
Academic Editor: Younggy Kim

Received: 8 January 2025

Revised: 26 January 2025

Accepted: 29 January 2025

Published: 1 February 2025

Citation: Gómez, J.K.C.; Barrera,

L.D.P.; Acevedo, C.M.D. Application of

Electronic Tongue for Detection and

Classification of Lead Concentrations in

Coal Mining Wastewater. Environments

2025, 12, 41. https://doi.org/10.3390/

environments12020041

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

Application of Electronic Tongue for Detection and Classification
of Lead Concentrations in Coal Mining Wastewater
Jeniffer Katerine Carrillo Gómez 1,2,* , Laura Daniela Patiño Barrera 1 and Cristhian Manuel Durán Acevedo 1,*

1 Multisensor System and Pattern Recognition Research (GISM) Group, University of Pamplona,
Pamplona 543050, Colombia; laura.patinola@unipamplona.edu.co

2 Chemical Engineering Group, University of Pamplona, Pamplona 543050, Colombia
* Correspondence: jeniffer.carrillo@unipamplona.edu.co (J.K.C.G.); cmduran@unipamplona.edu.co (C.M.D.A.);

Tel.: +57-312-4092247 (J.C.); +57-311-2135846 (C.D.)

Abstract: This study evaluates the potential of an electronic tongue (E-tongue) as an
innovative and alternative method for detecting and classifying lead concentrations in
wastewater generated by coal mining activities in North Santander, Colombia. The E-
tongue aims to complement traditional environmental monitoring techniques with a more
efficient and accurate solution. A total of 110 wastewater samples were collected from two
locations at a coal mine in the municipality of Toledo: one inside the mine (Point 2) and
another outside the mine (Point 1). This research involved the physicochemical analysis
of parameters such as pH, biochemical oxygen demand (BOD), chemical oxygen demand
(COD), total suspended solids (TSS), hardness, and alkalinity, conducted at the University
of Pamplona’s laboratories. The integration of PCA with machine learning algorithms
highlighted the E-tongue’s capability for the real-time, on-site detection and discrimination
of lead concentrations in coal mining wastewater. Achieving a precision and accuracy
above 90%, the SVM classifier outperformed alternative models such as the k-NN, Random
Forest, Naïve Bayes, and Quadratic Discriminant Analysis. This demonstrates the system’s
robustness and reliability in environmental monitoring, enabling the accurate classification
of lead concentrations within the critical range of 0.05 to 1 ppm, essential for assessing
contamination levels and ensuring water safety. These findings highlight the E-tongue
system’s capability as a rapid, cost-effective tool for monitoring lead contamination in
mining wastewater, presenting a viable alternative to conventional methods such as atomic
absorption spectroscopy.

Keywords: E-tongue; lead concentrations; coal mining; screen-printed electrodes; metrics;
wastewater; PCA; machine learning

1. Introduction
Mineral extraction activities are a fundamental economic pillar in many regions world-

wide, as they provide essential resources for industrial and technological development [1].
However, their negative environmental impacts are a growing concern [2], particularly
regarding water-source contamination. This issue arises from the excessive use of water in
all stages of mining, from land exploration to extraction and leaching processes [2]. Mineral
extraction alters natural ecosystems and generates waste that, if not properly managed, can
pollute rivers, lakes, and aquifers with high levels of heavy metals, toxic chemicals such
as sulfuric acid, cyanide, and polycyclic aromatic hydrocarbons (PAHs), and sediments,
which may be discharged into water bodies [3]. However, no exact statistics are available
in the literature on the total amount of waste generated by mining, especially coal mining,
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worldwide, as this figure varies depending on factors such as extraction methods, coal
quality, and production levels. Nevertheless, the extractive industry generates around 3 bil-
lion tons of waste annually. This pollution affects water quality, the health of ecosystems,
and the communities that depend on these sources for their livelihood [4]. It is essential
to thoroughly examine the impact of mining on water contamination to develop and im-
plement effective measures that mitigate its adverse effects and promote more sustainable
practices within the mining industry. Such efforts are vital to achieving the United Nations’
Sustainable Development Goal 6 (SDG 6), which seeks to ensure the availability of clean
water, sustainable water management, and universal access to sanitation [5]. Throughout
history, compound extraction methods have evolved in response to human needs and tech-
nological advancements. In ancient times, these processes focused on obtaining minerals
and metals to craft tools and objects that facilitated daily activities [6,7].

Over time, extraction techniques have diversified and become more sophisticated,
leading to underground and open-pit mining methods, currently the most widely used
worldwide. Open-pit mining, accounting for approximately 80% of global mining pro-
duction, extracts minerals in surface deposits such as coal, copper, iron, bauxite, and
phosphates. In contrast, underground mining represents around 20% of global production
and extracts minerals at depths greater than 200 m. This method is essential for high-value
resources such as gold, platinum, diamonds, nickel, and uranium, enabling access to de-
posits that are not feasible with surface techniques. Both methods utilize explosives to break
apart rock and chemical agents for leaching, efficiently extracting the desired metals [8].

