Noise Assessment of Small Vessels for Action Planning in Canal Cities
Abstract
:1. Introduction
2. Materials and Methods
2.1. Measurements
2.2. Data Analysis
- Scenario 1 (present): Cat1 can access “Porto Mediceo” and the canals, while Cat2 boats can only access “Porto Mediceo”. Speed is medium;
- Scenario 2: Cat2 can access the canals, too;
- Scenario 3: Cat1 can access “Porto Mediceo” and the canals, while Cat2 can only access “Porto Mediceo”. Speed is high;
- Scenario 4: Cat1 can access “Porto Mediceo” and the canals, while Cat2 can only access “Porto Mediceo”. Speed is low;
- Scenario 5: similar to Scenario 1, with a new residential area in the south part of the port area in Figure 1. This hypothesis is based on the municipality expansion plan.
3. Results
3.1. Acoustic Characterization of Small Vessels
3.2. Noise Maps and Citizens Exposed to Noise in the Present Situation
4. Discussions
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Muzet, A. Environmental noise, sleep and health. Sleep Med. Rev. 2007, 11, 135–142. [Google Scholar] [CrossRef] [PubMed]
- Hygge, S.; Evans, G.W.; Bullinger, M. A prospective study of some effects of aircraft noise on cognitive performance in schoolchildren. Psychol. Sci. 2002, 13, 469–474. [Google Scholar] [CrossRef] [PubMed]
- Lercher, P.; Evans, G.W.; Meis, M. Ambient noise and cognitive processes among primary schoolchildren. Environ. Behav. 2003, 35, 725–735. [Google Scholar] [CrossRef]
- Chetoni, M.; Ascari, E.; Bianco, F.; Fredianelli, L.; Licitra, G.; Cori, L. Global noise score indicator for classroom evaluation of acoustic performances in LIFE GIOCONDA project. Noise Mapp. 2016, 3. [Google Scholar] [CrossRef]
- Van Kempen, E.; Babisch, W. The quantitative relationship between road traffic noise and hypertension: A meta-analysis. J. Hypertens. 2012, 30, 1075–1086. [Google Scholar] [CrossRef] [PubMed]
- Jarup, L.; Babisch, W.; Houthuijs, D.; Pershagen, G.; Katsouyanni, K.; Cadum, E.; Dudley, M.-L.; Savigny, P.; Seiffert, I.; Swart, W.; et al. Hypertension and exposure to noise near airports: The HYENA study. Environ. Health Perspect. 2007, 116, 329–333. [Google Scholar] [CrossRef] [PubMed]
- Recio, A.; Linares, C.; Banegas, J.R.; Díaz, J. Road traffic noise effects on cardiovascular, respiratory, and metabolic health: An integrative model of biological mechanisms. Environ. Res. 2016, 146, 359–370. [Google Scholar] [CrossRef] [PubMed]
- Dratva, J.; Phuleria, H.C.; Foraster, M.; Gaspoz, J.M.; Keidel, D.; Künzli, N.; Sally Liu, L.-J.; Pons, M.; Zemp, E.; Gerbase, M.W.; et al. Transportation noise and blood pressure in a population-based sample of adults. Environ. Health Perspect. 2011, 120, 50–55. [Google Scholar] [CrossRef]
- Babisch, W.; Beule, B.; Schust, M.; Kersten, N.; Ising, H. Traffic noise and risk of myocardial infarction. Epidemiology 2005, 16, 33–40. [Google Scholar] [CrossRef]
- Babisch, W.; Swart, W.; Houthuijs, D.; Selander, J.; Bluhm, G.; Pershagen, G.; Dimakopoulou, K.; Haralabidis, A.S.; Katsouyanni, K.; Davou, E.; et al. Exposure modifiers of the relationships of transportation noise with high blood pressure and noise annoyance. J. Acoust. Soc. Am. 2012, 132, 3788–3808. [Google Scholar] [CrossRef]
- Vienneau, D.; Schindler, C.; Perez, L.; Probst-Hensch, N.; Röösli, M. The relationship between transportation noise exposure and ischemic heart disease: A meta-analysis. Environ. Res. 2015, 138, 372–380. [Google Scholar] [CrossRef] [PubMed]
- Basner, M.; Babisch, W.; Davis, A.; Brink, M.; Clark, C.; Janssen, S.; Stansfeld, S. Auditory and non-auditory effects of noise on health. Lancet 2014, 383, 1325–1332. [Google Scholar] [CrossRef]
