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Abstract: Policy synergy, the evidence-based coordination of public policies, can aid in
more rapidly achieving air pollutant and carbon dioxide (CO2) emission reduction targets.
Using logarithmic mean Divisia index (LMDI) decomposition, coupling coordination
degree (CCD), and geographically and temporally weighted regression (GTWR) models,
we analyzed the emission characteristics, drivers, and reduction pathways of residential
air pollution across 30 Chinese provinces from 2001 to 2020. The southern provinces
produced more air pollution than the northern provinces, with the gap widening after 2015.
In the residential sector, energy emission factors (LMDI decomposition result, 686,681.9)
and population size (14,331) had greater impacts on air pollutant emissions than the
energy structure, energy intensity, synergies, or GDP per capita. The GTWR analysis of
the CCD mechanism indicated that hydroelectricity and urbanization enhanced coupling
coordination in the southeast. Meanwhile, in the west, coupling coordination was improved
by R&D investment, government spending on industrial pollution control, electricity
consumption, per capita cropland, temperature, and urbanization. This analysis provides a
valuable reference for optimizing emission reduction strategies.

Keywords: residential emissions; carbon dioxide; population; CCD; reduction strategies

1. Introduction
The current challenges facing society, as described in the global Sustainable Development

Goals (SDGs), specifically good health and well-being (SDG-3) and climate change (SDG-13),
necessitate significant changes in energy production, consumer behavior, and policy design [1].
Actions aimed at reducing greenhouse gas (GHG) emissions combat climate change and
yield substantial environmental and health benefits, including decreased air pollution. This
dual benefit presents policymakers with an opportunity to amplify the impact of emission
reduction strategies [2]. However, to maximize this synergistic effect, policy formulation
must consider a range of interconnected factors, such as policy alignment, implementation
strategies, and cooperation across different sectors [3]. Policy synergies boost the effectiveness
of the various measures. A 2018 study [4] demonstrated that, in Asia, the economic value of
climate change mitigation on atmospheric quality and health could reach up to USD 2.8 trillion,
with China potentially benefiting from approximately USD 330 billion. Furthermore, shifts in
consumer behavior are crucial for the successful implementation of government policies. For
example, increased public awareness of environmental conservation and the promotion of low-
carbon consumption practices have been reported to contribute to reducing emissions [5]. The
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national government of China has set targets for peak carbon emissions by 2030 [6] and PM2.5

concentrations to be reduced to 35 µg/m3 in most Chinese cities by 2035 [7]. This presents
significant challenges in terms of energy production, consumption, and policy design. In a 2022
report, “Synergistic Pathways to Carbon Neutrality and Clean Air in China”, it was proposed that
dual goals be simultaneously pursued: achieving carbon neutrality and improving air quality
through synergistic emission reductions in GHG and air pollution (AP). Hence, an increasing
number of researchers are investigating methods to better understand the intrinsic link between
AP and carbon emissions, assess and validate the efficacy of synergistic management, and
devise effective synergistic emission reduction strategies that consider the regional economic
and social characteristics of China.

Accordingly, the goal of this study was to provide a country-scale quantitative as-
sessment from which policymakers can optimize synergistic emission reductions of GHG
and AP. To that end, 167 articles and reports (the complete list, comprising 167 entries,
can be found in Supplementary Materials Table S1), which focus on the mechanisms of
China’s synergistic effects or relevant policies, were selected for review. First, the focus of
research from 2019 to 2020 was to determine whether synergistic effects exist between AP
and CO2 emissions [8–15], as well as to analyze synergistic emission reductions in supply
chains [16], resource-sharing relationships [17], and the impacts of sulfur dioxide (SO2)
capture technologies on synergistic emission reduction [18]. In 2023, the number of related
studies had increased to 56, and the number of topics began to diversify. Researchers
have examined how financial development [19–22] and industrial intelligence [23] affect
synergistic emissions reductions. Recently, research on synergistic emissions reduction
in the industrial [24–28] and transportation sectors [29,30] has emerged. There is also a
growing number of studies on the spatial correlation between GHG emissions and AP; for
example, the correlation between CO2 and nitrogen oxides (NOx) is particularly significant
in high-emission regions [31]. The results of a 2023 study [26] indicate that carbon emission
reductions have the most significant synergistic effect on SO2 levels. Other studies have fo-
cused on the reasons for spatial variability [32,33], concluding that the synergistic emission
reduction effect is significantly better in the eastern region of China than in the western
and northern regions in terms of variability across different regions and its relationship
with economic structure, energy consumption, and other factors. The number of relevant
studies is expected to increase to 80 by the end of 2024. Recently, there has been a focus on
synergistic emission reductions in industrial sectors, such as the aluminum industry [34],
steel and cement industry [35], coal-fired industry [36], power generation industry [37,38],
industrial sector chain [39], green transformation of heavy industrial agglomerations [40],
synergistic estimation of traditional industries [41], and automobile manufacturing supply
chain [42]. One research group also focused on the impact of social development progress
on synergistic emissions reduction. For example, the impact of the development of digital
technology and finance [43–49], such as the impact of high-speed rail openings and the
Broadband China strategy [50–53], and the impact of fiscal decentralization on synergistic
emissions reduction [54,55], as well as the impact of carbon emissions trading [56–60], have
received focus. The impact of the government’s disclosure of pollution emissions data
on synergistic emissions reduction has also been assessed [61], as well as the impact of
the clean development mechanism [62]. In summary, investigators from multiple fields of
expertise have explored the impact mechanisms of synergistic emissions reduction from
various perspectives.

2. Environmental Impact of Public Policy in the Residential Sector
Emissions from the residential sector, although small compared with industrial pollu-

tion, are closely linked to residents’ health. This indicates that we need to pay attention to
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emissions from the residential sector and to population health to continuously enhance the
effectiveness of government policies. The contribution of residential coal to the total energy
consumption decreased further, to 2.9% in 2014, but its contribution to total premature
mortality increased to 34% [63]. In 2015, there were 1.1 million premature deaths due to
long-term exposure to PM2.5, associated with total household consumption, with urban
households accounting for 56% [64].

In the 1950s, the central government introduced a winter heating policy, supplying free
coal to the public, but financial constraints restricted this to northern China [65,66]. Con-
sequently, the northern regions began depending on coal for winter heating. To accelerate
air pollution reduction and achieve the goals of energy transformation, the Chinese gov-
ernment has implemented a series of ambitious policies. Since 2016, municipalities in the
Beijing–Tianjin–Hebei and neighboring regions, known as the “2 + 26” region, have been annu-
ally implementing the Air Pollution Prevention and Control Action Plan (APPCAP, 2013–2017).
The primary objectives include improving the air quality during the heating season, reducing
PM2.5 and other pollutants from coal-fired sources, and promoting cleaner energy use in the
Beijing–Tianjin–Hebei region and other key areas. In northern heating areas, “coal-to-gas”
and “coal-to-electricity” projects are gradually being promoted to reduce the direct burning of
coal [67]. The Three-Year Action Plan for Winning the Battle for the Blue Sky (BSAP, 2018–2020)
aims to enhance rural heating methods and ensure that the residents’ demand for electricity for
heating is satisfied. It is recommended that the rural “coal to electricity” project be accelerated,
power grids upgraded, and facilities be constructed under the “coal to electricity” initiative [68].
In 2021, the Chinese government introduced the 14th Five-Year Plan (2021–2025), which aims
to achieve a comprehensive utilization rate of more than 86% for rural straw. In terms of
clean energy, the goal is to increase the coverage rate of photovoltaics (PV) on the rooftops of
urban public institution buildings and newly constructed factories to 50% by 2025 and increase
the rate of renewable energy substitution in urban buildings to 8% [69]. In 2023, the Chinese
government proposed a pilot program for rural energy reform; one of the key objectives in
15 pilot counties is to expand the diversification and implementation of renewable energy to
exceed 30% by 2025 [70].

