
past research studies at the site, which demonstrate the presence of wind sector-dependent
concentrations of gases and aerosols, which in turn indicates the presence of multiple
sources of pollution [104].
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Tropospheric column densities gathered between 2020 and 2023 at the designated
LMT, TYR, and ION locations were also analyzed to monitor multi-year variability, and
the results are shown in Figure 8. This methodology was not applied to studies on the
multi-year variability of other compounds previously assessed at the LMT. Specifically, in
Figure 8A, the monthly variability of the total SO2 column measured by satellite is reported.
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Figure 8. Multi-year variability of tropospheric column data. (A) Monthly variability. (B) TCSO2

monthly means measured at TYR4 and ION1, and their respective differences. (C) Direct comparison
between LMT surface and column SO2 concentrations. (D) Variability of the column data from the
three TYR points in the Tyrrhenian Sea, located close to the Aeolian Arc.

To highlight the differences between the two Calabrian coasts and broadly identify
sources of SO2 emissions, in Figure 8B, the monthly means of TCSO2 (Total Column
SO2) at points TYR4 and ION1 are reported. A comparison between the in situ (surface)
SO2 concentration data and satellite tropospheric column data is shown in Figure 8C.
In Figure 8D, points TYR1–3 are analyzed, which are further away from the Tyrrhenian
coast (Figure 2), in order to highlight possible SO2 outputs from maritime shipping and
volcanic sources. These points are representative of the western–seaside sector of the LMT,
while ION1 is deemed representative of easterly air masses prior to their contact with the
continent, which results in increased anthropogenic influence. The plots indicate that TYR1,
whose distance to the Stromboli volcano is similar to that of TYR2, is less subject to the
transport of air masses enriched in SO2.

3.5. Statistical Evaluations

The findings of this study were subjected to a statistical evaluation performed using
Jamovi v. 2.3. Key surface SO2 and meteorological data gathered during the entire observa-
tion period (2016–2023) were evaluated to determine the mean, median, variance, standard
deviation (SD), and quantiles. Pearson’s Correlation Coefficient (PCC) and Spearman’s
Rank Correlation Coefficient (SR) were also calculated to test a number of correlations
between the chemical and meteorological data [117–119].

Regarding the SR, particularly for a sample of size n, the observed variables x and
y are converted into ranks (Rx and Ry, respectively); the SR itself ρ is then calculated as
described in Equation (1):

ρ = (cov(Rx,Ry))/(σRx σRy) (1)

where “cov” refers to the covariance of both rank variables, and the two values σRx-σRy
are the respective standard deviations. The SR ranges between −1 and 1, and its statistical
interpretation is similar to that of PCC. The results of the primary statistical evaluation are
shown in Table 3. These refer specifically to surface measurements at the LMT site.
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Table 3. Main statistical analysis of hourly surface SO2 and meteorological parameters (RH, relative
humidity; T, air temperature; WS, wind speed) in the study period 2016–2023; 1st Q. and 3rd Q. refer
to the first and third quartiles, respectively.

N Missing Mean Median SD 1st Q. 3rd Q.

RH (%) 66,033 6660 67.442 68.950 11.68 60.890 76.250
T (◦C) 66,033 6660 17.784 17.210 6.22 13.380 22.660

SO2 (ppb) 52,267 20,426 0.217 0.056 2.83 0.028 0.142
WS (m/s) 65,895 6798 3.413 2.97 2.07 1.79 4.55

The results of PCC and SR evaluations on surface measurements are shown in Table 4,
which also reports the p-values of each pair. The null hypothesis is that the reported
variables do not have a direct correlation; statistically relevant p-values (<0.05) show the
presence of a correlation between the variables in the pair. Most of the computed p-values
are lower than 0.001; however, a peak of 0.89 is observed for SO2 and air temperature.

Table 4. Correlation matrix combining surface SO2 data and key meteorological parameters measured
during the observation period 2016–2023. The evaluation shows Pearson’s Correlation Coefficient
(PCC) and Spearman’s Rank Correlation Coefficient (SR).