However, the development of these technologies has led to significant environmental
impacts, including acid mine drainage, the release of toxic compounds into the atmosphere,
and the discharge of heavy metals such as mercury, cyanide, and lead into surface water
bodies. When these substances accumulate in high concentrations without proper control,
they cause severe ecosystem disruptions [9].

Lead (Pb) is among the most polluting metals in water sources due to its high toxicity
and environmental persistence, posing a severe risk to human health and ecosystems [10].
Mining is a significant source of lead contamination, as this metal can be released into water
and soil during mineral extraction and processing, affecting the quality of these resources.
Lead exposure is associated with numerous health issues, including developmental disor-
ders in children, damage to the nervous and digestive systems, and adverse effects on vital
organs. Its low degradability in organisms enables its accumulation, leading to long-term
negative impacts on humans and ecosystems [11,12]. Studies have shown elevated lead
levels in drinking water and soil near mining operations [13], presenting a significant risk
to local communities that lack monitoring and mitigation measures to control exposure.
Therefore, it is essential to develop techniques to detect and quantify lead concentrations
in water sources to mitigate the adverse effects of this toxic metal. Detection requires
advanced methods designed to identify trace metals at both low and high concentrations,
thereby ensuring more responsible environmental management [14–16].

Traditional methods for quantifying heavy metals include atomic absorption spec-
troscopy (AAS), one of the most widely used techniques due to its detection capability
across various concentration ranges, particularly at low levels, offering high selectivity
and precision. Compared to flame atomic absorption spectrophotometry, which has lower
interference, higher precision, and faster results, traditional AAS tends to be more costly
and susceptible to interference [17]. Another conventional method is Inductively Coupled
Plasma–Optical Emission Spectrometry (ICP-OES). It combines the ability to analyze mul-
tiple elements simultaneously with adequate sensitivity, making it especially useful for
studying contaminated water. However, its cost is significantly higher than AAS’s [18].
Despite their effectiveness, these methods have considerable limitations, such as high costs,
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the need for sophisticated equipment and specialized laboratories, and the difficulty of
conducting “in situ” analyses. Furthermore, many of these methods are designed to detect
a single metal, and their precision can vary depending on the technique employed.

These disadvantages highlight the need for more accessible, portable, and versatile
alternatives.

Electrochemical techniques have recently become an efficient alternative for analyzing
heavy metals like lead in water samples. These methods are notable for their high sensi-
tivity, speed, and lower cost than traditional approaches [19]. Among these innovative
tools are electronic tongue devices designed to simulate the human sense of taste. These
technologies can identify and quantify sample components using screen-printed electrodes.
Their design allows E-tongues to accurately differentiate metal concentrations and detect
multiple contaminants in complex liquid media. This is achieved through advanced elec-
trochemical techniques such as voltammetry and potentiometry, which have been proven
to be effective in various studies for analyzing and monitoring contaminants in aquatic
environments [20–22].

The use of these devices for detecting heavy metals has been explored in numerous
studies. One study reported analyzing wastewater and soils to identify metals and or-
ganic and inorganic compounds using polymeric membrane electrodes and voltammetric
techniques [22]. Similarly, one work was conducted for the spatial distribution and con-
centration evaluation of heavy metals in soils [23]. Another study evaluated the use of
multi-frequency electrodes in classifying and identifying heavy metal ions in drinking
water. This approach yielded promising results using Principal Component Analysis (PCA)
to visualize contaminant classification [24]. Additionally, other data analysis methods for
E-tongue results, such as partial least squares (PLS) models [25] and colorimetric sensor
arrays (CSAs) have contributed to improving metal identification and classification in water
samples [26].

This study aims to evaluate the effectiveness of an E-tongue as an innovative and effi-
cient alternative for detecting and classifying lead concentrations in wastewater generated
by coal mining activities representing a region’s primary mining activity. The device is a
promising solution compared to traditional methods for quantifying heavy metals, standing
out for its high precision, portability, rapid results, and lower operational costs. Research
was conducted in two complementary phases: In the first phase, we performed preliminary
tests with synthetic lead solutions at concentrations ranging from 0.5 to 100 ppm and later
at lower concentrations from 0.05 to 1 ppm, using PCA and machine learning algorithms to
create training models and evaluate the device’s performance. In the second phase, real
wastewater samples collected from two strategic points at a coal mine in Toledo, Norte de
Santander, were analyzed and incorporated into the models. These samples underwent the
physicochemical characterization of key parameters such as pH and conductivity, along
with a simultaneous comparative analysis between the E-tongue and conventional analyti-
cal methods, thus consolidating its feasibility for environmental applications in real-world
scenarios.

Figure 1 illustrates the methodology developed during this study for detecting and
identifying lead in mining wastewater samples.



Environments 2025, 12, 41 4 of 19
Environments 2025, 12, x FOR PEER REVIEW 4 of 18 
 

 

Figure 1. Methodology established for lead quantification using electronic tongue. 

2. Materials and Methods 
2.1. Collection of Mining Wastewater Samples 

In this study, two strategic sampling points were selected to assess the impact of min-
ing activities on nearby water bodies. The first sampling point (Point 1) was located at the 
mine’s outlet, where wastewater used for coal washing and extraction activities is dis-
charged. This location is a direct discharge point into the region’s surface water bodies. The 
second sampling point (Point 2) corresponded to a sedimentation pond within the Toledo 
mine. This structure allows the settling of solid particles suspended in wastewater generated 
during mining operations. At this site, the sample was collected from the water surface. 