Some researchers have focused on the problems that arise during the energy transforma-
tion for rural residents. Shen [71] argued that environmental regulations could considerably
foster the transformation to clean energy consumption among rural residents, as this can be
accomplished through the dissemination of environmental knowledge, technological advance-
ment, and the strengthening of health consciousness among residents. In response to the fact
that roughly 172 million rural families in China still depend on traditional biofuels, Yang [72]
developed a regional energy model for scenario analysis and discovered that CO2 emissions
could be reduced by 43% if an electrical grid were extensively adopted. Another study [73]
recommended that, in rural areas, priority should be given to replacing coal with natural gas,
as the use of natural gas boilers for heating can significantly reduce GHG emissions. By 2038,
based on the emission reduction targets and electricity mix, the climate benefits of electricity are
projected to be significantly greater than those of natural gas. Zhu et al. [74] demonstrated that
rural residential carbon emissions are inversely correlated with the utilization of solar water
heaters and biogas digesters and highlighted that renewable energy in rural areas, industrial
upgrading, economic growth, and technological innovations significantly influence residential
carbon emissions indirectly.

As outlined earlier, the co-reduction of air pollutants and carbon dioxide can expedite
government emission targets. Yet, residential sector policies remain centered on energy
transition. This prompts critical questions: What defines emissions in this sector? What are
the influencing factors? Should co-reduction strategies be applied here? Clarifying these
issues is crucial.
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3. Research Gap and Framework of Analysis
Exploring the impact mechanism of synergistic emissions reduction is an important

research direction. Previous studies on carbon emissions from the rural household sector
have concentrated on clean energy transitions, whereas those on particulate matter (PM)
emissions from the residential sector have focused on the health damage caused by solid
fuels. However, little attention has been paid to whether there is a potential for synergistic
emission reduction in the residential sector and whether it can achieve joint reductions in
CO2 and AP. Currently, there is a lack of research on the mechanisms of synergistic emission
reduction and the influencing factors. Examples of key research and policy questions are as
follows: Which provinces and cities should be prioritized for synergistic emission reduction
in terms of policy? What local characteristics should be incorporated in the implementation
of specific policies? The main goal of this study was to provide an evidence-based approach
to answering these questions.

The novelty of this paper lies in its dual-validation approach. This study applies a
nested structure combining the coupling coordination degree (CCD) and geographically
and temporally weighted regression (GTWR) following the logarithmic mean Divisia index
(LMDI) decomposition. This approach extends the decomposition factors and enables
secondary validation. This approach addresses the linkage between the co-reduction
mechanism in the residential sector and social factors, enabling the quantification of the
co-reduction mechanism and the parameterization of social factors.

The remainder of this article is organized as follows (Figure 1): Sections 1 and 2 provide
an overview of the existing research. Sections 3 and 4 outline our methodology and data
sources, respectively. Section 5 presents our findings. Section 6 discusses the north–south
divide and the necessity for coordinated emission reductions in the residential sector, along
with suggestions for policy measures. Lastly, Section 7 offers a conclusion that encapsulates
our key discoveries.
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4. Methodology and Data
4.1. Decomposition Analysis

CO2 =
CO2

Energy
× Energy

GDP
× GDP

Pop
× Pop (1)

The Kaya equation [75], which is extensively used worldwide to estimate CO2 emis-
sions, demonstrates that these emissions are influenced by four key factors: the amount of
CO2 released per unit of energy consumed, energy usage per unit of GDP, GDP per capita,
and total population (Pop). This equation establishes the link between carbon emissions
and social development indicators. In this study, we extended the Kaya equation to include
AP and CO2 emissions using the logarithmic mean Divisia index (LMDI)—introduced by
Ang in 1998 [76]—which has the advantages of the absence of residual terms and ease
of interpretation [77]. To comprehend the significance of various factors, decomposition
analysis can be employed. There are multiple approaches to accomplish this, including
index decomposition analysis (IDA), structural decomposition analysis (SDA), arithmetic
mean division index decomposition (AMDI), and logarithmic mean division index decom-
position (LMDI). It is worth noting that AMDI contains a residual term [78], while SDA
requires more extensive data, specifically input–output tables [79]. In contrast, the LMDI
only necessitates time series data for analysis. Contemporary research employs the LMDI
to explore concurrent reductions in air pollution and carbon dioxide emissions [8,29,80,81].

AP =
AP

Uco2
× Uco2

EAP
× EAP

Ecoal
× Ecoal

Etotal
× Etotal

G
× G

Pop
× Pop = H × R × P × St × So × E × Z (2)

where AP, Uco2, EAP, Egaso, Etotal, G, and Pop are the air pollutant concentration, CO2 emissions,
emissions from all types of pollutants, coal usage, total energy consumption in the residential
sector, GDP, and population size, respectively. H denotes the AP emissions per unit of CO2,
and R denotes the CO2 emissions per unit of AP. The combined effects of CO2 and AP are
reflected in H and R. Multiple studies have quantified the combined emission impacts of AP
and CO2 in a comparable manner [82–84]. The emission factors, represented by P, denote the
pollutant emissions per coal unit. This is influenced by various factors, including the energy
quality utilized by residents, energy combustion efficiency, stove type, and other variables that
directly affect emission rates. The proportion of coal in the residential energy consumption
is denoted by St, which indicates the fuel mix and is associated with an improvement in the
fuel structure indicator for the residential sector. The energy intensity of the residential sector
is represented by So, which measures the energy consumed per unit of GDP. E indicates the
GDP per capita, which serves as a marker of economic expansion. Variable Z represents the
population, highlighting the effects of the changes in demographic patterns.

Using the LMDI method, this study calculates the yearly variations in pollutant levels
(∆AP). The starting year is denoted by o and the ending year by t. The variables ∆H, ∆R,
∆P, ∆So, ∆St, ∆E, and ∆Z represent the contribution rates of each factor from the starting
to the ending year. These factors correspond to the contribution rate of AP per unit of
CO2, CO2 per unit of AP, energy structure in the residential sector, emission intensity in the
residential sector, GDP per capita, and population size.

The LMDI decomposition formula is provided in Equation (3). The steps used to
calculate the contribution of each factor in each province are detailed below. The LMDI
decomposition results allow for direct comparisons between different social factors, with
positive values indicating a driving effect on pollutant emissions and negative values
reflecting a mitigating effect. This study aggregated the LMDI analysis results from the
provincial level at both the national and regional scales.
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∆AP = APt − APo = ∆H + ∆R + ∆P + ∆So + ∆St + ∆E + ∆Z

= APt−AP0

ln APt−ln APo × ln
(

Ht

Ho

)
+ APt−APo

ln APt−ln APo × ln
(

Rt

Ro

)
+ APt−AP0

ln APt−ln APo × ln
(

Pt

Po

)
+ APt−APo

ln APt−ln APo × ln
(

So
t

So
o

)
+ APt−AP0

ln APt−ln APo × ln
(

St
t

St
o

)
+ APt−APo

ln APt−ln APo × ln
(

Et

Eo

)
+ APt−AP0

ln APt−ln APo × ln
(

Zt

Zo

) (3)

4.2. Coupling Coordination Degree (CCD)

Based on the characteristics of pollutants and GHG from the residential sector, this
study used the total amounts of CO2 and particulate matter (PM2.5, PM10, OC, and BC)
from the residential sector to construct a coupled model using the following equations:

C =

√
X × Y

(X + Y)2 (4)

T = αX + βY (5)

D =
√

C × T (6)

where C is the degree of coupling, X is the total CO2 emissions from the residential sector,
Y is the total particulate matter (PM) emissions from the residential sector, and T is the
combined evaluation index of CO2 and PM emissions. As both are equally important,
α and β are the coefficients of the carbon emissions and particulate matter and are taken to
be 0.5, considered that they are both equally important. D is the degree of compatibility
between the carbon emissions of the residential sector and particulate matter, which is
used as a measure of the strength of the interactions. It is a neutral measure and does not
inherently reflect a positive or negative judgment.