WS (m/s) T (◦C) RH (%)

T (◦C)

PCC 0.062 *** – –
p-value <0.001 – –

SR 0.091 *** – –
N 65,893 – –

RH (%)

PCC −0.282 *** −0.175 *** –
p-value <0.001 <0.001 –

SR −0.371 *** −0.200 *** –
N 65,893 66,031 –

SO2 (ppb)

PCC 0.020 *** 0.001 −0.038 ***
p-value <0.001 0.89 <0.001

SR 0.056 *** 0.096 *** −0.260 ***
N 49,485 49,623 49,623

*** p < 0.001.

A similar approach was applied to satellite data, which are limited in coverage to the
2020–2023 period. The primary statistical information of the satellite (Tropospheric Vertical
Column, TVC) data of SO2 and surface data limited to 2020–2023 are shown in Table 5.

Table 5. Main statistical evaluations of surface and tropospheric column SO2 between 2020 and 2023.

SO2 Type Mean Median SD 1st Q. 3rd Q.

Surface
(ppb) 0.19 0.11 0.23 0.082 0.19

Trop. Column
(molecules/cm2) 1.24 × 1016 9 × 1015 1.13 × 1016 5.15 × 1015 1.63 × 1016

The correlation between the surface and tropospheric column data of SO2 was tested,
and the results are shown in Table 6.
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Table 6. Correlation matrix of surface and tropospheric column SO2, including Pearson’s Correlation
Coefficient (PCC) and Spearman’s Rank Correlation Coefficient (SR).

Trop. Column
(Molecules/cm2)

Surface (ppb)
PCC 0.042

p-value 0.324
SR 0.085 *

* p < 0.05.

3.6. Multi-Year COBRA Maps of Volcanic SO2

In addition to punctual data analysis, maps computed using COBRA [115,116] are
shown in Figure 9, referring to each year between 2020 and 2023. These maps rely on Level
3 (L3) products by Sentinel-5P to highlight dominant SO2 tropospheric circulation in the
area; volcanic activity, mostly attributable to Mount Etna, yields the most relevant results.
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Figure 9. SO2 column number density (DU) for 2020–2023 created using COBRA.

COBRA-derived SO2 column data for volcanic eruptions were calculated for three
different assumed plume height thresholds: 15, 7, and 2.5 km. The advantage of COBRA is
its capacity to reveal and pinpoint weak sources of SO2 that are not normally detected with
TROPOMIs; plotted data are reported to be more susceptible to the 7 km altitude threshold.
The maps clearly indicate the presence of relevant natural sources of SO2 in southern Italy,
i.e., volcanoes.

4. Discussion
At the Lamezia Terme (LMT) WMO/GAW station, a multi-year and cyclic characteriza-

tion of sulfur dioxide (SO2) was performed based on 2016–2023 surface data gathered at the
observation site. SO2 is the third parameter subjected to such a data evaluation, following
methane [78] and ozone [79]. Due to SO2’s heterogeneous sources and the presence of a vol-
canic arc less than 100 km from the observatory (Figure 1), this study integrated the analysis
of TROPOMI data on tropospheric column densities gathered by Sentinel-5P between 2020
and 2023. Specifically, a number of target coordinates were designated as representative of
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the Tyrrhenian and Ionian coasts of central Calabria, with three points (TYR1–3) specifically
selected in proximity of the nearest active volcano, Stromboli (Figure 2). This is the first
occurrence of an integrated analysis of surface and satellite data at the LMT based on a
medium-term data series.

In the analysis of daily cycles of SO2 at the site, an early morning peak (greater than
1.2 ppb) is observed between 09:00 and 16:00. Two minor peaks in the 0.3 ppb range
match rush hour traffic hours. These findings are in accordance with those of Cristofanelli
et al. (2017) [93], who first assessed the influence of vehicular traffic at the site based on
the analysis of other pollutants, and those of D’Amico et al. (2024c) [94], who compared
2020 COVID-19 lockdown period data with the pre- and post-lockdown peaks to show
the differences caused by exceptionally low anthropic activities. The daily cycle of SO2

at the LMT is characterized by a 12:00 h peak that matches the peak in sea breezes and
is compatible with the transport of air masses from the west. This pattern is similar to
that observed for surface ozone at the LMT [79] but is narrowed down to a shorter time
window. The influence of solar radiation and, in particular, local wind circulation is well
documented in Figure 3C, where the observed peaks are differentiated by wind corridor.