Samples were placed in 1 L polyethylene containers previously washed with distilled 
water and rinsed with the same sample water to avoid external contamination. Afterward, 
they were stored at 4 °C and transported to the laboratory within 24 h to ensure their 
preservation and analytical validity. 

It should be noted that standardized protocols were used in this study, which are 
based on current Colombian regulations to ensure the quality of the collected samples and 
avoid cross-contamination, among which were Resolution 0631 of 2015 of the Ministry of 
Environment and Sustainable Development, Decree 3930 of 2010, and the Colombian 
Technical Standard (NTC) 5667-3, which provide technical guidelines for the collection, 
conservation, and transportation of water and wastewater samples, guaranteeing the re-
liability of the analytical results. 

2.2. Methods of Analysis of Mining Wastewater Samples 

The collected wastewater samples were divided into three volume fractions to per-
form different types of analysis and characterize their properties. 

2.2.1. Physicochemical Characterization 

The parameters described in Table 1 were analyzed in the physicochemical charac-
terization of the samples using a combination of instrumental and volumetric methods. 

Figure 1. Methodology established for lead quantification using electronic tongue.

As mentioned, various machine learning classifiers, including the Support Vector
Machine (SVM), k-Nearest Neighbor (k-NN), Random Forest (RF), Naïve Bayes, and
Quadratic Discriminant Analysis (QDA), were applied to assess classification accuracy.
The confusion matrix demonstrated excellent performance, achieving high accuracy across
multiple Pb concentration levels.

2. Materials and Methods
2.1. Collection of Mining Wastewater Samples

In this study, two strategic sampling points were selected to assess the impact of
mining activities on nearby water bodies. The first sampling point (Point 1) was located
at the mine’s outlet, where wastewater used for coal washing and extraction activities is
discharged. This location is a direct discharge point into the region’s surface water bodies.
The second sampling point (Point 2) corresponded to a sedimentation pond within the
Toledo mine. This structure allows the settling of solid particles suspended in wastewater
generated during mining operations. At this site, the sample was collected from the
water surface.

Samples were placed in 1 L polyethylene containers previously washed with distilled
water and rinsed with the same sample water to avoid external contamination. Afterward,
they were stored at 4 ◦C and transported to the laboratory within 24 h to ensure their
preservation and analytical validity.

It should be noted that standardized protocols were used in this study, which are
based on current Colombian regulations to ensure the quality of the collected samples and
avoid cross-contamination, among which were Resolution 0631 of 2015 of the Ministry
of Environment and Sustainable Development, Decree 3930 of 2010, and the Colombian
Technical Standard (NTC) 5667-3, which provide technical guidelines for the collection,
conservation, and transportation of water and wastewater samples, guaranteeing the
reliability of the analytical results.
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2.2. Methods of Analysis of Mining Wastewater Samples

The collected wastewater samples were divided into three volume fractions to perform
different types of analysis and characterize their properties.

2.2.1. Physicochemical Characterization

The parameters described in Table 1 were analyzed in the physicochemical charac-
terization of the samples using a combination of instrumental and volumetric methods.
To guarantee the precision and reliability of the results, calibrated equipment was used
according to international regulations and established protocols, ensuring compliance with
quality standards in the analysis.

Table 1. Physicochemical Parameters.

Parameter Technique Standard Reference

pH Potentiometric Method NTC 4113
APHA 4500 [27,28]

Conductivity
[µS/cm] Electrometric Method NTC 809

APHA 2510-B [29,30]

Turbidity [NTU] Nephelometric Method NTC 4707
APHA 2130-B [31,32]

Color [UPtCo] Visual Comparison with
Calibrated Disks

NTC 5844
APHA 2120-B [33,34]

Alkalinity [mg/L] Volumetric Method NTC 4903
APHA 2320-B [35,36]

Hardness [mg/L] EDTA Titration NTC 4706
APHA 2340-C [37,38]

Nitrites [mg/L] Spectrophotometric
Method

NTC 4798
APHA 4500-NO2-B [39,40]

Sulfates [mg/L]
Turbidimetric

Spectrophotometric
Method

NTC 4708
APHA 4500-SO4 [41,42]

Phosphates [mg/L]
Spectrophotometric

Method (Molybdenum
Blue)

NTC 5350
APHA 4500-P [43,44]

SST [mg/L] Gravimetric Method NTC 897
APHA 2540-D [45,46]

DQO [mg/L] Closed Reflux
Colorimetric Method

NTC 3629
APHA 5220-D [47,48]

DBO5 Incubation Method NTC 3963
APHA 5210-B [49,50]

Note: the standards mentioned correspond to those applicable in Colombia (NTC) or internationally recognized
standards (APHA—American Public Health Association).