4.3. Geographically and Temporally Weighted Regression (GTWR)

The hidden causal relationships between the factors cannot be decomposed using
Kaya’s equation. To identify the real drivers of pollutant emissions, it is necessary to
analyze the causal relationships among the Kaya equation factors and their respective
subcomponents [85,86]; that is, the compounding effect among these factors is not reflected
in the decomposition of the LMDI, which may lead to underestimation or overestimation of
the factor’s contribution [87]. Therefore, the GTWR model was adopted to solve the issue
of factor covariance. Compared with the common geographically weighted regression
(GWR), which uses cross-sectional data, the GTWR model can incorporate panel data from
2001 to 2020, thereby improving estimation accuracy. The coupling coordination degree
(CCD) calculated by the CCD model serves as the dependent variable in GTWR, while
GTWR captures the spatial–temporal relationships of various factors with CCD.

Qi = δo(µi, vi, ti) +
n

∑
j=1

β j(µi, vi, ti)Ltij + εti (7)

β̂(µi, vi, ti) =
[

XT M(µi, vi, ti)X
]−1

XT M(µi, vi, ti)Y (8)

In this equation, Qi is the dependent variable, and n represents the total number of
provinces. The independent variables are denoted as Litj, δo stands for the intercept, and
βj symbolizes the regression coefficient. The error term is represented by εti. The matrix
M(µi, vi, ti) = diag (αi1, αi2, ..., αin) is defined, where αij represents the spatiotemporal
distance functions corresponding to the weights employed when adjusting for weighted
regressions adjacent to province i.

4.4. Study Area and Data

Panel data were collected from 30 Chinese provinces (excluding Tibet, Hong Kong, Macao,
and Taiwan; the 30 provinces include four municipalities directly under the central government:
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Beijing, Tianjin, Shanghai, and Chongqing). Air pollutants included SO2, NOX, CO, VOC,
NH3, PM10, PM2.5, black carbon, organic carbon, and CO2 from 2001 to 2020, as obtained
from the MEIC [88,89] model (Table S2 in the Supplementary Materials). Population, GDP,
and the ratio of the urban population were obtained from the China Statistical Yearbook. Data
on the total energy consumption and total coal consumption in the residential sector were
derived from the China Energy Statistical Yearbook. Specifically, coal consumption and total
energy consumption were calculated using the conversion tables provided in the China Energy
Statistical Yearbook 2020. The specific conversion coefficients were as follows: firewood at
0.571 kg of standard coal per kilogram, straw at 0.486 kg of standard coal per kilogram, and
biogas at 0.714 kg of standard coal per cubic meter. Investment data for industrial pollution
control were obtained from the China Environmental Statistical Yearbook. Electricity consumption
by province and hydropower generation data were obtained from the China Energy Statistics
Yearbook and provincial statistical yearbooks. Data on the average years of education were
obtained from the China Statistical Yearbook, China Population Yearbook, and Employment Statistical
Yearbook. Data on research and development expenditures (R&D investment) were obtained
from the China Science and Technology Statistical Yearbook. The annual average temperatures
of the provinces were calculated from the monthly average temperatures in the ERA5-Land
dataset published by the European Union and the European Center for Medium-Range Weather
Forecasts, Copernicus Climate Data Store (CDS, https://cds.climate.copernicus.eu/datasets?
q=ERA5-Land, accessed on 28 September 2024).

The Qinling–Huaihe Line starts west of the Qinling Mountains (E 104◦15, N 31◦18) and
ends at the seashore of the East China Sea (E 120◦21, N 34◦05) [90]. The Qinling–Huaihe Line
is widely acknowledged as the dividing line between the northern and southern regions of
China in terms of its significant climatic, ecological, and economic distinctions [91–93]. The
four geographic regions used in this study are as follows (Figure 2): North China: Beijing, Tian-
jin, Hebei, Shanxi, Inner Mongolia, Liaoning, Jilin, Heilongjiang, Shandong, Henan, Shaanxi,
Ningxia, Xinjiang, and Qinghai. South China: Shanghai, Zhejiang, Jiangsu, Anhui, Fujian,
Jiangxi, Hunan, Hubei, Guangdong, Guangxi, Hainan, Sichuan, Chongqing, Guizhou, Yunnan,
and Tibet. The Beijing–Tianjin–Hebei region (BTH) includes Beijing, Tianjin, Hebei, and the
neighboring provinces of Shanxi, Shandong, and Henan. The Yangtze River Delta (YRD) region
includes the provinces of Shanghai, Jiangsu, Zhejiang, Anhui, Jiangsu, and Anhui. .
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5. Results
5.1. Overview of Total Emissions

The emission rates of AP and CO2 from the residential sector exhibited an overall
decrease (Figure 3), particularly post-2013, with negative growth except for NH3. The CO2

levels did not decrease, and CO2 represented a growing proportion (as much as 80%) of the
total residential emissions (Figure 4d). The 30 provinces and cities were categorized into
northern and southern regions based on the Qinling–Huaihe River Line. The data indicate
that air pollutant emissions from residential areas in the south have consistently exceeded
those from the northern regions, and this disparity has gradually widened since 2015.
CO2 emissions were higher in the northern regions; however, post-2015, emissions in
the north declined. In contrast, in residential areas in the southern regions, emissions
maintained the same growth trajectory, leading to a reduction in the disparity between the
two regions. Furthermore, as shown in Figure 5, the disparity in emissions between the
north and south continued to increase from 2016 to 2020. A significant portion of pollutant
emissions from residential areas stems from coal consumption (Figure 4a–c); pollution from
coal consumption accounts for 70–57% (average of 30 provinces) of residential emissions.
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In 2020, 50% of the pollutant emissions (AP and CO2) from the residential sector (Figure 5)
in the north stemmed from coal combustion, compared with 30% of emissions in the
south, indicating that northern residents are more dependent on coal for fuel use. Specif-
ically, pollution sources in the northern region exhibited significant regional variations;
for example, residential emissions (AP and CO2) constituted over 70% of the emissions in
Beijing and Tianjin but only 57% in Hebei (Figure 6). In Shanxi, Inner Mongolia, Liaoning,
Jilin, Heilongjiang, and Xinjiang, coal use accounted for 76%, 90%, 64%, 77%, 87%, and
78% of the total emissions, respectively (Figure 6). Tibet is an exception, with 98% of the
air-borne pollution emanating from biofuel combustion (Figure 6). In the south, a very
large proportion of emissions were attributed to coal use: 71% in Hubei, 83% in Hunan,
94% in Guizhou, and 81% in Yunnan. In Shanghai, Zhejiang, Jiangsu, and Guangdong, the
residential sources accounted for 98%, 89%, 81%, and 86% of the total pollutant emissions,
respectively (Figure 6). Regarding the total emissions of AP and CO2, Guizhou ranked
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first, Heilongjiang second, and Hunan third (Figure 7). In these three provinces, 80% of
the pollution is attributed to coal use (Figure 6). Notably, Guizhou and Hunan are part
of the southern region. In conclusion, pollution emissions from coal use were higher in
the northern region than in the southern region. Of the 30 provinces and cities, 12 had
more than 50% of their residential pollution emissions stemming from coal use, and 17 had
more than 50% from other residential sources, indicating that, beyond the use of coal and
biomass fuels, other daily activities of residents are also a significant source of pollution.
Regarding regional distribution, pollution sources have deviated significantly from the
traditional north–south zoning pattern.
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5.2. Air Pollution Emission Factors and Regional Differences

To understand the social factors influencing emissions in the residential sector, this
paper analyzes and compares the contributions of various social factors to emissions while
also examining regional disparities.