- Guski, R.; Schreckenberg, D.; Schuemer, R. WHO environmental noise guidelines for the European region: A systematic review on environmental noise and annoyance. Int. J. Environ. Res. Public Health 2017, 14, 1539. [Google Scholar] [CrossRef] [PubMed]
- Minichilli, F.; Gorini, F.; Ascari, E.; Bianchi, F.; Coi, A.; Fredianelli, L.; Licitra, G.; Manzoli, F.; Mezzasalma, L.; Cori, L.; et al. Annoyance judgment and measurements of environmental noise: A focus on Italian secondary schools. Int. J. Environ. Res. Public Health 2018, 15, 208. [Google Scholar] [CrossRef] [PubMed]
- Directive, E.U. Directive 2002/49/EC of the European parliament and the Council of 25 June 2002 relating to the assessment and management of environmental noise. Off. J. Eur. Communities 2002, L189, 12–25. [Google Scholar]
- Licitra, G.; Ascari, E.; Fredianelli, L. Prioritizing Process in Action Plans: A Review of Approaches. Curr. Pollut. Rep. 2017, 3, 151–161. [Google Scholar] [CrossRef]
- Ruiz-Padillo, A.; Ruiz, D.P.; Torija, A.J.; Ramos-Ridao, Á. Selection of suitable alternatives to reduce the environmental impact of road traffic noise using a fuzzy multi-criteria decision model. Environ. Impact Assess. Rev. 2016, 61, 8–18. [Google Scholar] [CrossRef]
- Morley, D.W.; De Hoogh, K.; Fecht, D.; Fabbri, F.; Bell, M.; Goodman, P.S.; Elliott, P.; Hodgson, S.; Hansell, A.L.; Gulliver, J.; et al. International scale implementation of the CNOSSOS-EU road traffic noise prediction model for epidemiological studies. Environ. Pollut. 2015, 206, 332–341. [Google Scholar] [CrossRef] [PubMed]
- Licitra, G.; Fredianelli, L.; Petri, D.; Vigotti, M.A. Annoyance evaluation due to overall railway noise and vibration in Pisa urban areas. Sci. Total Environ. 2016, 568, 1315–1325. [Google Scholar] [CrossRef] [PubMed]
- Bunn, F.; Zannin, P.H.T. Assessment of railway noise in an urban setting. Appl. Acoust. 2016, 104, 16–23. [Google Scholar] [CrossRef]
- Gagliardi, P.; Teti, L.; Licitra, G. A statistical evaluation on flight operational characteristics affecting aircraft noise during take-off. Appl. Acoust. 2018, 134, 8–15. [Google Scholar] [CrossRef]
- Iglesias-Merchan, C.; Diaz-Balteiro, L.; Soliño, M. Transportation planning and quiet natural areas preservation: Aircraft overflights noise assessment in a National Park. Transp. Res. Part D Transp. Environ. 2015, 41, 1–12. [Google Scholar] [CrossRef]
- Kephalopoulos, S.; Paviotti, M.; Anfosso-Lédée, F.; Van Maercke, D.; Shilton, S.; Jones, N. Advances in the development of common noise assessment methods in Europe: The CNOSSOS-EU framework for strategic environmental noise mapping. Sci. Total Environ. 2014, 482, 400–410. [Google Scholar] [CrossRef] [PubMed]
- Morel, J.; Marquis-Favre, C.; Gille, L.A. Noise annoyance assessment of various urban road vehicle pass-by noises in isolation and combined with industrial noise: A laboratory study. Appl. Acoust. 2016, 101, 47–57. [Google Scholar] [CrossRef]
- Fredianelli, L.; Gallo, P.; Licitra, G.; Carpita, S. Analytical assessment of wind turbine noise impact at receiver by means of residual noise determination without the wind farm shutdown. Noise Control Eng. J. 2017, 65, 417–433. [Google Scholar] [CrossRef]
- Michaud, D.S.; Feder, K.; Keith, S.E.; Voicescu, S.A.; Marro, L.; Than, J.; Guay, M.; Denning, A.; McGuire, D.; Bower, T.; et al. Exposure to wind turbine noise: Perceptual responses and reported health effects. J. Acoust. Soc. Am. 2016, 139, 1443–1454. [Google Scholar] [CrossRef] [PubMed]