In the context of the Mediterranean basin, the relationship between gases present in the
atmosphere, temperatures, and solar radiation has been the subject of research. In the case
of ozone [120,121], research studies have found evidence of different patterns between the
eastern and western Mediterranean sectors. At the LMT, the complexities in the distribution
of gases and aerosols are amplified by the contribution of anthropogenic sources and, with
respect to SO2, by the presence of a volcanic arc and a major volcano in a 160 km radius
from the observation site. The Mediterranean is recognized as a hotspot for air quality [122]
and an intersection for several distinct air mass transport processes [123–125]. For this
reason, a precise understanding of the mechanisms driving changes in the observed cycles
and trends is necessary.

The correlations between SO2 concentrations and wind data shown in Figures 4 and 5
also indicate the presence of westerly peaks compatible with possible volcanic and shipping
emissions. Many of the SO2 peaks occur at high wind speeds, which indicate air mass
transport from the Tyrrhenian Sea and is likely not related to local emissions in the context
of the Calabrian peninsula.

In detail, from the western sectors, SO2 concentrations reach peaks above 3.4 ppb,
both in the case of winds below 5 m/s (breeze regimes) and in synoptic conditions with
speeds that can exceed the 8 m/s threshold. From the northeastern sector, winter and
fall concentrations are linked to values that exceed the 5 ppb threshold under both breeze
regimes and synoptic conditions where wind speeds exceed 7–8 m/s. These patterns
affecting cold seasons are compatible with anthropogenic emissions from fossil fuels in
nearby urban areas. Wind regimes were found in a 2024 campaign integrating greenhouse
gas, aerosol, and planetary boundary layer (PBL) data to influence several parameters
at the LMT [104]. The differentiation between two corridors remains one of the main
characteristics of the LMT.

Under the assumption that only anthropogenic emissions are subject to weekly cycles,
unlike natural emissions, which are not affected [100], weekly assessments of SO2 concen-
trations were performed. For the first time in the history of LMT observations, a weekly
analysis was also applied to tropospheric column data. In Figure 6, surface fluctuations are
linked to winter peaks falling outside weekends, a pattern that may be compatible with
anthropogenic emissions, although further investigations would be required. Tropospheric
column data reported in Figure 6 are also subject to weekly oscillations, but the TYR points
are less affected; this is compatible with natural emissions and could therefore point to
volcanic activity (in the form of fumarole and constant gaseous outputs) as responsible for
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these regular patterns that are not seen at the LMT and ION due to increased anthropogenic
influence. Maritime shipping due to the Gioia Tauro port located on the Tyrrhenian coast
of Calabria could also be responsible for the TYR and LMT baseline values higher than
those of ION.

The multi-year variability of surface SO2 was evaluated, and the results are shown in
Figure 7. For the first time in the history of the LMT, a multi-year evaluation (2020–2023)
was also applied to tropospheric column data, and the results are shown in Figure 8.

By differentiating surface SO2 averages by wind corridor (Figure 7), higher concentra-
tions linked to westerly winds are prominent and are compatible with maritime shipping
and volcanic activity. The implementation and evaluation of TROPOMI data (Figure 8),
aimed at the TYR1–4 points in the Tyrrhenian Sea and the ION1 point in the Ionian Sea, in
conjunction with tropospheric column data on the LMT site itself, constitute a completely
new methodology for the assessment of local observations. The LMT’s surface and column
data (Figure 8C) are mostly in accordance, peaks included.