2.2.2. Detection and Quantification of Lead Using Atomic Absorption Spectroscopy (AAS)

The detection and quantification of lead in the wastewater samples were performed
following the procedures outlined in standard methods 3030E and 3111B. The samples
underwent an acid digestion process using high-purity nitric acid (HNO3) to decompose
organic matter and release the metals present. This process was conducted with an ethos
easy microwave digester, which ensured precise control of temperature and pressure
conditions during digestion.
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Subsequently, the digested samples were analyzed using a Shimadzu AA-7000 Series
AAS (Shimadzu Corporation, Kyoto, Japan) with an air-acetylene flame as the energy source.
Quantification was carried out using a certified lead standard (CRM) with a concentration
of 1000 mg/L, which facilitated the construction of a calibration curve, ensuring high
precision and reliability in determining lead concentrations.

During the digestion and analysis process, environmental conditions were carefully
controlled, with an average temperature of 23.4 ◦C and relative humidity of 55.9%. This
ensured the chemical stability of the samples and minimized potential interferences in the
measurements.

2.2.3. The Implementation of an E-Tongue as an Alternative Technique

An E-tongue was employed as a complementary and innovative approach to detect
and quantify lead in the wastewater samples. This analytical device is designed to emulate
the sensory function of human taste buds, enabling the detection and analysis of chemical
substances in liquid solutions. The system comprises a set of non-selective chemical sensors
whose responses partially vary with the diverse compounds in a sample, generating unique
patterns or “chemical fingerprints”.

To evaluate the capability of the E-tongue in detecting and quantifying lead in wastew-
ater, a two-stage methodology was designed:

1. Standard solutions were utilized.
2. Real samples collected from the coal mine were analyzed.

This methodology facilitated the system’s calibration, the evaluation of its sensitivity
and detection limit, and the development of an appropriate discrimination model.

• Preparation of lead standard solutions and actual samples

Lead standard solutions were prepared with concentrations ranging from 0 ppm
(blank) to 100 ppm. This concentration range was selected based on typical scenarios of
mining wastewater contamination reported in previous studies and regulations, simulating
real contamination conditions.

In the first test, standard solutions within a concentration range of 0.5 ppm to 100 ppm
were used to evaluate the device’s ability to classify and discriminate between different
lead concentrations. In the second stage, a smaller concentration range, between 0.05 ppm
and 1 ppm (see Table 2), was employed, considering the limits established by Colom-
bia’s Ministry of Environment and Sustainable Development under Resolution 0631 of
2015. This resolution sets the maximum permissible lead concentration in point-source
discharges of non-domestic wastewater (ARnD) into surface water bodies from mining
activities at 0.2 ppm. Additionally, distilled water samples were included as blanks, along
with real samples collected from the coal mine. This design allowed the evaluation of
the E-tongue’s ability to classify samples with concentrations near the regulatory value,
simulating controlled discharge conditions that comply with the standards.

Subsequently, training algorithms using machine learning techniques were developed
alongside mathematical dimensionality reduction models, such as PCA, to describe the
data in a reduced space. These models aimed to project the samples collected from Points 1
and 2.

In total, 10 repetitions were performed for each concentration, including the distilled
water used as a blank and the real samples. This approach ensured the precision and
reproducibility of the results.
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Table 2. Lead standard solutions and real samples.

Test 1 Test 2

0.5 ppm Distilled water

1 ppm 0.05 ppm

10 ppm 0.1 ppm

20 ppm 0.3 ppm

40 ppm 0.5 ppm

50 ppm 0.6 ppm

60 ppm 0.8 ppm

70 ppm 0.9 ppm

80 ppm 1 ppm

90 ppm Sample 1

100 ppm Sample 2

• Electrochemical analysis

The samples were analyzed using a µStat8000 potentiostat (Metrohm DropSens, As-
turias, Spain) with 8 channels operated through specialized software, DropView 8400
version 3.78, which facilitated the detailed processing and analysis of the electrochemical
measurements. Afterward, 50 µL of wastewater was measured using a micropipette and
deposited onto C110 screen-printed electrodes (Metrohm DropSens, Asturias, Spain). These
electrodes included a carbon working electrode, a carbon auxiliary electrode, and a silver
reference electrode, which are widely used in electrochemical analysis for their stability
and high reproducibility.

Cyclic voltammetry was employed for the electrochemical analysis, allowing the
generation of characteristic current patterns as a function of the applied potential. These
patterns were used to identify and quantify the presence of lead. Table 3 outlines the oper-
ating parameters used in the electronic tongue, including the potentiostat configurations,
potential ranges, and sweep rates applied during cyclic voltammetry.