In the residential sector, the CO2 emissions were significantly higher than the AP
emissions, resulting in low H values (Table 1 the LMDI decomposition results are unitless)
and high C values (except for SO2 and NH3). Consequently, the emissions of CO2 per
unit of air pollutant (R) are a substantial contributor to the overall pollution emissions.
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Energy structure (St) and intensity (So) exert an inhibitory effect on pollutant emissions.
However, this effect is minor, with air pollutant emissions being more significantly influ-
enced by population size (Table 1, Z value) than by GDP per capita (Table 1, E value). In
conclusion, the energy emission factor (P) and population (Z) contribute significantly to
pollutant emissions and represent the primary focus of future emission reduction efforts.
In particular, the goal should be to reduce the energy emission factor through energy
substitution or upgrading residential energy use, as well as prioritize emission reductions
in provinces and cities with large population bases, taking into consideration population
distribution characteristics. In addition to reducing NH3 and other pollutants, synergistic
emission reduction possibilities (H+R) exist. However, to date, no such synergistic emission
reduction has been achieved.

Table 1. Overall effect of factors on pollution emissions.

Factor PM2.5 PM10 SO2 VOC NOX CO OC BC NH3

H −0.361 −0.373 −0.226 −0.470 −0.056 −4.746 −0.226 −0.057 −0.043
R 26,348 31,541,165 −0.0079 2393.2 9003.6 914.2 46,972 113,092 −5671
P 323,343 322,495 211,847 658,966 75,452 4,261,807 211,847 46,413 67,967
St −4.748 −4.748 −4.748 −4.748 −4.748 −4.748 −4.748 −4.748 −4.748
So −5.246 −5.246 −5.246 −5.246 −5.246 −5.246 −5.246 −5.246 −5.246
E 8.440 8.440 8.440 8.440 8.440 8.440 8.440 8.440 8.440
Z 14,331 14,331 14,331 14,331 14,331 14,331 14,331 14,331 14,331

Note: H, AP emissions per unit of CO2; R, CO2 emissions per unit of AP; P, emission factor; St, energy structure;
So, emission intensity; E, GDP per capita; Z, population. (Regardless of which pollutant corresponds to the
emission structure of the residential sector, the emission intensity, GDP per capita, and population in the same
area make the same contributions. The average of P is 686,681.9).

Z contributed to pollutant emissions in both the south and north and the value of
Z gradually decreased in the north while it increased in the south (Figure 8). Notably,
after 2015, the Z-values (Table 2) were significantly higher in the south than in the north,
indicating that planning the residential sector to reduce emissions based on population
distribution is more effective in the southern regions. The synergistic effect of AP and
CO2 (H+R) increased in both the south and north, and the magnitude of the increase in
the south was significantly higher than that in the northern region. Particularly after 2015,
the R-value (Table 2) was considerably higher in the southern region than in the northern
region. This indicates that the contribution of AP due to the increase in CO2 emissions in
the south after 2015 was much larger than that in the north. Additionally, P transitioned
from a reducing effect to a facilitating effect, and in terms of the emissions of particulate
matter other than PM2.5, the value of P in the southern provinces and municipalities was
significantly higher than that in the northern region. These findings suggest that the
emission factors in the southern region play a significant role in pollutant emissions. Given
that population size has a greater impact on the southern region, it is advisable to prioritize
the implementation of energy upgrading and replacement policies in the southern region,
where there are larger population centers. This approach is likely to be more effective at
reducing pollutant emissions.

As discussed in Section 5.1, the spatial distribution of pollution sources from the
residential sector has shifted away from the traditional north–south division. To better
analyze the spatial distribution of the promoting effects of social factors on emissions, we
have grouped the LMDI decomposition results using radar charts. Figure 9 illustrates
(detailed data in Table 3) that the contribution of seven factors to PM2.5 emissions in
30 provinces indicates that these provinces could be divided into four types. The first type
is characterized by a high population factor (Z), which significantly influences emissions.
In the provinces of Beijing, Tianjin, Hebei, Shanxi, Henan, Shandong, Shaanxi, Zhejiang,



Environments 2025, 12, 37 12 of 28

Jiangxi, Guangdong, and Yunnan, urban planners should address the high residential
emissions stemming from large populations. The second type comprises provinces with a
high R-value (CO2 emissions per unit of AP), signifying an imbalance between AP and CO2.
This category includes Liaoning, Gansu, Ningxia, Qinghai, Xinjiang, Shanghai, Hubei, and
Hunan provinces. The third category includes provinces with high-emission factors (P),
necessitating improvements in residential energy structures and stoves to reduce emissions.
This group included Hainan, Guizhou, Sichuan, Yunnan, Chongqing, Guangxi, Jiangsu,
Fujian, and Anhui. The fourth type, referred to as the mixed type, includes Jilin, Inner
Mongolia, and Heilongjiang.
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per unit of AP; P, emission factor; Z, population. Numbers indicate the role of the H, R, P, and
Z factors in emissions. South and north represent the averages of the north and south provinces,
respectively. Subfigures (a–d) illustrate the contribution of the four factors to PM2.5, PM10, BC, and
OC emissions in northern regions, while subfigures (e–h) present the contributions of these factors to
the same pollutants in southern regions.

Table 2. Comparison of north and south drivers.

North South

PM2.5 2011–2015 2016–2020 PM2.5 2011–2015 2016–2020

R 163.175 100.634 R 52.145 940.619
Z 39.600 3.600 Z 186.333 128.667
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Table 2. Cont.

North South

BC 2011–2015 2016–2020 BC 2011–2015 2016–2020

R 580.840 609.986 R 248.624 4620.941
Z 39.600 3.600 Z 186.333 128.667

PM10 2011–2015 2016–2020 PM10 2011–2015 2016–2020

R 14,728.893 64,848.763 R −26,476.948 651,863.882
Z 39.600 3.600 Z 186.333 128.667

OC 2011–2015 2016–2020 OC 2011–2015 2016–2020

R 83.618 154.480 R 127.510 2368.854
Z 39.600 3.600 Z 186.333 128.667
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Figure 9. Contribution of seven factors to PM2.5 emissions in 30 provinces. Note: This visually
represents the contribution of seven factors to PM2.5 emissions across 30 provinces, with each
province’s contributions depicted by specific numerical values within concentric circles. For instance,
Beijing’s contributions are indicated by the second concentric circle with a value of 4 × 102 and the
fourth circle with 8 × 102. This graphical representation allows for a clear distinction between the
northern provinces, labeled (1)–(15), and the southern provinces, labeled (16)–(30). For detailed data,
please refer to Tables 3–6.

Table 3. Contributions of seven factors to PM2.5 emissions in 30 provinces and cities.

Provinces H R P St So E Z

Beijing −0.004 604.357 404.72 −0.096 −0.29 0.4 803.9
Tianjin −0.004 348.203 208.57 −0.399 0.137 0.03 383
Hebei −0.007 165.005 −120.86 −0.195 −0.23 0.31 765
Shanxi −0.002 81.6693 −31.263 0.007 −0.54 0.46 218

Inner Mongolia −0.008 117.515 −235.76 −0.061 0.405 0.19 22
Liaoning −0.008 104.136 −38.328 −0.122 −0.02 0.21 61
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Table 3. Cont.