- Fredianelli, L.; Carpita, S.; Licitra, G. A procedure for deriving wind turbine noise limits by taking into account annoyance. Sci. Total Environ. 2019, 648, 728–736. [Google Scholar] [CrossRef]
- European Commission. Report from the Commission to the European Parliament and the Council on the Implementation of the Environmental Noise Directive in accordance with Article 11 of Directive 2002/49/EC; COM/2017/0151 Final; European Commission: Brussels, Belgium, 2017. [Google Scholar]
- Kurt, R.E.; Khalid, H.; Turan, O.; Houben, M.; Bos, J.; Helvacioglu, I.H. Towards human-oriented norms: Considering the effects of noise exposure on board ships. Ocean Eng. 2016, 120, 101–107. [Google Scholar] [CrossRef]
- Borelli, D.; Gaggero, T.; Rizzuto, E.; Schenone, C. Analysis of noise on board a ship during navigation and manoeuvres. Ocean Eng. 2015, 105, 256–269. [Google Scholar] [CrossRef]
- Weryk, M. Ship on-board noise propagation analysis methods. Hydroacoustics 2012, 15, 187–194. [Google Scholar]
- Nedelec, S.L.; Radford, A.N.; Pearl, L.; Nedelec, B.; McCormick, M.I.; Meekan, M.G.; Simpson, S.D. Motorboat noise impacts parental behaviour and offspring survival in a reef fish. Proc. R. Soc. B 2017, 284, 20170143. [Google Scholar] [CrossRef] [PubMed]
- Merchant, N.D.; Pirotta, E.; Barton, T.R.; Thompson, P.M. Monitoring ship noise to assess the impact of coastal developments on marine mammals. Mar. Pollut. Bull. 2014, 78, 85–95. [Google Scholar] [CrossRef] [PubMed]
- Celi, M.; Filiciotto, F.; Vazzana, M.; Arizza, V.; Maccarrone, V.; Ceraulo, M.; Mazzola, S.; Buscaino, G. Shipping noise affecting immune responses of European spiny lobster (Palinurus elephas). Can. J. Zool. 2014, 93, 113–121. [Google Scholar] [CrossRef]
- Yan, J.; Sun, H.; Chen, H.; Junejo, N.U.R.; Cheng, E. Resonance-Based Time-Frequency Manifold for Feature Extraction of Ship-Radiated Noise. Sensors 2018, 18, 936. [Google Scholar] [CrossRef] [PubMed]
- Markus, T.; Sánchez, P.P.S. Managing and Regulating Underwater Noise Pollution. In Handbook on Marine Environment Protection; Springer: Cham, Switzerland, 2018; pp. 971–995. [Google Scholar]
- Jansen, E.; de Jong, C. Experimental assessment of underwater acoustic source levels of different ship types. IEEE J. Ocean. Eng. 2017, 42, 439–448. [Google Scholar] [CrossRef]
- Traverso, F.; Gaggero, T.; Tani, G.; Rizzuto, E.; Trucco, A.; Viviani, M. Parametric Analysis of Ship Noise Spectra. IEEE J. Ocean. Eng. 2017, 42, 424–438. [Google Scholar] [CrossRef]
- Ikpekha, O.W.; Eltayeb, A.; Pandya, A.; Daniels, S. Operational noise associated with underwater sound emitting vessels and potential effect of oceanographic conditions: A Dublin Bay port area study. J. Mar. Sci. Technol. 2018, 23, 228–235. [Google Scholar] [CrossRef]
- Rossi, E.; Licitra, G.; Iacoponi, A.; Taburni, D. Assessing the Underwater Ship Noise Levels in the North Tyrrhenian Sea. In The Effects of Noise on Aquatic Life II; Springer: New York, NY, USA, 2016; pp. 943–949. [Google Scholar]
- Yang, L.; Chen, K. A perceptual space for underwater man-made sounds towards target classification. Appl. Acoust. 2016, 110, 119–127. [Google Scholar] [CrossRef]
- Kellett, P.; Turan, O.; Incecik, A. A study of numerical ship underwater noise prediction. Ocean Eng. 2013, 66, 113–120. [Google Scholar] [CrossRef]
- Badino, A.; Borelli, D.; Gaggero, T.; Rizzuto, E.; Schenone, C. Noise emitted from ships: Impact inside and outside the vessels. Procedia Soc. Behav. Sci. 2012, 48, 868–879. [Google Scholar] [CrossRef]
- Herramienta Automática de Diagnóstico Ambiental (Automatic Tool for Environmental Diagnosis); LIFE02 ENV/E/000274; Environment-LIFE: Brussels, Belgium, 2005.
