Fertilizer Efficacy of Poultry Litter Ash Blended with Lime or Gypsum as Fillers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characterization of Ash, Calcitic Lime, and FGDG
2.2. Plant-Available P of Ash and Ash–Filler Blends
2.3. Soil and Plant Resposnse
2.4. Spreading Uniformity Test
2.5. Data Analysis
3. Results and Discussion
3.1. Poultry Litter Ash, Calcitic Lime, and FGDG Characterization
3.2. Plant-Available P in Ash Material
3.3. Plant Available P and K in Soil
3.4. Soil pH
3.5. Ryegrass Biomass and P and K Uptake
3.6. Spreading Uniformity
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bolan, N.S.; Szogi, A.A.; Chuasavathi, T.; Seshadri, B.; Rothrock, M.J.; Panneerselvam, P. Uses and management of poultry litter. World Poultry Sci. J. 2010, 66, 673–698. [Google Scholar] [CrossRef]
- Szogi, A.A.; Vanotti, M.B.; Ro, K.S. Methods for treatment of animal manures to reduce nutrient pollution prior to soil application. Curr. Pollut. Rep. 2015, 1, 47–56. [Google Scholar] [CrossRef]
- Kaise, D.E.; Mallarino, A.P.; Haq, M.U. Runoff phosphorus loss immediately after poultry manure application as influenced by application rate and tillage. J. Environ. Qual. 2009, 38, 299–308. [Google Scholar] [CrossRef]
- Cassity-Duffey, K.; Cabrera, M.; Rema, J. Ammonia volatilization from broiler litter: Effect of soil water content and humidity. Soil Sci. Soc. Am. J. 2015, 79, 543–550. [Google Scholar] [CrossRef]
- Lynch, D.; Henihan, A.M.; Bowen, B.; Lynch, D.; McDonnell, K.; Kwapinski, W.; Leahy, J.J. Utilisation of poultry litter as an energy feedstock. Biomass Bioenerg. 2013, 49, 197–204. [Google Scholar] [CrossRef]
- Karunanithi, R.; Szogi, A.A.; Bolan, N.; Naidu, R.; Loganathan, P.; Hunt, P.G.; Vanotti, M.B.; Saint, C.P.; Ok, Y.S.; Krishnamoorthy, S. Phosphorus recovery and reuse from waste streams. Adv. Agron. 2015, 131, 173–250. [Google Scholar]
- Jurgilevich, A.; Birge, T.; Kentala-Lehtonen, J.; Korhonen-Kurki, K.; Pietikäinen, J.; Saikku, L.; Schösler, H. Transition towards circular economy in the food system. Sustainability 2016, 8, 69. [Google Scholar] [CrossRef]
- Tan, Z.; Lagerkvist, A. Phosphorus recovery from the biomass ash: a review. Renew. Sust. Energ. Rev. 2011, 15, 3588–3602. [Google Scholar] [CrossRef]
- Chastain, J.P.; Coloma-del Valle, A.; Moore, K.P. Using broiler litter as an energy source: Energy content and ash composition. Appl. Eng. Agric. 2012, 28, 513–522. [Google Scholar] [CrossRef]
- Codling, E.E.; Chaney, R.L.; Sherwell, J. Poultry litter ash as a potential phosphorus source for agricultural crops. J. Environ. Qual. 2002, 31, 954–961. [Google Scholar] [CrossRef] [PubMed]
- Pagliari, P.H.; Rosen, C.J.; Strock, J.S. Turkey manure ash effects on alfalfa yield, tissue elemental composition, and chemical soil properties. Comm. Soil Sci. Plant Anal. 2009, 40, 2874–2897. [Google Scholar] [CrossRef]
- Pagliari, P.H.; Rosen, C.J.; Strock, J.S. Characterization of turkey manure ash and its nutrient value for corn and soybean production. Crop Manag. 2009. [Google Scholar] [CrossRef]
- Szogi, A.A.; Vanotti, M.B. Prospects of phosphorus recovery from poultry litter. Bioresour. Technol. 2008, 100, 5461–5465. [Google Scholar] [CrossRef]
- Demeyer, A.; Voundi Nkana, J.C.; Verloo, M.G. Characteristics of wood ash and influence on soil properties and nutrient uptake: An overview. Bioresour. Technol. 2001, 77, 287–295. [Google Scholar] [CrossRef]
- Codling, E.E. Laboratory characterization of extractable phosphorus in poultry litter and poultry litter ash. Soil Sci. 2006, 171, 858–864. [Google Scholar] [CrossRef]
- Bogush, A.A.; Stegemann, J.A.; Williams, R.; Wood, I.G. Element speciation in UK biomass power plant residues based on composition, mineralogy, microstructure and leaching. Fuel 2018, 211, 712–725. [Google Scholar] [CrossRef]
- Pagani, A.; Mallarino, A.P. Soil pH Change over Time as Affected by Sources and Application Rates of Liming Materials. Iowa State Research Farm Progress Reports 259. 2011. Available online: https://lib.dr.iastate.edu/cgi/viewcontent.cgi?article=1269&context=farms_reports (accessed on 16 March 2019).
- Chen, L.; Dick, W.A. Gypsum as an Agricultural Amendment: General Use Guidelines; The Ohio State University Extension: Columbus, OH, USA, 2011. [Google Scholar]
- American Coal Ash Association. 2016 Coal Combustion Product (CCP) Production and Use Survey Report. Available online: https://www.acaa-usa.org/Portals/9/Files/PDFs/2016-Survey-Results.pdf (accessed on 16 March 2019).