Provinces H R P St So E Z

Jilin −0.008 95.8206 70.421 −0.043 −0.04 0.6 −292
Heilongjiang −0.024 165.642 −45.771 0.0909 0.027 0.2 −640

Shanghai −0.002 14,144.9 60.742 −0.222 −0.02 −0.07 820
Jiangsu −0.026 131.055 8884.9 −0.38 0.061 0.48 1118

Zhejiang −0.013 875.27 −241.66 −0.194 0.056 0.21 1739
Anhui −0.015 78.2253 4995.3 −0.422 −0.13 0.34 −23
Fujian −0.02 34.9387 4923.7 −0.384 −0.01 0.32 716
Jiangxi −0.015 116.177 −256.37 −0.225 0.053 0.27 333.2

Shandong −0.011 151.479 −597.12 −0.123 0.078 0.29 1124
Henan −0.009 161.376 −36.367 −0.217 −0.22 0.28 386
Hubei −0.014 114.77 −93.201 −0.125 −0.05 0.5 87
Hunan −0.016 122.36 −118.92 −0.167 0.12 0.33 49

Guangdong −0.008 318.022 −612.98 −0.047 0.104 0.05 3891
Guangxi −0.053 29.7003 75,691 −0.068 −0.03 0.31 231
Hainan −0.038 50.8831 227,557 −0.013 0.058 0.23 216.4

Chongqing −0.011 138.719 346.41 −0.482 0.04 0.23 379.8
Sichuan −0.017 104.727 1470.7 −0.373 −0.12 0.3 228
Guizhou −0.005 72.3741 408.32 −0.023 −2.25 0.31 59
Yunnan −0.008 62.7833 65.636 −0.136 −0.24 0.33 434.6
Shaanxi −0.01 115.349 −248.22 −0.104 −0.03 0.4 302
Gansu −0.002 1535.84 −15.243 −0.11 −0.22 0.18 −22

Qinghai −0.001 1790.11 −235.44 −0.126 −0.41 0.25 69.9
Ningxia −0.002 2710.94 −94.372 0.0452 −0.77 0.35 158
Xinjiang −0.002 1806.49 1278.1 −0.034 −0.78 0.16 714

Note: The LMDI decomposition results are unitless. In the BHT (Beijing, Tianjin, Hebei, Shanxi, Shandong, and
Henan) regions, Z averages 613.

5.3. North–South Coupling Coordination Degree

We investigated the coordinated coupling of particulate matter (PM) and CO2 across
30 provinces and cities and examined the dynamics of coordinated emissions reduction in
the residential sector. The findings showed a slight decrease in coordinated coupling, from
0.228 in 2001 to 0.220 in 2020. However, this change was not significant, and the overall state
remained at moderate dysregulation (Table S3 in the Supplementary Materials). Emissions
from the residential sector showed minimal synchronization between the PM and CO2

levels. Although progress has been made in one area, the regulatory impact on another
remains minimal, potentially leading to an imbalanced effectiveness of emission reduction
strategies. The average coupling value in the northern provinces and cities was 0.239,
whereas it was 0.224 in the southern provinces and cities. This suggests a significantly
higher average coupling in the northern regions than in the southern regions. Among the
30 provinces examined, ten showed an upward trend: Hubei, Hunan, Fujian, Heilongjiang,
Anhui, Guangxi, Hainan, Sichuan, Yunnan, and Shaanxi. The mean coupling value for
these ten provinces increased from 0.205 in 2001 to 0.239 in 2020.

5.4. Drivers of Coupling Coordination Degree

To further explore the mechanisms of synergistic emission reduction in the residential
sector, we employed the GTWR model to analyze the driving factors. The variable selection
process was carried out in two stages: Initial Screening: Variables were initially drawn
from two sources. First, we included key factors from the LMDI model, such as the resi-
dential sector emissions factor, energy composition, energy efficiency, GDP per capita, and
population size. Second, we incorporated additional factors that are commonly examined
in emission-related studies, such as income disparity [94], environmental regulation [28],
the digital economy [95], population density [96], average years of education [97], years
of tertiary education [97], urbanization rate [98], NDVI [99], and R&D investment [74].
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Final Selection: To avoid multicollinearity, all variables underwent a variance inflation
factor (VIF) test (Table 4). Based on this test, the following variables were selected: GDP
per capita, hydroelectricity generation, environmental regulation, population size, tem-
perature, urbanization rate, average years of education, R&D investment, and electricity
consumption (Table 5).

The GTWR model constructed with these variables demonstrated strong perfor-
mance, achieving an adjusted R2 of 0.885 and the lowest AICc value among the tested
models (Table 6).

Table 4. VIF test.

Variable VIF 1/VIF

Everage education 4.75 0.210596
GDP per capita 4.03 0.24803

R&D investment 4.02 0.248718
Urbanization 3.44 0.290978

Cropland 2.42 0.412516
Temperature 1.82 0.548412
Regulation 1.23 0.816154

Energy structure 1.15 0.871267
Hydropower 1.14 0.877559

Mean VIF 2.67

Table 5. Statistical description.

Variable Sample Mean Min Max Std. Dev.

CCD 600 0.23139 0 0.25 0.033472
RD investment 600 0.013976 0.001514 0.064444 0.010801

Regulation 600 0.004379 0.000085 0.030988 0.003758
Everage education 600 8.664195 6.04047 12.782 1.059097
Energy structure 600 0.033317 0.0029 0.1097 0.023423

Hydropower 599 256.5179 0 3541.38 491.7662
GDP per capita 600 10,257.26 2743.874 29,039.82 5501.658

Cropland 600 1059.427 42.69406 5417.912 896.716
Temperature 600 12.41496 −4.0224 25.07904 6.002517
Urbanization 600 0.517295 0.1389 0.896 0.155166

Table 6. Comparison of regression results.

Model R2 Adjusted R2 AICc Bandwidth

OLS 0.279 — 1525.791 —
GWR 0.768 0.764 983.535 0.115

GTWR 0.887 0.885 720.642 0.115

Figure 10a–i presents the spatial distribution of the regression results from the GWTR
model, reflecting the influence of the selected social factors on CCD in each province
and city. A positive coefficient indicates promotion, while a negative coefficient indicates
weakening. Figure 10a–i corresponds to the following social factors: R&D investment,
environmental regulation, average years of education, energy structure, GDP per capita, per
capita cropland, hydroelectricity generation, temperature, and urbanization. For detailed
coefficients for each province and city, please refer to Table 7.
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Figure 10. Distribution diagram of factors driving the degree of coupling based on averages in
the period of 2001–2020. Regression coefficients with p-values > 0.1 are excluded. The legend
illustrates each factor’s coefficient of influence on the coupling degree, where positive values indicate
a promoting effect and negative values suggest a weakening impact. Subfigures (a–i) respectively
depict the spatial distribution of the impact coefficients of R&D investment, environmental regulation,
average years of education, energy structure, GDP per capita, per capita cropland, hydroelectricity
generation, temperature, and urbanization on CCD.
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The share of research and development expenditures (R&D investment) in GDP indi-
cates the level of importance that a region assigns to innovation and affects the emissions of
the residential sector [74]. As Figure 10a shows, an increase in the share of R&D investment
exerts both positive and negative effects on coordination coupling across different regions.
Weakening effects were evident in 7 of the 28 provinces, which were all in the southern re-
gion: Shanghai, Zhejiang, Fujian, Jiangxi, Hunan, Guangdong, and Hainan. Conversely, the
coefficients for Sichuan (0.672), Chongqing (0.646), and Guizhou (0.887) were significantly
larger, suggesting that R&D investment in these three provinces can substantially reduce
the emissions of residents. In Qinghai, Gansu, Shaanxi, Hebei, Tianjin, Beijing, Shandong,
and Henan, the CCD increased by 0.169–0.344 for each percentage point increase in the
proportion of R&D investment.