A comparison between TYR4 and ION1 was performed to assess coast-to-coast differ-
ences in tropospheric column data in the narrowest point of the entire Italian peninsula
(≈32 km between the two coasts) (Figure 2), in an area characterized by the presence of the
Marcellinara Gap as one of the orographic factors channeling wind circulation between
the two seas [95,96]. The graph shows that TYR4, representative of near-shore Tyrrhenian
conditions, yields generally higher values compared to ION1, which is its Ionian coun-
terpart. In Figure 8D, the TYR1–3 points—which are further away from the Tyrrhenian
coast—are analyzed in detail to highlight contributions from volcanic activity. The results
indicate that the three points are not affected in the same way, with the southernmost
location (TYR1) generally yielding much lower density values compared to the central
(TYR2) and northern (TYR3) points. It is worth mentioning that TYR2 is closer to Stromboli
than TYR1 by approximately 1.5 km, especially when considering the volcanic cone and
Sciara del Fuoco, which is the southwestern slope of the volcano along which most lava
flows occur [87,88]. Due to the characteristics of prevailing large-scale circulation [95] from
the west, a Stromboli–TYR2-TYR4-LMT path is compatible with reported observations
and TYR2’s higher SO2 values, while the Stromboli–TYR1-TYR4-LMT path would be less
dependent on that. With Vulcano’s activity being mostly limited to fumarole, TYR1’s
shorter distance to the second volcano is likely not a key factor.

In addition to the plots and graphs of surface and satellite data, statistical evaluations
were performed in Section 3.5 to test possible correlations between a number of parameters.
As shown in Table 3 (2016–2023), the mean temperature (17.78 ◦C) is higher than the median
(17.21 ◦C). This suggests a slight positive skew in the data, with more temperature values
falling below the mean. However, the difference still indicates a roughly symmetrical
distribution with a slight tendency toward warmer temperatures. The first quartile is
13.38 ◦C, and the third is 22.66 ◦C. This indicates that half of the data fall between these
temperatures, reflecting the range of conditions experienced during this period. Similarly,
SO2’s mean value is 0.217 ppb with a third quartile threshold of 0.142 ppb, indicating a right
skew in the data. This means that the majority of SO2 measurements are in the low range,
but there are sporadic high concentrations driving the mean upward. These conditions
are representative of a “multisource” observation site where low background values of a
parameter are affected by perturbances.

RH also shows evidence of skewness: the mean is 67.44%, which is slightly lower than
the median (68.9%). Overall, there is considerable variability in the data of each parameter:
air temperature and RH have moderate standard deviations, while SO2 and wind speed
(WS) show wider spreads, suggesting that these variables fluctuate more.
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With respect to statistical correlations, surface data (2016–2023) were evaluated, with
the results shown in Table 4. From the analysis, which also relied on Pearson’s Correlation
Coefficient (PCC) and Spearman’s Rank Correlation Coefficient (SR), it is possible to
determine that there is virtually no linear correlation between air temperature and SO2

mole fractions measured at the site; in particular, the PCC is close to zero. All p-values in
Table 4 are lower than 0.001, except, in fact, for SO2/T at 0.89. The SR of the relationship
is 0.096 with a significance of <0.001, which is still insufficient to indicate a solid linear
correlation. A weak but statistically relevant correlation is observed between SO2 and
RH, especially for the SR (−0.26), while the PPC is very low at 0.038. Overall, no clear
correlations emerge in the evaluation; the absence of a correlation between SO2 and air
temperature has environmental implications due to the temperature’s variability between
boreal warm and cold seasons.

Possible correlations between surface and tropospheric column SO2 (Table 5), limited
to the 2020–2023 period, are evaluated in Table 6. In the correlation matrix, both PCC (0.042)
and the SR (0.085) indicate a weak correlation between surface and TVC data, with the SR
showing a statistically significant p-value below the 0.5 threshold. These results have a
number of possible explanations: Bias errors in satellite data processing algorithms may
have had a role; however, it is possible to justify this with the coexistence of near-surface
anthropogenic pollution such as maritime shipping and volcanic outputs, which are subject
to different transport mechanisms. The outputs of volcanic eruptions from the Aeolian Arc,
as well as Mount Etna, reach high altitudes and are therefore subject to transport over a
large area: if these outputs pass above the LMT at sufficiently high altitudes, peaks in the
TVC data will lack a surface counterpart.

