Variation in Summer and Winter Microclimate in Multi-Chambered Bat Boxes in Eastern Australia: Potential Eco-Physiological Implications for Bats
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Climate
2.2. Bat Box Designs
2.3. Field Setup of Boxes
2.4. Microclimate Monitoring
2.5. Thermal Limits
2.6. Statistical Analysis
3. Results
3.1. Summer Temperature
3.1.1. Randomly Selected 5-Day Period—Hourly Temperatures
5-Day Comparisons—between Designs
5-Day Comparisons—Chambers within Designs
3.1.2. Maximum Temperature Comparisons on Warmest Day
Between Designs
Within Designs
3.1.3. Detailed Investigation of the Black Plywood Box
3.1.4. Comparison of Box Temperatures Vs Thermal Limit Thresholds
3.2. Winter Temperature
3.2.1. Randomly Selected 5-Day Period—Hourly Temperatures
5-Day Comparison—between Designs
5-Day Comparison–Chambers within Designs
3.2.2. Maximum Temperature Comparisons on Warmest and Coolest Day
Between Designs
Within Designs
3.3. Relative Humidity—Summer and Winter
4. Discussion
4.1. Box Colour
4.2. Box Construction Materials
4.3. Multiple Chambers and Vents
4.4. Suitability of Recorded Box Temperatures for Bats
4.4.1. Maternity Roosts
4.4.2. Day Roosts Other Than Maternity Roosts
4.4.3. Thermal Limits and Box Temperature
4.5. Relative Humidity
5. Management Implications
Supplementary Materials
Funding
Acknowledgments
Conflicts of Interest
References
- Calder, C.A. Microhabitat selection during nesting of humming birds in the Rocky Mountains. Ecology 1973, 54, 127–134. [Google Scholar] [CrossRef]
- With, K.A.; Webb, D.R. Microclimate of ground nests: The relative importance of radiative cover and windbreaks for three grassland species. Condor 1993, 95, 401–413. [Google Scholar] [CrossRef]
- Schmidt-Nielson, K. Animal Physiology, 5th ed.; Cambridge University Press: Cambridge, UK, 1997. [Google Scholar]
- Speakman, J.R.; Thomas, D.W. Physiological ecology and energetics of bats. In Bat Ecology; Kunz, T., Fenton, M., Eds.; The University of Chicago Press: Chicago, IL, USA, 2003; pp. 430–492. [Google Scholar]
- Roverud, R.C.; Chappell, M.A. Energetic and thermoregulatory aspects of clustering behaviour in the Neotropical bat Noctilio albiventris. Physiol. Zool. 1991, 74, 1527–1541. [Google Scholar] [CrossRef]
- Sano, A. Postnatal growth and development of thermoregulative ability in the Japanese greater horseshoe bat, Rhinolophus ferrumequinum nippon, related to maternal care. Mamm. Study 2000, 25, 1–15. [Google Scholar] [CrossRef]
- Geiser, F.; Körtner, G. Thermal biology, energetics and torpor in the possums and gliders. In Possums and Gliders; Goldingay, R., Jackson, S., Eds.; Surrey Beatty: Chipping Norton, Australia, 2004; pp. 186–198. [Google Scholar]
- Dietz, M.; Kalko, E.K. Seasonal changes in daily torpor patterns of free-ranging female and male Daubenton’s bats (Myotis daubentonii). J. Comp. Physiol. B 2006, 176, 223–231. [Google Scholar] [CrossRef] [PubMed]
- Willis, C.K.R.; Brigham, R.M. Social thermoregulation exerts more influence than microclimate on forest roost preferences by a cavity-dwelling bat. Behav. Ecol. Sociobiol. 2007, 62, 97–108. [Google Scholar] [CrossRef]