Table 7. Coefficients of factors affecting the degree of CCD.

R&D Investment Regulation Energy Structure GDP per Capital Per Capital Cropland

Beijing 0.270 0.000 0.088 −0.622 −0.231
Tianjin 0.306 −0.001 0.113 −0.711 −0.251
Hebei 0.286 0.012 0.142 −0.699 −0.171
Shanxi 0.234 0.028 0.147 −0.621 −0.101

Shandong 0.344 −0.017 0.178 −0.867 −0.226
Henan 0.296 0.001 0.209 −0.838 −0.117

Inner Mongolia 0.122 0.013 0.083 −0.385 −0.073
Liaoning 0.080 −0.053 0.015 −0.642 −0.386

Jilin 0.078 −0.127 −0.097 −0.703 −0.249
Heilongjiang 0.169 −0.130 −0.138 −0.650 −0.099

Shanghai −0.387 −0.117 0.299 −0.932 −0.431
Jiangsu 0.004 −0.146 0.262 −0.954 −0.325

Zhejiang −0.442 −0.143 0.304 −0.869 −0.260
Anhui 0.063 −0.151 0.255 −0.926 −0.245
Fujian −0.931 −0.228 0.398 −0.828 −0.166
Jiangxi −0.316 −0.250 0.323 −0.812 −0.292
Hubei 0.035 −0.169 0.258 −0.803 −0.146
Hunan −0.002 −0.199 0.327 −0.780 −0.317

Guangdong −0.176 −0.063 0.480 −0.925 −0.770
Guangxi 0.297 −0.038 0.422 −0.214 0.576
Hainan −0.133 −0.072 0.419 −0.182 0.161

Chongqing 0.646 −0.112 0.057 −0.282 0.446
Sichuan 0.672 −0.004 −0.095 0.049 0.348
Guizhou 0.887 −0.143 0.163 −0.095 0.831
Yunnan 0.000 0.000 0.000 0.000 0.000
Shaanxi 0.224 0.043 0.131 −0.623 0.099
Gansu 0.213 0.029 −0.005 −0.098 0.186

Qinghai 0.326 0.041 0.025 0.073 0.206
Ningxia 0.100 0.026 0.030 −0.204 0.126
Xinjiang 0.000 0.000 0.000 0.000 0.000

Province Hydropower Temperature Average Education Urbanization

Beijing −0.015 −0.553 −0.223 0.087
Tianjin −0.012 −0.604 −0.178 0.080
Hebei 0.035 −0.397 −0.062 0.042
Shanxi 0.022 −0.219 0.020 −0.014

Shandong 0.022 −0.559 −0.027 0.059
Henan 0.053 −0.287 0.134 −0.006

Inner Mongolia −0.053 −0.137 −0.108 −0.004
Liaoning 0.704 −0.522 0.229 −0.345

Jilin 2.091 0.015 0.481 −0.627
Heilongjiang 2.431 0.410 0.420 −0.744

Shanghai −0.028 −0.734 0.137 0.319
Jiangsu 0.010 −0.666 0.103 0.171

Zhejiang 0.005 −0.708 0.122 0.361
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Table 7. Cont.

Province Hydropower Temperature Average Education Urbanization

Anhui 0.032 −0.589 0.096 0.145
Fujian 0.071 −1.213 0.107 0.844
Jiangxi 0.065 −0.872 0.040 0.332
Hubei 0.067 −0.520 0.058 0.096
Hunan 0.061 −0.878 0.036 0.070

Guangdong 0.045 −1.969 0.224 0.241
Guangxi −0.087 −1.513 0.269 −0.046
Hainan 0.035 −2.190 0.467 0.132

Chongqing −0.020 −0.024 −0.282 −0.078
Sichuan 0.027 0.130 −0.315 −0.148
Guizhou −0.085 −0.399 −0.357 −0.104
Yunnan 0.000 0.083 0.000 0.000
Shaanxi 0.009 0.069 0.153 −0.069
Gansu 0.019 0.214 0.014 −0.287

Qinghai −0.002 0.177 −0.036 −0.372
Ningxia −0.006 0.221 0.062 −0.280
Xinjiang 0.000 0.000 0.000 0.000

Previous studies [71] have shown that the management of industrial pollution con-
tributes to rural energy transitions and increases the environmental awareness of the
population. Accordingly, we included the ratio of investment in industrial pollution control
to the industrial added value as a factor in the model. Figure 10b shows the coefficients
indicating the impact of the government’s investment in industrial pollution control as a
proportion of industrial added value on the degree of coordinated coupling. The promotion
and weakening effects were distinctly and spatially clustered. Shaanxi, Gansu, Qinghai,
Ningxia, Shanxi, Hebei, and Inner Mongolia, all in the northern region, showed enhanced
effects, indicating that the government’s efforts in industrial pollution control in these
provinces have contributed to the reduction in emissions. Twenty-one provinces and cities
exhibited a weakening effect, particularly along the southeastern coast.

Higher education correlated with greater environmental awareness but did not guar-
antee eco-friendly behaviors because of factors such as personal values, cultural contexts,
and economic incentives [100]. In this study, we calculated the effect of the average years of
education on coordinated coupling. As shown in Figure 10c, the average number of years of
education has both promoting and weakening effects on coordinated coupling. In Beijing,
Tianjin, Hebei, Inner Mongolia, Shandong, Chongqing, Sichuan, Guizhou, and Qinghai,
the average number of years of education weakened coordinated coupling, suggesting
that in these regions, the average number of years of education had a negative effect on
emissions from the residential sector rather than reducing both in the same direction. In
six provinces and municipalities, the average years of education increased the CCD by
0.267 to 0.481 in Heilongjiang and Jilin and by 0.122 to 0.267 per year in Henan, Shaanxi,
Yunnan, and Guangxi.

Electricity consumption, as a portion of total energy consumption, is a measure of the
energy mix; an increase in the share of electricity consumption means that electricity has
replaced traditional solid fuels (e.g., firewood and coal) for heating and cooking, resulting
in reduced AP emissions from households [101]. As shown in Figure 10d, the energy mix
in all provinces and cities, except for Sichuan, Gansu, Jilin, and Heilongjiang, contributed
to the development of harmonization and coupling, which indicates that an increase in
the share of electricity consumption in most provinces and cities led to a reduction in
emissions. In the southeast, including Guangxi, Guangdong, Fujian, and Hainan, the
CCD increased from 0.327 to 0.480 for every percentage point increase in the share of the
electricity consumption structure. Similarly, in Guizhou, Hunan, Hubei, Anhui, Zhejiang,
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Jiangsu, and Jiangxi, the CCD increases from 0.209 to 0.327 for each percentage point
increase in the share of the electricity consumption structure.

Hydropower directly reduces the use of fossil fuels, thereby reducing the residential
AP and CO2 emissions. However, hydropower has regional variability. Provinces and
cities rich in hydropower resources have a greater potential to reduce carbon emissions
and air pollution, whereas regions dependent on fossil fuels for power generation have less
potential [102]. As shown in Figure 10g, each percentage increase in the proportion of hy-
droelectric power generation led to an increase in the CCD, ranging from 2.431 to 0.071 in
Heilongjiang, Jilin, Liaoning, and most provinces and cities in the southeast, with Jiangsu
and Zhejiang being significant contributors, enhancing the degree of coupling. This sug-
gests that increasing the proportion of hydropower generation in the southeastern and
northeastern provinces could lead to reductions in emissions from the resident popula-
tion. Weaker effects were observed in Beijing, Tianjin, Inner Mongolia, Shanghai, Guangxi,
Chongqing, Guizhou, Qinghai, and Ningxia.