The findings based on the implementation of the TYR and ION locations were further
evaluated via satellite products on SO2 emissions over a large area. TROPOMI products are
used in the literature to provide estimates on SO2 emissions from a range of sources [126];
however, they may have been subject to artifacts. With the COvariance-Based Retrieval
Algorithm (COBRA), Level 3 products can be used to generate maps that partially com-
pensate for some of the issues affecting regular evaluations [115,116]. In Figure 9, maps
showing the multi-year variability of SO2 column number densities provide a large-scale
picture of natural SO2 emissions in the area. In fact, large-scale wind circulation has a
dominant westerly nature [95], and this leads to prevailing transport toward the east of
volcanic outputs such as those attributable to Mount Etna in Sicily.

Overall, the findings described in this study set up new fundaments and methodolo-
gies upon which future assessments of SO2 in the area could be performed to discriminate
natural and anthropogenic sources. Additional methodologies such as the carbon isotope
fractionation of carbon dioxide (δ13C-CO2) [127], which is also a product of volcanic activity,
could be used in source apportionment: the characteristic isotopic fingerprint of volcanic
carbon dioxide (CO2), paired with surface observations of SO2, could differentiate volcanic
and anthropogenic sources [128–131] and thus provide a clear understanding of volcanic
influence over LMT observations. With the PSCF (Potential Source Contribution Func-
tion) [132–134] and/or CWT (Concentration Weighted Trajectory) [135–138], case studies
could also be subject to further research to provide additional details and insights on the
contribution of natural and anthropogenic SO2 emissions to LMT measurements.

5. Conclusions
Through the implementation of new methodologies that have never been applied

to similar studies at the same observation site, integrated surface and tropospheric col-
umn data on sulfur dioxide (SO2) were evaluated at the Lamezia Terme (code: LMT)
WMO/GAW station in Calabria, Southern Italy.
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Surface (2016–2023) and satellite (2020–2023) data provided new evidence of possible
volcanic activity influence over LMT measurements due to the presence of the Aeolian Arc
and Mount Etna in a 160 km radius from the station. Surface measurements, in conjunction
with satellite data on select coordinates within the Tyrrhenian and Ionian seas, indicate that
SO2 peaks are linked to westerly winds compatible with maritime shipping and volcanic
pollution. The target coordinates selected for satellite data evaluations are based on local
wind circulation, which is known to be characterized by a western–seaside sector and a
northeastern–continental sector. Local wind circulation and air mass transport is subject to
winds alternating between these sectors. The findings seem to indicate that volcanic outputs
from the Aeolian Arc are subject to westerly winds, which may drive air mass transport
toward the LMT observation site. Maps generated from cumulative yearly Level 3 satellite
observations—processed by COBRA and meant to compensate for TROPOMI artifacts—
also show the presence of multiple sources of the SO2 in the area and a dominating westerly
flow that contributes to the transport of volcanic outputs, especially those attributable to
Mount Etna in Sicily.

SO2 peaks linked to westerly winds from the Tyrrhenian Sea are in contrast with
other observed trends at the same site, where northeastern–continental winds are generally
enriched in pollutants, while western–seaside winds generally yield low concentrations
of compounds attributable to anthropic activity. SO2 variability at the site is also distinct
from that of surface ozone, a compound that shares similar patterns but shows different
seasonal and diurnal trends. At the LMT, higher SO2 concentrations are also observed in
the case of synoptic conditions where wind speeds exceed the thresholds of 7–8 m/s, thus
indicating the influence of air mass transport from other locations.

This research study sets new fundaments upon which future source apportionment
efforts could be based on. Through the implementation of additional methodologies, the
influence of volcanic activity on LMT measurements could be assessed with greater detail,
thus providing new insights on the role played by active volcanoes in air mass transport
within the context of a climatic hotspot such as the Mediterranean basin. Furthermore, this
study shows the importance of performing multi-year evaluations of specific compounds
to assess their cycles, variability, and trends with enhanced detail.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/environments12010027/s1: TBFIL. Figure S1: Seasonal wind
rose scatter plots of SO2 at LMT, divided by year (2016–2023); Figure S2-A1–S2-H3: Correlations
between wind speeds and SO2 mole fractions, divided by sector and referring to the entire observation
period (2016–2023); Figure S3-A1–S3-H3: Weekly distribution of SO2 averages, divided by sector and
referring to the entire observation period (2016–2023).
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