- Stawski, C.; Willis, C.; Geiser, F. The importance of temporal heterothermy in bats. J. Zool. 2014, 292, 86–100. [Google Scholar] [CrossRef] [Green Version]
- Kunz, T.H.; Lumsden, L.F. Ecology of cavity and foliage roosting bats. In Bat Ecology; Kunz, T., Fenton, M., Eds.; The University of Chicago Press: Chicago, IL, USA, 2003; pp. 3–89. [Google Scholar]
- Turbill, C. Roosting and thermoregulatory behaviour of male Gould’s long-eared bats, Nyctophilus gouldi: Energetic benefits of thermally unstable tree roosts. Aust. J. Zool. 2006, 54, 57–60. [Google Scholar] [CrossRef]
- Turbill, C.; Geiser, F. Hibernation by tree-roosting bats. J. Comp. Physiol. B 2008, 178, 597–605. [Google Scholar] [CrossRef]
- Racey, P.; Swift, S. Variations in gestation length in a colony of pipistrelle bats (Pipistrellus pipistrellus) from year to year. Reproduction 1981, 61, 123–129. [Google Scholar] [CrossRef]
- Hoying, K.M.; Kunz, T.H. Variation in size at birth and postnatal growth in the insectivorous bat Pipistrellus subflavus (Chiroptera: Vespertilionidae). J. Zool. 1998, 245, 15–27. [Google Scholar] [CrossRef]
- McLean, J.A.; Speakman, J.R. Energy budgets of lactating and non-reproductive brown long-eared bats (Plecotus auritus) suggest females use compensation in lactation. Funct. Ecol. 1999, 13, 360–372. [Google Scholar] [CrossRef]
- Brittingham, M.C.; Williams, L.M. Bat boxes as alternative roosts for displaced bat maternity colonies. Wildl. Soc. Bull. 2000, 28, 197–207. [Google Scholar]
- Kerth, G.; Weissmann, K.; König, B. Day roost selection in female Bechstein’s bats (Myotis bechsteinii): A field experiment to determine the influence of roost temperature. Oecologia 2001, 126, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Lourenço, S.I.; Palmeirim, J.M. Influence of temperature in roost selection by Pipistrellus pygmaeus (Chiroptera): Relevance for the design of bat boxes. Biol. Conserv. 2004, 119, 237–243. [Google Scholar] [CrossRef]
- Dzal, Y.A.; Brigham, R.M. The tradeoff between torpor use and reproduction in little brown bats (Myotis lucifugus). J. Comp. Physiol. B 2013, 183, 279–288. [Google Scholar] [CrossRef] [PubMed]
- Johnson, J.S.; Lacki, M.J. Summer heterothermy in Rafinesque’s big-eared bats (Corynorhinus rafinesquii) roosting in tree cavities in bottomland hardwood forests. J. Comp. Physiol. B 2013, 183, 709–721. [Google Scholar] [CrossRef]
- Rueegger, N. Bat boxes—A review of their use and application, past, present and future. Acta Chiropterol. 2016, 18, 279–299. [Google Scholar] [CrossRef]
- Mering, E.D.; Chambers, C.L. Thinking outside the box: A review of artificial roosts for bats. Wildl. Soc. Bull. 2014, 38, 741–751. [Google Scholar] [CrossRef]
- Goldingay, R.; Stevens, J. Use of artificial tree hollows by Australian birds and bats. Wildl. Res. 2009, 36, 81–97. [Google Scholar] [CrossRef]
- Bartonička, T.; Řehák, Z. Influence of the microclimate of bat boxes on their occupation by the soprano pipistrelle Pipistrellus pygmaeus: Possible cause of roost switching. Acta Chiropterol. 2007, 9, 517–526. [Google Scholar] [CrossRef]