The relationship between per-capita GDP and air pollution differs across regions. In
the study by Xu [103], GDP per capita was considered to have a negative effect, except
in the Beijing–Tianjin–Hebei region, Yangtze River Delta, and South China, where it is
believed to have a positive effect. Aslam [104] found that GDP per capita negatively affects
CO2 emissions, whereas the square of the GDP per capita positively impacts CO2 emissions.
In this study, except for the Sichuan and Qinghai regions, GDP per capita was found to
exert a weakening effect on coordinated coupling (Figure 10e). This result suggests that in
most regions, GDP per capita does not simultaneously promote the reduction of residential
air pollution and CO2. Furthermore, the distribution of this influence in terms of strength
was spatially clustered. In the southeastern regions, including Shandong, Henan, Hubei,
Hunan, Jiangsu, Anhui, Zhejiang, Fujian, Jiangxi, and Guangdong, the CCD decreased by
0.954–0.780 for each unit increase in GDP per capita. In Heilongjiang, Jilin, Liaoning, Hebei,
Tianjin, Beijing, and Shanxi, the CCD decreased from 0.780 to 0.621 for each unit increase in
GDP per capita.

Cropland areas represent a potential reservoir of biomass fuel resources, which signifi-
cantly influence residential fuel choices. Consequently, we assessed the cropland area as a
possible influencing factor [105]. As shown in Figure 10f, in the western region (Guangxi,
Guizhou, Chongqing, Shanxi, Ningxia, Gansu, Qinghai, and Sichuan), an increase in the
per capita arable land area resulted in an increase in the degree of coupling coordination.
This led to a decrease in the degree of coupling in the southeastern region and in North
China. The east–west distribution of this difference was significant.

Temperature affects residential emissions through several pathways that influence
energy demand, air pollution dispersion, residential activity patterns, and chemical re-
actions involving pollutants. As depicted in Figure 10h, temperature had a weakening
effect on the synergistic emission reduction in the southeastern region and a promoting
effect on the CCD in the western region, particularly in Sichuan, Qinghai, Gansu, Ningxia,
and Heilongjiang.

An increase in urban population typically leads to increased energy consumption and
emissions. Although urbanization can, to some extent, mitigate the growth of emissions by
enhancing energy use efficiency and upgrading the industrial structure, cities with high
population densities tend to have more severe AP and CO2 emission issues [98,106]. As
shown in Figure 10i, there was a significant difference between the eastern and western
regions in terms of the impact of population distribution on the CCD. However, in contrast
to the effect of temperature, the impact of per capita cropland on the degree of coupling
coordination varied. The southeastern and northern parts of China were associated with a
promotional effect, whereas the western part played a weakening role.
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In summary, in the southeastern region, R&D investment, government investment
in industrial pollution control, the proportion of electricity consumption, GDP per capita,
cropland per capita, and temperature weakened the degree of CCD in the residential
sector, whereas hydroelectricity generation and the proportion of the urban population
enhanced the degree of coupling coordination. In the western region, R&D investment,
government investment in industrial pollution control, the proportion of electricity con-
sumption, cultivated land area per capita, temperature, and the proportion of the urban
population contributed to the CCD. The average years of education in six provinces and
cities, Heilongjiang, Jilin, Henan, Shaanxi, Yunnan, and Guangxi, had a boosting effect on
the CCD.

6. Discussion and Policy Implications
6.1. Regional Emission Characteristics of the Residential Sector Deviated from the Previous
North–South Divide

Previous studies have primarily focused on emission disparities between the northern
and southern regions during the winter heating seasons, as well as emissions from rural
residents in the north. For instance, Ma et al. [107] explored clean and low-carbon heating
pathways in northern China by 2035. Zhang et al. [17] analyzed reducing multiple air
pollutants in northern China via resource sharing. Wang et al. [108] assessed winter
heating’s impact on air quality in northern China. In contrast, this study encompassed
both rural and urban residential emissions in the northern and southern regions. In the
northern region, centralized heating managed by the government or heat plants results in
emission characteristics and drivers that are distinct from those that depend on the fuel
choices made independently by residents and usage times. Hence, these aspects were not
addressed in this study.

Following the implementation of APPCAP 2013 and BSAP 2018, residential air pollu-
tion emissions have seen a more significant reduction in the north than in the south, with
the disparity widening after policy implementation. As discussed in Figure 8, the article
suggests that energy upgrading and substitution policies for residential emissions are best
prioritized in the more populated southern regions. This approach is likely to be more
effective in reducing pollutant emissions. Furthermore, the LMDI decomposition analysis
of residential pollution emissions classified the 30 provinces into four distinct categories.
The first comprised regions with high demographic influence, including Beijing, Tianjin,
Hebei, Shanxi, Henan, Shandong, Shaanxi, Zhejiang, Jiangxi, Guangdong, and Yunnan.
The second category included provinces with high CO2 impacts per unit of AP, such as
Liaoning, Gansu, Ningxia, Qinghai, Xinjiang, Shanghai, Hubei, and Hunan. The third cate-
gory included provinces with higher emission factors, namely Hainan, Guizhou, Sichuan,
Chongqing, Guangxi, Jiangsu, Fujian, Anhui, and Yunnan. The fourth type, referred to as
the mixed type, includes Jilin, Inner Mongolia, and Heilongjiang.

6.2. Need for Synergistic Emission Reductions in the Residential Sector

As detailed in Sections 5.1 and 5.3, there is a large difference between the AP per
unit of CO2 brought by the residential sector and the CO2 emissions per unit of AP, and
the coordination between CO2 and PM remains low. Primarily, this is because CO2, a
long-life-cycle pollutant [109], does not have an immediate policy impact on emissions
reduction. In contrast, immediate results were observed in terms of the reduction in short-
life-cycle AP pollutants once air pollution abatement policies were implemented. These
differences were evident in air quality improvement, stronger social consensus, higher
participation, and easier policy promotion. However, in a recent study [110], the social cost
of CO2 in 2017 was comparable to the health impact of PM2.5. In another study [111], it
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was shown that PM2.5 pollution in China resulted in a health-related economic burden of
1516 billion yuan in 2020, while CO2 emissions cost society 1081.1 billion yuan. The main
regions bearing these social costs in terms of both PM2.5-related health impacts and CO2

emissions were the BTH and YRD urban conglomerations and certain central metropolitan
areas. The convergence of social costs highlights the importance of addressing both CO2

and PM2.5 together. Policymakers should consider integrated strategies targeting long-
term climate change mitigation and immediate air quality improvement. This approach
could yield synergistic benefits, maximizing the positive impact on public health and the
environment while optimizing pollution control resource allocation.

6.3. Emission Reduction Paths of Residential Sectors in Key Regions

To better understand the driving relationship between social factors and emissions,
this paper attempts to combine the results of the LMDI model and the GTWR model to
analyze the focus areas of emission reduction policies. For specific data references, please
refer to Tables 3 and 7.