Table 3. E-tongue operation parameters.

z Assigned Value

Econd [V] 0

Edep [V] 0

Tcond [s] 0

Tdep [s] 0

Tequil [s] 0.3

Ebegin [V] −1

Evtx1 [V] −1

Evtx2 [V] 1

Estpe [V] 0.01

Srate [V/s] 0.05

Nscans 10

• Data Processing
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The initially obtained electrochemical data were preprocessed by extracting two fea-
tures from the signals generated by the screen-printed electrodes. The parameters were as
follows:

∆C1 = Cmaximum − Cminimum (1)

∆C2 = Cfinal − Cinitial (2)

where Cmaximum is the maximum current value obtained from the electrode signals,
Cminimun is the minimum current value, Cfinal is the final current value reached by the
electrode, and Cinicial is the initial current value. Additionally, the data were normal-
ized to a range between −1 and 1, providing scaled values within a similar range. After
normalization, the unsupervised PCA technique was applied. This statistical method is
used to reduce the dimensionality of a dataset while preserving most of its variability
despite the complexity of multivariate data, which often includes responses from multiple
chemical sensors. In this study, since only carbon electrodes were used and two features
(∆C1 and ∆C2) were extracted from the dataset, PCA primarily served to identify new
directions, explaining the most significant data variability. This allowed for dimensionality
reduction, as the two extracted PCA features identified two principal components (PC1 and
PC2). PC1 captured most of the data variability, while PC2 accounted for the remaining
variability.

Therefore, based on the two extracted features, the PCA achieved a projection that
maximized the separation between classes, eliminated noise, and reduced dependency
between the features, thereby improving the classifiers’ performance. The classifiers and
learning algorithms used for sample classification are listed below (see Table 4).

Table 4. Learning and classification methods used for lead detection in wastewater.

Method Type Operation Applications Reference

SVM
(Support Vector

Machine)
Supervised

Finds an optimal hyperplane
that maximizes class separation
using kernel transformations.

Text Classification,
Disease Detection,

Image Analysis
[51]

k-NN
(k-Nearest Neighbor) Supervised

Classifies based on the classes of
the k-nearest neighbors in the

feature space.

Pattern Recognition,
Image Classification,

Recommendation
Systems

[52]

RF
(Random Forest) Supervised

An ensemble of decision trees
that uses random sampling and
the averaging of predictions to

improve accuracy.

Value Prediction,
Medical Data Analysis,

Fraud Detection
[53]

Naïve Bayes Supervised

Based on conditional probability
and Bayes’s theorem;

independence between features
is assumed.

Text Classification,
Spam Detection,

Sentiment Analysis
[54]

QDA
(Quadratic

Discriminant Analysis)
Supervised

Fits quadratic decision
boundaries based on

class-specific statistics.

Medical Diagnosis,
Pattern Recognition,

Finance and Marketing
[55]

The PCA scores were employed for the classifier methods as they represented the
data projected onto PC1 and PC2. This approach eliminated correlations between features
and improved class separability. This simplification facilitated the classifiers’ performance
by focusing on the most relevant features, minimizing noise, and reducing the risk of
overfitting. Furthermore, overfitting was mitigated by applying the cross-validation (CV)
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method with k = 5 in the machine learning model. This method divided the dataset into
five parts or folds where, in each iteration, one fold was used for testing and the other four
for training. The process was repeated five times.

Using PCA for preprocessing and as the CV technique, the classifiers were evaluated
using transformed, more manageable, and relevant data. As previously mentioned, the
110 measurements for each test were distributed across 11 categories, with 10 measurements
per category. At the end of the processing, the predictions made by the classification models
were analyzed using confusion matrices and the following metrics: accuracy, precision,
sensitivity, specificity, F1-score, negative predictive value (NPV), and area under the ROC
curve (AUC).

3. Results
3.1. Physicochemical Analysis

Table 5 summarizes the physicochemical parameters evaluated in the mining wastew-
ater samples compared to the limits established by Resolution 631 of 2015. This Colombian
regulation governs the maximum permissible concentrations for discharges into surface
water bodies and public sewage systems. As illustrated, the pH levels of the analyzed
samples fell within the permissible range (6–9) defined by the regulation, indicating that
the water did not exhibit acidic or highly alkaline conditions that could negatively impact
the receiving ecosystems. However, the elevated electrical conductivity, reported in µS/cm,
reflected a high concentration of dissolved ions, likely associated with contamination from
salts and metals resulting from extractive activities.

Table 5. Physicochemical characteristics.

Parameter Sample Point 1 Sample Point 2 Permissible limit

pH 7.3 8.1 6–9

Conductivity
[µS/cm] 3224 2864 Analysis and Report

Turbidity [NTU] 424 22.2 Analysis and Report

Color [UPtCo] 643 181 Analysis and Report

Alkalinity [mg/L] 340 560 Analysis and Report

Hardness [mg/L] 2500 966 Analysis and Report

Nitrites [mg/L] 0.089 0.042 Analysis and Report

Sulfates [mg/L] 118 115 1200

Phosphates [mg/L] 2.85 1.3 Analysis and Report

SST [mg/L] 1370 108 50

DQO [mg/L] 508 24 150

DBO5 314 15.1 50

The alkalinity remained within typically reported ranges, essential in buffering pH
levels. Hardness was considerably higher at Point 1 than at Point 2 (966 mg/L). This
increase was attributed to calcium and magnesium ions in the water.