- Eco.Port Project (cod. 41). EU Co-Financed project through the European Regional Development Fund (ERDF) in the Framework of the Adriatic New Neighbourhood Program INTER-REG/CARDS-PHARE 2000–2006. Available online: https:// www.port.venice.it/it/progetto-eco-port.html (accessed on 5 March 2019). (In Italian).
- NoMEPorts 2008. Noise Management in European Ports, LIFE05 ENV/NL/000018, Good Practice Guide on Port Area Noise Mapping and Management; Technical Annex; Environment-LIFE: Brussels, Belgium, 2008. [Google Scholar]
- SIMPYC 2008. Sistema de Integración Medioambiental de Puertos y Ciudades (Environmental Integration for Ports and Cities); LIFE04 ENV/ES/000216; Environment-LIFE: Brussels, Belgium, 2008. [Google Scholar]
- EcoPorts 2011. EcoPorts Project, Information Exchange and Impact Assessment for Enhanced Environmental-Conscious Operations in European Ports and Terminals, FP5. Available online: http://cordis.europa.eu/project/rcn/87079_en.html> (accessed on 5 March 2019).
- Schenone, C.; Pittaluga, I.; Borelli, D.; Kamali, W.; El Moghrabi, Y. The impact of environmental noise generated from ports: Outcome of MESP project. Noise Mapp. 2016, 3. [Google Scholar] [CrossRef]
- Borelli, D.; Gaggero, T.; Rizzuto, E.; Schenone, C. Holistic control of ship noise emissions. Noise Mapp. 2016, 3, 107–119. [Google Scholar] [CrossRef]
- Badino, A.; Borelli, D.; Gaggero, T.; Rizzuto, E.; Schenone, C. Airborne noise emissions from ships: Experimental characterization of the source and propagation over land. Appl. Acoust. 2016, 104, 158–171. [Google Scholar] [CrossRef]
- Paschalidou, A.K.; Kassomenos, P.; Chonianaki, F. Strategic Noise Maps and Action Plans for the reduction of population exposure in a Mediterranean port city. Sci. Total Environ. 2019, 654, 144–153. [Google Scholar] [CrossRef] [PubMed]
- Murphy, E.; King, E.A. An assessment of residential exposure to environmental noise at a shipping port. Environ. Int. 2014, 63, 207–215. [Google Scholar] [CrossRef] [PubMed]
- World Health Organisation. Burden of Disease from Environmental Noise; WHO/JRC: Bonn, Germany, 2011. [Google Scholar]
- Witte, J. Noise from moored ships. In INTER-NOISE and NOISE-CON Congress and Conference Proceedings; Institute of Noise Control Engineering: Reston, VA, USA, 2010; Volume 2010, pp. 3202–3211. [Google Scholar]
- Di Bella, A.; Tombolato, A.; Cordeddu, S.; Zanotto, E.; Barbieri, M. In situ characterization and noise mapping of ships moored in the Port of Venice. J. Acoust. Soc. Am. 2008, 123, 3262. [Google Scholar] [CrossRef]
- Alsina-Pagès, R.M.; Socoró, J.C.; Barqué, S. Survey of Environmental Noise in the Port of Barcelona. In Proceedings of the Euronoise—European Conference on Noise Control, Crete, Greece, 27–31 May 2018. [Google Scholar]
- Borelli, D.; Gaggero, T.; Rizzuto, E.; Schenone, C. Measurements of airborne noise emitted by a ship at quay. In Proceedings of the 22nd International Congress on Sound and Vibration, ICSV 2015, Florence, Italy, 12–16 July 2015. [Google Scholar]
- Remigi, F.; Di Bella, A. A noise model for urban water traffic in Venice. Proc. Inst. Acoust. 2014, 36, 601–604. [Google Scholar]
- Fausti, P.; Santoni, A.; Martello, N.Z.; Guerra, M.C.; Di Bella, A. Evaluation of airborne noise due to navigation and manoeuvring of large vessels. In Proceedings of the 24th International Congress on Sound and Vibration, ICSV 2017, London, UK, 23–27 July 2017. [Google Scholar]
- IEC 61672-1:2013—Electroacoustics—Sound Level Meters—Specifications; IEC: Geneva, Switzerland, 2013.