In the BHT regions (Beijing, Tianjin, Hebei, Shanxi, Shandong, and Henan), the
population size was the leading factor in residential emissions, averaging 613 (Table 3),
with Shandong Province reaching a high population of 1124. In Shandong Province, the
relative contributions of factors driving (Table 7) cointegration were R&D investment
(0.344), electricity consumption (0.178), urbanization (0.059), and hydroelectricity (0.022),
with R&D and electricity consumption being particularly influential. Notably, the energy
emission factors in Beijing and Tianjin were 404.72 and 205.57, respectively, in contrast to
other regions where the emission factors contributed to pollution reduction. This indicates
that energy policies, such as switching from coal to electricity and natural gas in Hebei,
Shanxi, Shandong, and Henan, significantly impacted residential emissions. In Beijing–
Tianjin–Hebei and the neighboring regions, synergies rose by 0.289 for each percentage
point increase in R&D investment and by 0.146 for each percentage point increase in
electricity consumption.

In the YRD regions, which include Shanghai, Jiangsu, Zhejiang, and Anhui, the con-
tributions of the energy emission factor were significantly high in Jiangsu and Anhui,
at 8884.9 and 4995.3 (Table 3), respectively, indicating substandard energy quality in the
residential sector, low combustion efficiency, and the need for stove upgrades in these
provinces. In Jiangsu, the contribution of the population factor to the emission factor was
1118. In Jiangsu, the average years of education, R&D investment, electricity consumption
ratio, urbanization, and hydropower generation were found to enhance the coordination of
particulate matter and CO2 emissions, with the electricity consumption ratio and urban-
ization having the largest absolute values (Table 7) of 0.262 and 0.171, respectively. The
government can reduce residential sector emission factors and population size by imple-
menting measures to address the high contributions of residential sector emission factors
and population size. For example, increasing the share of electricity consumption can lead
to a decrease in coal usage, thereby reducing the sector’s emission factors, while enhancing
urbanization can boost energy use efficiency, thereby reducing air pollutant emissions
and population contributions to the AP. We observed the same pattern in Anhui Province,
where the average years of education, R&D investment, share of electricity consumption,
urbanization, and hydropower generation were found to enhance the coordination of
PM and CO2, with the largest contributions from electricity consumption and urbanization.
In Zhejiang Province, the population’s size made the highest contribution to the emission
factors, and four factors, such as the average years of education, electricity consumption
ratio, urbanization, and hydropower generation, contributed to the coordination of particu-
late matter and CO2. However, urbanization had the strongest effect (0.361), followed by
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the electricity consumption ratio (0.304), both of which were higher than those in Jiangsu
Province. In Shanghai, urbanization (0.319), the share of electricity consumption (0.299),
and years of education per capita (0.137) were conducive to improving the coordination
of particulate matter and CO2. Coordination coupling is currently the primary factor
influencing residential emissions in Shanghai (14,145)

6.4. Limitations and Future Research

Emission factors for the residential sector in the MEIC database were derived from
Tsinghua University-led household survey data for the residential sector [112]. Given
the limitations of official energy statistics reports, household surveys have emerged as a
direct method for gathering data. However, these surveys yield varying results for the
rural residential sector, owing to the differences in the survey samples, years, and methods
of analyzing and estimating energy consumption [105,112,113]. In this study, we used
provincial panel data for the assessment and did not consider specifics at the municipal
level. For example, the heavily polluted Fen Wei Plain is divided at the municipal level;
therefore, we could not assess the drivers in this region. Resolving this limitation will be a
worthwhile goal in future research.

The GWTR model analyzes the drivers affecting the degree of CCD but does not delve
deeper into their underlying causes. For example, this study confirms that R&D investment
plays a role in weakening synergistic coupling in Shanghai, Zhejiang, Fujian, Jiangxi,
Hunan, Guangdong, and Hainan provinces. Previous studies [114,115] suggest that higher
R&D investment in the industrial sector may lead to higher productivity and an energy
rebound effect and may lead to higher carbon and pollution emissions. In addition, some
studies have shown that technological improvements can enhance the energy efficiency of
residential areas [116]. Studies such as this can help us understand the mechanisms of the
social factors behind emission reductions and provide a direction for future research.

Finally, although the model constructed in this paper is designed to analyze emissions
from the residential sector, given that both the residential and transportation sectors are
significantly influenced by individual behavior, income levels, and policy impacts, it is
worth exploring whether the model can be applied to the transportation sector as well. This
could be a topic for future research.

7. Conclusions
The objective of this study was to quantify the impact of social factors on the synergistic

emission reduction of China’s residential sector and to optimize the emission reduction
route. This study used a nested structure of CCD and GTWR to extend and validate the
decomposition factors of LMDI, and the conclusions are as follows:

1. The emissions from the residential sector predominantly stem from coal consumption,
with coal use accounting for more than 50% of residential emissions in 12 of the 30 provinces.

2. The LMDI decomposition results showed that energy emission factors and popula-
tion size are the main drivers of pollutant emissions, suggesting they should be key targets
for future reduction efforts. Additionally, the traditional north–south division no longer
accurately categorizes residential emissions post-2015. A new classification was proposed:
high demographic influence (Beijing, Tianjin, Hebei, Shanxi, Henan, Shandong, Shaanxi,
Zhejiang, Jiangxi, Guangdong, and Yunnan); high CO2 impacts per unit of AP (Liaoning,
Gansu, Ningxia, Qinghai, Xinjiang, Shanghai, Hubei, and Hunan); higher emission factors
(Hainan, Guizhou, Sichuan, Chongqing, Guangxi, Jiangsu, Fujian, Anhui, and Yunnan);
and mixed type (Jilin, Inner Mongolia, and Heilongjiang).

This new classification provides a more nuanced understanding of regional emission
patterns and can inform targeted policy interventions. For instance, regions with high
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demographic influence may benefit from population control measures and urban planning
strategies to mitigate emissions. Areas with a high CO2 impact per unit of AP could focus
on improving energy efficiency and transitioning to cleaner energy sources. Regions with
higher emission factors should prioritize technological upgrades and stricter emission
standards for residential appliances and heating systems.

3. To explore synergistic emission reduction in the residential sector, we utilized a
nested CCD and GTWR model. The results indicate that northern regions have higher
average coupling degrees than southern ones. The findings show that in the southeastern
region, hydroelectricity generation and the proportion of the urban population enhanced
the degree of coupling coordination. In the western region, R&D investment, government
investment in industrial pollution control, the proportion of electricity consumption, cul-
tivated land area per capita, temperature, and the proportion of the urban population
contributed to the CCD.

The spatial heterogeneity of these factors underscores the need for tailored regional
policies to address residential carbon emissions effectively. In the northeastern region,
factors such as industrial structure and energy consumption patterns played a more signifi-
cant role in influencing the coupling coordination degree. Future research should focus
on developing more granular, city-level analyses to further refine our understanding of
the complex interactions between socioeconomic factors and residential emissions across
diverse urban landscapes.

4. After 2015, emissions driven by population factors in southern cities surpassed those
in northern regions. This shift can be attributed to the rapid urbanization and economic
development occurring in southern China during this period. As more people migrated
to southern cities for employment opportunities, the demand for energy and resources
increased significantly. Consequently, the residential emissions of these growing urban
centers expanded, outpacing the emissions growth in the more established northern cities.
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Abbreviations

Abbreviation Definition
AP The concentration of air pollutants.
Uco2 CO2 emissions.
EAP All pollutants’ emissions.
Ecoal Coal consumption.
Etotal Energy consumption of the residential sector.
P Air pollution per unit of coal.
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Z, Pop Population.
H The concentration of pollutants per CO2 emission unit.
R The CO2 emissions for each unit of pollutant released.
St The proportion of coal used in the overall energy usage of the residential sector.
So The amount of energy used per GDP unit in the residential sector.
E GDP per capita.
LMDI Logarithmic mean Divisia index decomposition
CCD Coupling coordination degree
MP Particulate matter
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