The turbidity and color values at sampling Point 1 (424 NTU and 643 UPtCo, re-
spectively) were elevated, indicating a high load of suspended particles and dissolved
compounds, both organic and inorganic. The total suspended solids (TSS) also reached
1370 mg/L, far exceeding the permissible limit of 50 mg/L. These conditions represent a
significant risk to aquatic life and the functionality of receiving ecosystems.
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In contrast, sulfates, nitrites, and phosphates remained within permissible limits.
Nevertheless, their accumulation permits monitoring, as elevated concentrations can lead
to cumulative negative impacts on ecosystems. Lastly, the high values of chemical oxygen
demand (COD, 508 mg/L) and biochemical oxygen demand (BOD5, 314 mg/L) at Point
1 indicated a significant organic load. The COD reflected the presence of oxidizable
organic and inorganic matter, while the BOD5 measured the oxygen required for the
biological degradation of organic matter, highlighting a direct impact on aquatic ecosystems.
Overall, the wastewater from coal mining showed characteristics that significantly exceeded
regulatory limits in several critical parameters, particularly at Point 1. This underscores
the urgent need to implement effective treatment and mitigation strategies to reduce its
environmental impact.

3.2. Detection and Quantification of Lead Using AAS

The analysis of lead concentrations in the mining wastewater samples was conducted
using AAS, revealing significant findings in the context of mining activities in the munici-
pality of Toledo. The determined concentrations were 0.4 ppm for Sample 1 and 0.5 ppm
for Sample 2. Both values exceeded the maximum permissible limit of 0.2 ppm established
by Resolution 631 of 2015. Thus, the elevated lead concentrations can be attributed to sev-
eral factors related to mining activities, where the geological composition of the area may
include lead-bearing minerals that are released and transported by wastewater during coal
extraction and processing. Additionally, heavy machinery and auxiliary materials, such as
fuels, lubricants, and chemical reagents, may contain traces of heavy metals. Furthermore,
the location of Sample 1, collected outside the mine, indicates that water flows in contact
with mining waste and leaching zones might contribute to lead runoff into surrounding
water bodies. Following standard Methods 3030E and 3111B, the detection procedure
ensures high precision in determining lead concentrations. However, the results highlight
the urgent need to implement corrective measures at the mine to reduce lead concentrations
in effluents, ensuring compliance with current regulations and mitigating environmental
impacts.

3.3. E-Tongue

In the cyclic voltammetry graph (see Figure 2), two of the studied concentrations
clearly differ in current responses.

The solution containing 1 ppm of lead exhibited a significantly lower current, ranging
from −40 µA to −30 µA, compared to the 0.05 ppm solution, which displayed substantially
higher current values, approximately −1 µA. This observation indicates that electrochemi-
cal interactions become more pronounced with increasing lead concentration, signifying a
proportional relationship between the current magnitude and the concentration of metal
ions in the samples.

Additionally, variations in potential behavior along the X-axis are observed, with no
clearly defined peaks visible in Figure 2. This absence of distinct peaks is likely due to
the weak redox processes of lead or their masking by the system’s capacitive current. In
the 0.05 ppm curve (blue), the low lead concentration results in an almost linear signal,
lacking sufficient intensity to produce noticeable redox peaks. Likewise, in the 1 ppm curve
(orange), while the current magnitude is higher, no distinct peaks are observed, likely due
to diffusion limitations, slow electrochemical kinetics, or the predominance of capacitive
currents. These results indicate that the E-tongue demonstrated high sensitivity and speci-
ficity in distinguishing between lead concentrations, even at levels such as 0.05 ppm. This
performance is attributed to the design of the E-tongue’s non-selective electrodes, which
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partially reacted with the analytes present in the samples, generating unique electrical
signals that allowed for the characterization of the chemical profile.
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performance is attributed to the design of the E-tongue’s non-selective electrodes, which 
partially reacted with the analytes present in the samples, generating unique electrical 
signals that allowed for the characterization of the chemical profile. 

3.3.1. Concentrations for Evaluating the Performance of the E-Tongue 

Figure 3 depicts the response of the PCA based on measurements obtained using the 
E-tongue based on C110 carbon electrodes. For this experiment, synthetic lead solutions 
were prepared within a concentration range of 0.5 ppm to 100 ppm, with the primary 
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Figure 2. The response of the C110 electrode of the E-tongue to lead concentrations of 0.05 ppm and
1 ppm in wastewater.

3.3.1. Concentrations for Evaluating the Performance of the E-Tongue

Figure 3 depicts the response of the PCA based on measurements obtained using the
E-tongue based on C110 carbon electrodes. For this experiment, synthetic lead solutions
were prepared within a concentration range of 0.5 ppm to 100 ppm, with the primary
objective of evaluating the E-tongue’s ability to detect and differentiate specific lead concen-
trations in wastewater samples. The data were preprocessed using the “mean-centering”
normalization method to ensure that the variables were centered around their mean before
applying the PCA. This step was essential to eliminate biases arising from scale differences
between the extracted features, enabling the principal components to reflect the underlying
variability in the dataset accurately. PC1 captured 97.31% of the variance, representing the
most correlated variability.
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Figure 4 depicts the confusion matrix used to evaluate the performance of the SVM
classifier applied to the 110 lead concentration measurements acquired with the E-tongue.
A five-fold cross-validation method was employed to ensure the approach’s robustness.
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Figure 4. Confusion matrix obtained from PCA-SVM classification model of lead concentrations in
wastewater using E-tongue (C110 electrode).