- Fukui, D.; Okazaki, K.; Miyazaki, M.; Maeda, K. The effect of roost environment on roost selection by non-reproductive and dispersing Asian parti-coloured bats Vespertilio sinensis. Mamm. Study 2010, 35, 99–109. [Google Scholar] [CrossRef]
- Dodds, M.; Bilston, H.A. Comparison of different bat box types by bat occupancy in deciduous woodland, UK. Conserv. Evid. 2013, 10, 24–28. [Google Scholar]
- Doty, A.C.; Stawski, C.; Currie, S.E.; Geiser, F. Black or white? Physiological implications of roost colour and choice in a microbat. J. Therm. Biol. 2016, 60, 162–170. [Google Scholar] [CrossRef]
- Rhodes, M.; Jones, D. The use of bat boxes by insectivorous bats and other fauna in the greater Brisbane region. In The Biology and Conservation of Australasian Bats; Law, B., Eby, P., Lunney, D., Lumsden, L., Eds.; Royal Zoological Society of New South Wales: Mosman, Australia, 2011; pp. 424–442. [Google Scholar]
- Griffiths, S.R.; Rowland, J.A.; Briscoe, N.J.; Lentini, P.E.; Handasyde, K.A.; Lumsden, L.F.; Robert, K.A. Surface reflectance drives nest box temperature profiles and thermal suitability for target wildlife. PLoS ONE 2017, 12. [Google Scholar] [CrossRef]
- Maziarz, M.; Broughton, R.K.; Wesołowski, T. Microclimate in tree cavities and nest-boxes: Implications for hole-nesting birds. For. Ecol. Manag. 2017, 389, 306–313. [Google Scholar] [CrossRef] [Green Version]
- Rowland, J.A.; Briscoe, N.J.; Handasyde, K.A. Comparing the thermal suitability of nest-boxes and tree-hollows for the conservation-management of arboreal marsupials. Biol. Conserv. 2017, 209, 341–348. [Google Scholar] [CrossRef]
- Stebbings, R.E.; Walsh, S.T. Bat Boxes: A Guide to the History, Function, Construction and Use in the Conservation of Bats; Bat Conservation Trust: London, UK, 1991. [Google Scholar]
- Tuttle, M.; Kiser, M.; Kiser, S. The Bat House Builder’s Handbook, 3rd ed.; Bat Conservation International: Austin, TX, USA, 2013. [Google Scholar]
- Webb, P.I.; Speakman, J.R.; Racey, P.A. Evaporative water loss in two sympatric species of vespertilionid bat, Plecotus auritus and Myotis daubentoni: Relation to foraging mode and implications for roost site selection. J. Zool. 1995, 235, 269–278. [Google Scholar] [CrossRef]
- Bruns, H. The economic importance of birds in forests. Bird Study 1960, 7, 193–208. [Google Scholar] [CrossRef]
- Heise, G.; Blohm, T. Arbeit mit Fledermauskästen—sinnvoll oder nicht. Nyctalus 2012, 17, 226–239. [Google Scholar]
- Rueegger, N.; Goldingay, R.L.; Law, B.; Gonsalves, L. Limited use of bat boxes in a rural landscape: Implications for offsetting the clearing of hollow-bearing trees. Restor. Ecol. 2018. [Google Scholar] [CrossRef]
- BOM. Climate statistics for Australian locations. Bureau of Meteorology. 2019. Available online: http://www.bom.gov.au/climate/averages/tables/cw_061363.shtml (accessed on 5 January 2019).
- Eusebio, D.A.; Soriano, F.P.; Cabangon, R.J.; Evans, P.D. Manufacture of Low-Cost Wood-Cement Composites in the Philippines Using Plantation-Grown Australian Species: I. Eucalypts; Australian Centre for International Agricultural Research: Canberra, Australia, 1998; pp. 105–114.