- Umwelt Bundes Amt. Vorläufige Berechnungsmethode zur Ermittlung der Belastetenzahlen durch Umge-Bungslärm—VBEB; Federal German Gazette: Dessau, Germany, 2007. [Google Scholar]
- ISO 9613-2:1996—Acoustics—Attenuation of Sound during Propagation Outdoors—Part 2: General Method of Calculation; ISO: Geneva, Switzerland, 1996.
- Bing, M.; Popp, C. Urban Planning in Port Noise Dominated Conflict Areas—The Hafencity Solution. In Proceedings of the Euronoise—European Conference on Noise Control, Edinburgh, UK, 26–28 October 2009. [Google Scholar]
Calculation Parameters | |
Number of reflections | 1 |
Maximum distance of reflections from the receivers | 200 m |
Maximum distance of reflections from the sources | 50 m |
Research radius | 500 m |
Weighting | A |
Tolerated error | 0.1 dB |
Environmental Data | |
Atmospheric pressure | 1013.25 mbar |
Moisture | 70% |
Temperature | 10 °C |
% fixed favorable/homogeneous | pFav (6–20 h) [%] = 50.0; pFav (20–22 h) [%] = 70.0; pFav (22–6 h) [%] = 100.0; |
Map | |
H measurements 1, 2 | 1.5 m |
H measurement 3 | 12 m |
Metrics used | LD, LE, LN, LDEN |
Grid spacing | 10 m |
Height from ground | 4 m |
Category | Speed Category | Speed (km/h) | Speed (kn) | LW/m (dB(A)) |
---|---|---|---|---|
Cat1 | Low | 6.4–9.4 | 3.4–4.9 | 76.3 ± 2.4 |
Cat1 | Medium | 9.5–14.3 | 5.0–7.7 | 77.4 ± 3.4 |
Cat1 | High | 14.4–19.2 | 7.8–10.4 | 88.8 ± 4.3 |
Cat2 | Low | 8.8–9.1 | 4.7–4.9 | 81.2 ± 2.9 |
Cat2 | Medium | 9.2–10.7 | 5.0–5.7 | 83.5 ± 6.7 |
Cat2 | High | 10.8–13.3 | 5.8–7.2 | 84.9 ± 3.4 |
Noise Levels (dB(A)) | 40–45 | 45–50 | 50–55 | 55–60 | 60–65 | 65–70 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Difference with Scenario 1 | ΔNLDEN | ΔNLN | ΔNLDEN | ΔNLN | ΔNLDEN | ΔNLN | ΔNLDEN | ΔNLN | ΔNLDEN | ΔNLN | ΔNLDEN | ΔNLN | ΔN HA |
Scenario 1 | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- |
Scenario 2 | 338 | 823 | −34 | 484 | 541 | 5 | 121 | 0 | 0 | 0 | 0 | 0 | +14.43% |
Scenario 3 | 1094 | 1889 | 1411 | 1507 | 980 | 350 | 505 | 6 | 124 | 1 | 7 | 0 | +108.41% |
Scenario 4 | −159 | −357 | −434 | −9 | −7 | 5 | 6 | −7 | −8 | 0 | 0 | 0 | −18.63% |
Scenario 5 | 542 | 0 | 182 | 308 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | +21.73% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bernardini, M.; Fredianelli, L.; Fidecaro, F.; Gagliardi, P.; Nastasi, M.; Licitra, G. Noise Assessment of Small Vessels for Action Planning in Canal Cities. Environments 2019, 6, 31. https://doi.org/10.3390/environments6030031
Bernardini M, Fredianelli L, Fidecaro F, Gagliardi P, Nastasi M, Licitra G. Noise Assessment of Small Vessels for Action Planning in Canal Cities. Environments. 2019; 6(3):31. https://doi.org/10.3390/environments6030031
Chicago/Turabian StyleBernardini, Marco, Luca Fredianelli, Francesco Fidecaro, Paolo Gagliardi, Marco Nastasi, and Gaetano Licitra. 2019. "Noise Assessment of Small Vessels for Action Planning in Canal Cities" Environments 6, no. 3: 31. https://doi.org/10.3390/environments6030031
APA StyleBernardini, M., Fredianelli, L., Fidecaro, F., Gagliardi, P., Nastasi, M., & Licitra, G. (2019). Noise Assessment of Small Vessels for Action Planning in Canal Cities. Environments, 6(3), 31. https://doi.org/10.3390/environments6030031