In the illustration, the rows represent the actual lead concentration classes, and the
columns represent the predicted classes, with the diagonal entries indicating correct classi-
fications. The model demonstrated high accuracy for most lead concentrations; however,
misclassifications primarily occurred between the 1 ppm, 50 ppm, and 100 ppm levels,
likely due to overlapping electrode responses or similarities in chemical composition.
The strong diagonal dominance highlights the effectiveness of the SVM in classifying the
measurements, achieving an accuracy rate of 97.30%.

Table 6 presents the performance of the classification methods (SVM, k-NN, Random
Forest, Naïve Bayes, and QDA) in classifying lead concentrations in wastewater using mea-
surements from the E-tongue system. Among the methods, the SVM model demonstrated
the best performance, achieving an accuracy, sensitivity, and specificity of 97.30% and the
highest F1-score of 99.73%. The k-NN model also performed well, with an accuracy of
95.10% and an AUC of 97.00%, while the QDA achieved a good balance with a specificity
of 99.36%. Similarly, the Random Forest showed moderately good performance with an
accuracy of 90.91%, whereas the Naïve Bayes had the lowest accuracy recorded at 86.36%,
indicating marked differences in the performance of the models. Overall, the SVM classifier
demonstrated superior performance.

Table 6. Metrics of different classification models for classifying lead concentrations in wastewater
through E-tongue (C110 electrode).

ML Model Accuracy
(%)

Precision
(%)

Sensitivity
(%)

Specificity
(%)

F1-Score
(%)

NPV
(%)

AUC
ROC Curve (%)

SVM 97.30 97.52 97.30 97.30 99.73 99.73 98.50

k-NN 94.55 95.10 94.55 94.45 94.57 99.46 97.00

RF 90.91 91.70 90.91 99.09 90.90 99.10 95.00

Naïve Bayes 86.36 86.75 86.36 98.64 86.01 98.65 92.50

QDA 93.64 93.88 93.64 99.36 93.63 99.37 96.50
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3.3.2. Concentrations at Points 1 and 2

The PCA plot in Figure 5 demonstrates the distribution of the analyzed samples, which
include lead concentrations ranging from 0.05 ppm to 1.0 ppm, distilled water as a reference
(0 ppm), and real wastewater samples collected from the two specific points outlined in
the methodology. This analysis assessed the ability of the PCA model, developed with
synthetic solutions, to project and classify real samples based on their lead content. In
the plot, the x-axis represents PC1, capturing most of the system’s variability (99.93%),
demonstrating its ability to differentiate between samples. The y-axis, corresponding to
PC2, accounts for 0.07% of the variance, providing complementary but limited insights.
The distribution along PC1 highlights a clear separation between the cluster of distilled
water, projected on the left side of the plot, and the samples containing lead, positioned
toward the right. These latter samples include both synthetic solutions and real wastewater
samples.
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from Point 1 and Point 2, analyzed using E-tongue system.

The real samples, identified as Sample 1 and Sample 2, exhibited similarities at specific
concentrations. In the model, Sample 1 was projected around a lead concentration of
0.3 ppm to 0.4 ppm, while Sample 2 was near 0.5 ppm. This reflects consistency in their
chemical profiles and confirms the system’s capability to provide quantitative approxima-
tions based on the PCA model. These results align with findings from the AAS analysis
of the same samples, which determined lead concentrations of 0.4 ppm in Sample 1 and
0.5 ppm in Sample 2. This concordance underscores the precision of the electronic tongue
in identifying concentrations close to actual values.

These findings demonstrate the sensitivity and accuracy of the E-tongue in detecting
low lead concentrations in wastewater, effectively projecting real samples onto a model
previously calibrated with standard solutions ranging from 0.05 ppm to 1 ppm. The
separation of groups confirms the E-tongue’s efficacy in classifying and quantifying heavy
metals, establishing it as a reliable and practical tool for environmental monitoring in
industrial contexts, with the ability to deliver rapid and precise results.

The confusion matrix in Figure 6 represents the performance of a PCA-RF classification
model used to predict lead concentrations in wastewater samples from two points (Point 1
and Point 2).
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Table 7 depicts the performance metrics of machine learning models used to classify
lower lead concentrations in wastewater. The SVM and RF models showed the best overall
performance, achieving a 90.00% accuracy, 90.00% sensitivity, and high AUC values (SVM
at 94.50% and RF at 94.00%). The SVM showed a good precision of 91.05% and specificity
of 99.00%, while the RF demonstrated a high NPV of 99.00%.

Table 7. Metrics of confusion matrix for PCA and classification models for classifying lower lead
concentrations in wastewater from Point 1 and Point 2 through E-tongue (C110 electrode).