- Flaquer, C.; Puig, X.; López-Baucells, A.; Torre, I.; Freixas, L.; Mas, M.; Porres, X.; Arrizabalaga, A. Could overheating turn bat boxes into death traps. Barbastella 2014, 7, 46–53. [Google Scholar]
- Geiser, F.; Körtner, G.; Turbill, C.; Pavey, C.; Brigham, R. Passive Rewarming from Torpor in Mammals and Birds: Energetic, Ecological and Evolutionary Implications; University of Alaska: Fairbanks, AK, USA, 2004. [Google Scholar]
- Kunz, T.H.; Hood, W.R. Parental care and postnatal growth in the Chiroptera. In Reproductive Biology of Bats; Crichton, E., Krutzsch, P., Eds.; Academic Press: London, UK, 2000; pp. 415–468. [Google Scholar]
- Sedgeley, J. Quality of cavity microclimate as a factor influencing selection of maternity roosts by a tree-dwelling bat, Chalinolobus tuberculatus, in New Zealand. J. Appl. Ecol. 2001, 38, 425–438. [Google Scholar] [CrossRef]
- Willis, C.K.R.; Turbill, C.; Geiser, F. Torpor and thermal energetics in a tiny Australian vespertilionid, the little forest bat (Vespadelus vulturnus). J. Comp. Physiol. B Biochem. Syst. Environ. Physiol. 2005, 175, 479–486. [Google Scholar] [CrossRef] [PubMed]
- Morris, S.; Curtin, A.; Thompson, M. Heterothermy, torpor, respiratory gas exchange, water balance and the effect of feeding in Gould’s long-eared bat Nyctophilus gouldi. J. Exp. Biol. 1994, 197, 309–335. [Google Scholar]
- Morrison, P. Body temperatures in some Australian mammals. I. Chiroptera. Biol. Bull. 1959, 116, 484–497. [Google Scholar] [CrossRef]
- Baudinette, R.; Churchill, S.; Christian, K.; Nelson, J.; Hudson, P. Microclimatic conditions in maternity caves of the bent-wing bat, Miniopterus schreibersii: An attempted restoration of a former maternity site. Wildl. Res. 1994, 21, 607–619. [Google Scholar] [CrossRef]
- Bondarenco, A.; Körtner, G.; Geiser, F. Hot bats: Extreme thermal tolerance in a desert heat wave. Naturwissenschaften 2014, 101, 679–685. [Google Scholar] [CrossRef]
- Licht, P.; Leitner, P. Behavioural response to high temperature of three species of California bats. J. Mammal. 1967, 48, 52–61. [Google Scholar] [CrossRef]
- Maloney, S.K.; Bronner, G.N.; Buffenstein, R. Thermoregulation in the Angolan free-tailed bat Mops condylurus: A small mammal that uses hot roosts. Physiol. Biochem. Zool. 1999, 72, 385–396. [Google Scholar] [CrossRef]
- Pinheiro, J.C.; Bates, D.M. Linear Mixed-effects Models: Basic Concepts and Examples. In Mixed-Effects Models in S and S-Plus; Springer: New York, NY, USA, 2000. [Google Scholar]
- Šidák, Z. Rectangular confidence regions for the means of multivariate normal distributions. J. Am. Stat. Assoc. 1967, 62, 626–633. [Google Scholar] [CrossRef]
- Shaffer, J. Multiple hypothesis testing. Annu. Rev. Psychol. 1995, 46, 561–584. [Google Scholar] [CrossRef]
- Maxim Integrated Products Inc. DS1923: iButton Hygrochron Temperature/Humidity Logger with 8KB Data-Log Memory; 19-4991, Rev 7; Maxim Integrated Products Inc.: San Jose, CA, USA, 2013; p. 53. [Google Scholar]
- Bideguren, G.; López-Baucells, A.; Puig-Montserrat, X.; Mas, M.; Porres, X.; Flaquer, C. Bat boxes and climate change: Testing the risk of over-heating in the Mediterranean region. Biodivers. Conserv. 2018. [Google Scholar] [CrossRef]