Model Accuracy
(%)

Precision
(%)

Sensitivity
(%)

Specificity
(%)

F1-Score
(%)

NPV
(%)

AUC
ROC Curve (%)

SVM 90.00 91.05 90.00 99.00 90.15 99.01 94.50

k-NN 70.23 70.85 70.00 96.80 70.00 96.82 66.07

RF 90.00 90.59 90.00 98.99 99.02 99.00 94.00

Naïve Bayes 86.36 86.64 86.36 98.64 86.43 98.64 92.50

QDA 87.27 89.52 87.27 98.73 87.44 98.74 93.00

On the other hand, the k-NN performed poorly, with a lower AUC of 66.07% and
an accuracy of 70.23%. At the same time, the Naïve Bayes and QDA showed balanced
performance, with the QDA achieving an AUC of 93.00% and the Naïve Bayes performing
well with specificity of 98.64%. Therefore, the SVM and RF were the most reliable classifiers
for detecting lower lead concentrations in wastewater.

4. Discussion
E-tongues and electrochemical sensors have been proven to be promising tools in

environmental monitoring, particularly for detecting heavy metals in water and soil, ad-
dressing one of the most critical global environmental issues. Recent studies have explored
various configurations and methodologies to enhance these devices’ sensitivity, selectivity,
and applicability. Shimizu et al., 2019 [56] provided a comprehensive review of E-tongues
monitoring environmental pollutants, particularly for detecting heavy metals in water.
These technologies leverage sensors made of diverse materials, such as polymers, carbon
nanotubes, and metal oxides, which demonstrate high sensitivity in identifying contami-
nants like lead, cadmium, and mercury, even at very low concentrations. However, some
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challenges persist, especially in high-conductivity media like industrial or mining wastew-
ater, where phenomena like “screening effects” and the Debye length dependence reduce
the precision and reproducibility of sensors in complex solutions, limiting their real-world
applicability. Other studies, such as those by Kuhlman et al., 2004 [57], have focused
on E-tongues based on REDOX cells employing anodic stripping voltammetry (ASV) for
detecting heavy metals like zinc, lead, copper, and manganese at concentrations as low as
10 µM.

Thus, advanced adaptations, such as screen-printed electrodes modified with materi-
als like carbon nanofibers, antimony films, and chemical agents (e.g., glutathione, cysteine),
have allowed the simultaneous detection of metals in complex solutions. Using differential
pulse anodic stripping voltammetry (DPASV) and regression algorithms like partial least
squares (PLS), these devices have achieved detection limits ranging from 2.6 to 16.8 µg/L
depending on the metal and electrode type. Similarly, potentiometric sensor arrays have
been employed to detect multiple heavy metals, such as Cu, Zn, Pb, and Cd, even under
challenging conditions like in artificial seawater, with detection thresholds meeting environ-
mental standards. These advancements highlight the progress in sensor technology, with a
significant focus on modified electrodes for improved sensitivity and selectivity. However,
this study emphasizes commercial electrodes, which achieve comparable precision and
classification of metals, notably lead, as they present a cost-effective and accessible alterna-
tive, addressing the limitations associated with the additional expenses and complexity of
preparing modified electrodes.

While much of the existing literature focuses on synthetic and controlled water sam-
ples, this study addresses a critical gap by analyzing real coal mining wastewater, present-
ing a complex mixture of chemical contaminants and suspended solids. This approach
increases E-tongues’ applicability to real-world scenarios, addressing the need for the
real-time monitoring of industrially impacted water bodies. Despite adverse conditions
such as high conductivity, turbidity, and biochemical oxygen demand, combining classical
data preprocessing techniques with machine learning algorithms like the SVM and Random
Forest enabled robust data classification. The confusion matrices (Figures 4 and 6) and
performance metrics (Tables 6 and 7) confirmed the high precision, specificity, and sensi-
tivity achieved by the E-tongue, highlighting the potential of these devices for real-time
environmental monitoring.

5. Conclusions
The E-tongue demonstrated high sensitivity and precision in detecting lead concen-

trations ranging from 0.05 ppm to 1 ppm in mining wastewater, surpassing traditional
methods in terms of portability and cost-efficiency.

The SVM classifier achieved a remarkable precision and accuracy rate of 91.05%,
outperforming other models like the k-NN, Random Forest, and Naïve Bayes, showcasing
its robustness for environmental monitoring applications.

Both sampling points showed lead concentrations exceeding permissible limits
(0.2 ppm), highlighting the significant environmental impact of mining activities in the
region and the need for practical monitoring tools.

As mentioned, despite the challenging conditions of mining wastewater (high turbidity
and organic load), the E-tongue maintained robust performance, proving its applicability
in real-world environmental scenarios.

Combining PCA with machine learning algorithms underscores the E-tongue’s poten-
tial for the real-time, on-site monitoring of heavy metal contamination, addressing a critical
need for sustainable mining practices.
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Furthermore, this application opens the possibility of using additional machine learn-
ing methods to evaluate the classification capacity of the E-tongue further. Techniques such
as Gradient Boosting Machines (e.g., XGBoost or LightGBM), neural networks, and ensem-
ble methods could provide deeper insights into the classification of lead concentrations in
coal mining wastewater. Exploring these advanced algorithms may improve performance
further and enhance the robustness of the electronic tongue system for environmental
monitoring applications.

This study highlights its contribution to advancing detection and classification tech-
niques for heavy metal contamination in environmental contexts. It underscores the
importance of research in addressing critical environmental challenges and enhancing
monitoring practices for the sustainable management of heavy metal pollutants.
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