- Currie, S.; Noy, K.; Geiser, F. Passive rewarming from torpor in hibernating bats: Minimizing metabolic costs and cardiac demands. Am. J. Physiol. Integr. Comp. Physiol. 2014, 308, R34–R41. [Google Scholar] [CrossRef] [PubMed]
- Goldingay, R.L. Temperature variation in nest boxes in eastern Australia. Aust. Mammal. 2015, 37, 225–233. [Google Scholar] [CrossRef]
- Beyer, G.L.; Goldingay, R.L. The value of nest boxes in the research and management of Australian hollow-using arboreal marsupials. Wildl. Res. 2006, 33, 161–174. [Google Scholar] [CrossRef]
- Rueegger, N.; Goldingay, N.; Brookes, L. Does nest box design influence use by the eastern pygmy-possum? Aust. J. Zool. 2012, 60, 372–380. [Google Scholar] [CrossRef]
- Hoeh, J.P.; Bakken, G.S.; Mitchell, W.A.; O’Keefe, J.M. In artificial roost comparison, bats show preference for rocket box style. PLoS ONE 2018. [Google Scholar] [CrossRef]
- Geiser, F. Energetics, thermal biology, and torpor in Australian bats. In Functional and Evolutionary Ecology of Bats; Zubaid, A., McCracken, G.F., Kunz, T.H., Eds.; Oxford University Press: New York, NY, USA, 2006; pp. 5–22. [Google Scholar]
- Geiser, F.; Brigham, R.M. Torpor, thermal biology, and energetics in Australian long-eared bats (Nyctophilus). J. Comp. Physiol. B 2000, 170, 153–162. [Google Scholar] [CrossRef]
- Hamilton, I.M.; Barclay, R.M. Patterns of daily torpor and day-roost selection by male and female big brown bats (Eptesicus fuscus). Can. J. Zool. 1994, 72, 744–749. [Google Scholar] [CrossRef]
- Geiser, F.; Ruf, T. Hibernation versus daily torpor in mammals and birds: Physiological variables and classification of torpor patterns. Physiol. Zool. 1995, 68, 935–966. [Google Scholar] [CrossRef]
- Sanderson, K.; Jaeger, D.; Bonner, J.; Jansen, L. Activity patterns of bats at house roosts near Adelaide. Aust. Mammal. 2006, 28, 137–145. [Google Scholar] [CrossRef]
- Larson, E.R.; Eastwood, J.R.; Buchanan, K.L.; Bennett, A.T.; Berg, M. Nest box design for a changing climate: The value of improved insulation. Ecol. Manag. Restor. 2018, 19, 39–48. [Google Scholar] [CrossRef]
- Bellard, C.; Bertelsmeier, C.; Leadley, P.; Thuiller, W.; Courchamp, F. Impacts of climate change on the future of biodiversity. Ecol. Lett. 2012, 15, 365–377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Isaac, J.L.; Parsons, M.; Goodman, B.A. How hot do nest boxes get in the tropics? A study of nest boxes for the endangered mahogany glider. Wildl. Res. 2008, 35, 441–445. [Google Scholar] [CrossRef]
- Rueegger, N. Artificial tree hollow creation for cavity-using wildlife: Trialling an alternative method to that of nest boxes. For. Ecol. Manage. 2017, 405, 404–412. [Google Scholar] [CrossRef]
- Griffiths, S.; Lentini, P.; Semmens, K.; Watson, S.; Lumsden, L.; Robert, K. Chainsaw-carved cavities better mimic the thermal properties of natural tree hollows than nest boxes and log hollows. Forests 2018, 9, 235. [Google Scholar] [CrossRef]
Variable | Periods Investigated | Reason |
---|---|---|
Tbox_max & Tbox_warmest (1000–1900 h) | (i) Warmest summer & winter day of sampling period; (ii) Coolest winter day of sampling period; (iii) Randomly selected 5-day period during the sampling period (summer & winter). | Tbox_max & Tbox_warmest were considered the most relevant variables to investigate box temperature as they are considered to be most influential with regard to eco-physiological implications for bats. Summer & winter temperature data were collected as these seasons allowed the investigation of box temperatures among & within box designs during both warm & cool ambient temperatures. A randomly selected 5-day period during summer & winter was used to investigate the ‘average’ box microclimate experienced in these seasons. Investigating temperature among & within box designs during the periods of investigation (i.e., warmest day, coolest day & 5-day period) is of particular relevance to test whether boxes have the potential to cause heat stress (i.e., box temperatures exceeding the upper thermal tolerance limit) in summer [32,41] and/or provide beneficial conditions for bats to passively rewarm in summer & winter [28,42] during both average ambient temperatures & ambient temperature extremes. The black plywood box recorded the warmest temperature of the box designs. After the initial box temperature monitoring, a detailed investigation was undertaken for this design on the warmest day (20 November 2015) during the subsequent monitoring period. This investigation tested whether a vertical temperature gradient existed within chambers (using loggers in an upper & lower position). Of particular interest was whether the vents in the front & back chambers influenced temperature. |
Mean night Tbox_night | Randomly selected 5-day period (2000–0700 h) during the maternity season | Tbox_night during the maternity season is of interest as heat retention may benefit the development of young if boxes are used for maternity roosting [14,43,44]. An investigation of a 5-day night period was undertaken. However, the differences between night temperatures were minimal among box designs (ranging between 0.2 °C & 0.9 °C) and were considered inconsequential with regard to bat box selection & box night temperature. Therefore, this temperature variable was not modelled & is not considered further. |
RHbox_warmest (1000–1900 h) | Randomly selected 5-day period during the sampling period (summer & winter). | Humidity is of interest as it has the potential to influence evaporative water loss of bats [35]. Humidity has also been identified to differ vastly between tree hollows & timber nest boxes [31]. The warmest day period was used because this period was considered to be most relevant for potential eco-physiological implications for bats. |
Box Design Comparisons | 5-Day Tbox_max | 5-Day Tbox_warmest | Warmest Day Tbox_max | ||||
---|---|---|---|---|---|---|---|
Mean Difference (°C) | P | Mean Difference (°C) | P | Mean Difference (°C) | P | ||
Black ply | White ply | 6.0 | <0.001 | 4.1 | <0.001 | 8.3 | 0.001 |
Black wc | 3.2 | <0.001 | 2.1 | 0.004 | 3.1 | 0.360 | |
White wc | 6.3 | <0.001 | 4.6 | <0.001 | 9.0 | <0.001 | |
White ply | Black wc | −2.7 | 0.001 | −2.0 | 0.007 | −5.1 | 0.033 |
White wc | 0.3 | 0.997 | 0.5 | 0.933 | 0.8 | 0.998 | |
Black wc | White wc | 3.0 | <0.001 | 2.5 | 0.007 | 5.9 | 0.016 |
Box Design | Chamber Comparisons | 5-day Tbox_max | 5-day Tbox_warmest | Warmest day Tbox_max | ||||
---|---|---|---|---|---|---|---|---|
Mean Difference (°C) | P | Mean Difference (°C) | P | Mean Difference (°C) | P | |||
Black ply | 1 | 2 | 1.0 | 0.015 | - | - | - | - |
3 | 2.8 | <0.001 | 1.3 | <0.001 | 3.6 | 0.001 | ||
4 | 3.7 | <0.001 | 2.3 | <0.001 | 4.5 | <0.001 | ||
2 | 3 | 1.8 | <0.001 | 1.0 | <0.001 | - | - | |
4 | 2.7 | <0.001 | 1.8 | <0.001 | 2.9 | 0.011 | ||
3 | 4 | 0.9 | 0.032 | 0.8 | <0.001 | - | - | |
Black wc | 1 | 2 | 1.2 | 0.002 | 0.7 | 0.001 | - | - |
3 | 2.0 | <0.001 | 1.2 | <0.001 | 2.5 | 0.035 | ||
4 | 1.4 | <0.001 | 0.7 | 0.001 | - | - | ||
White ply | 1 | 3 | - | - | 0.6 | 0.008 | - | - |
Box Design Comparisons | 5-Day Tbox_max | 5-Day Tbox_warmest | Tbox_max warmest day | Tbox_max coolest day | |||||
---|---|---|---|---|---|---|---|---|---|
Mean Difference (°C) | P | Mean Difference (°C) | P | Mean Difference (°C) | P | Mean Difference (°C) | P | ||
Black ply | White ply | 7.4 | <0.001 | 4.7 | <0.001 | 4.7 | <0.001 | 8.1 | <0.001 |
Black wc | 5.5 | <0.001 | 2.9 | <0.001 | 3.1 | <0.001 | 6.1 | <0.001 | |
White wc | 7.9 | <0.001 | 4.8 | <0.001 | 4.9 | <0.001 | 8.5 | <0.001 | |
White ply | Black wc | −2.0 | <0.001 | −1.8 | <0.001 | −1.6 | 0.005 | −2.0 | 0.002 |
White wc | 0.5 | 0.656 | 0.1 | 0.997 | 0.1 | 1.000 | 0.4 | 0.973 | |
Black wc | White wc | 2.4 | <0.001 | 19 | <0.001 | 1.8 | 0.002 | 2.4 | <0.001 |
Box Design | Chamber Comparison | 5-Day Tbox_max | 5-Day Tbox_warmest | Tbox_max warmest day | Tbox_max coolest day | |||||
---|---|---|---|---|---|---|---|---|---|---|
Mean Difference (°C) | P | Mean Difference (°C) | P | Mean Difference (°C) | P | Mean Difference (°C) | P | |||
Black ply | 1 | 2 | 2.5 | <0.001 | 1.3 | <0.001 | 1.3 | <0.001 | 2.4 | <0.001 |
3 | 5.0 | <0.001 | 2.5 | <0.001 | 3.2 | <0.001 | 5.4 | <0.001 | ||
4 | 5.7 | <0.001 | 2.9 | <0.001 | 3.3 | <0.001 | 6.4 | <0.001 | ||
2 | 3 | 2.5 | <0.001 | 1.2 | <0.001 | 1.9 | <0.001 | 3.0 | <0.001 | |
4 | 3.2 | <0.001 | 1.6 | <0.001 | 2.0 | <0.001 | 4.0 | <0.001 | ||
Black wc | 1 | 2 | 1.1 | 0.001 | 0.7 | 0.003 | - | - | - | - |
2 | 4 | −0.9 | 0.003 | −0.6 | 0.014 | - | - | - | - |
Box Design Comparisons | Summer RH | Winter RH | |||
---|---|---|---|---|---|
Mean Difference (%) | P | Mean Difference (%) | P | ||
Black ply | White ply | −8.0 | <0.001 | −21.7 | <0.001 |
Black wc | −5.1 | <0.001 | −14.2 | <0.001 | |
White wc | −10.1 | <0.001 | −22.9 | <0.001 | |
White ply | Black wc | 3.0 | 0.014 | 7.5 | 0.010 |
White wc | −2.1 | 0.086 | −1.2 | 0.989 | |
Black wc | White wc | −5.0 | <0.001 | −8.7 | 0.003 |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rueegger, N. Variation in Summer and Winter Microclimate in Multi-Chambered Bat Boxes in Eastern Australia: Potential Eco-Physiological Implications for Bats. Environments 2019, 6, 13. https://doi.org/10.3390/environments6020013
Rueegger N. Variation in Summer and Winter Microclimate in Multi-Chambered Bat Boxes in Eastern Australia: Potential Eco-Physiological Implications for Bats. Environments. 2019; 6(2):13. https://doi.org/10.3390/environments6020013
Chicago/Turabian StyleRueegger, Niels. 2019. "Variation in Summer and Winter Microclimate in Multi-Chambered Bat Boxes in Eastern Australia: Potential Eco-Physiological Implications for Bats" Environments 6, no. 2: 13. https://doi.org/10.3390/environments6020013
APA StyleRueegger, N. (2019). Variation in Summer and Winter Microclimate in Multi-Chambered Bat Boxes in Eastern Australia: Potential Eco-Physiological Implications for Bats. Environments, 6(2), 13. https://doi.org/10.3390/environments6020013