- Codling, E.E.; Lewis, J.; Watts, D.B. Broiler litter ash and flue gas desulfurization gypsum effects on peanut yield and uptake of nutrients. Comm. Soil Sci. Plant Anal. 2015, 46, 2553–2575. [Google Scholar] [CrossRef]
- Unit III 5.5: Digestion and dissolution methods for P, K, Ca, Mg, and trace elements. In Recommended Methods of Manure Analysis (A3769); Peters, J. (Ed.) University of Wisconsin-Extension Publication: Madison, WI, USA, 2003. [Google Scholar]
- AOAC International. Official Methods of Analysis, 17th ed.; AOAC: Gaithersburg, MD, USA, 2000. [Google Scholar]
- Sikora, F.J.; Moore, K.P. Soil Test Methods of from the Southeastern United States, Southern Cooperative Series Bulletin No. 419; Southern Extension and Research Activity-Information Exchange Group 6: Clemson, SC, USA, 2014. [Google Scholar]
- ASABE Standards S341.5. Procedure for Measuring Distribution Uniformity and Calibrating Granular Broadcast Spreaders; American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 2018. [Google Scholar]
- Obernberger, I.; Brunner, T.; Barnthaler, G. Chemical properties of solid biofuels-significance and impact. Biomass Bioenerg. 2006, 30, 973–982. [Google Scholar] [CrossRef]
- Novak, J.M.; Szogi, A.A.; Watts, D.W. Copper and zinc accumulation in sandy soils and constructed wetlands receiving pig manure effluent application. In Trace Elements in Animal Production Systems; Schlegel, P., Durosoy, S., Jongbloed, A.W., Eds.; Wageningen Academic Publishers: Wageningen, The Netherlands, 2008; pp. 45–54. [Google Scholar]
- Clarholm, M. Granulated wood ash and a ‘N-free’ fertilizer to a forest soil-effects on P availability. Forest Ecol. Manag. 1994, 66, 127–136. [Google Scholar] [CrossRef]
- Moore, P.A., Jr.; Miller, D.M. Decreasing phosphorus solubility in poultry litter with aluminum, calcium and iron amendments. J. Environ. Qual. 1994, 23, 325–330. [Google Scholar] [CrossRef]
- Anderson, D.L.; Tuovinen, O.H.; Faber, A.; Ostrokowski, I. Use of soil amendments to reduce soluble phosphorus in dairy soils. Ecol. Eng. 1995, 5, 229–246. [Google Scholar] [CrossRef]
- Dou, Z.; Zhang, G.Y.; Stout, W.L.; Toth, J.D.; Ferguson, J.D. Efficacy of alum and coal combustion by-products in stabilizing manure phosphorus. J. Environ. Qual. 2003, 32, 1490–1497. [Google Scholar] [CrossRef] [PubMed]
- Brauer, D.; Aiken, G.E.; Pote, D.H.; Livingston, S.J.; Norton, L.D.; Way, T.R.; Edwards, J.H. Amendments effects on soil test phosphorus. J. Environ. Qual. 2005, 34, 1682–1686. [Google Scholar] [CrossRef] [PubMed]
- Watts, D.B.; Torbert, H.A. Impact of gypsum applied to grass buffer strips on reducing soluble P in surface water runoff. J. Environ. Qual. 2009, 38, 1511–1517. [Google Scholar] [CrossRef] [PubMed]
- Endale, D.M.; Schomberg, H.H.; Fisher, D.S.; Franklin, D.H.; Jenkins, M.B. Flue gas desulfurization gypsum: implication for runoff and nutrient losses associated with broiler litter use on pastures on Ultisols. J. Environ. Qual. 2014, 43, 281–289. [Google Scholar] [CrossRef]
- Adotey, N.; Harrell, K.L.; Weatherford, W.P. Characterization and liming effect of wood ash generated from a biomass-fueled commercial power plant. Comm. Soil Sci. Plant Anal. 2018, 49, 38–49. [Google Scholar] [CrossRef]
- Havlin, J.L.; Tisdale, S.L.; Nelson, W.L.; Beaton, J.D. Soil Fertility and Fertilizers: An Introduction to Nutrient Management, 6th ed.; Prentice Hall: Upper Saddle River, NJ, USA, 1999. [Google Scholar]
- Pagliari, P.; Rosen, C.; Strock, J.; Russelle, M. Phosphorus availability and early corn growth response in soil amended with turkey manure ash. Comm. Soil Sci. Plant Anal. 2010, 41, 1369–1382. [Google Scholar] [CrossRef]
- Wells, D.E.; Beasley, J.S.; Bush, E.W.; Gaston, L.A. Poultry litter ash rate and placement affect phosphorus dissolution in a horticultural substrate. J. Environ. Hort. 2017, 35, 117–127. [Google Scholar]
- Wells, D.E.; Beasley, J.S.; Gaston, L.A.; Bush, E.W.; Thiessen, M.E. Poultry litter ash reduces phosphorus losses during greenhouse production of Lantana camara L. ’New Gold’. HortScience 2017, 52, 592–597. [Google Scholar] [CrossRef]
- Sumner, P.E. Calibration of Bulk Dry Fertilizer Applicators, The University of Georgia Cooperative Extension Circular 798; University of Georgia College of Agricultural Environmental Sciences: Athens, GA, USA, 2012. [Google Scholar]
- Smith, D.B.; Willcutt, M.H.; Doler, J.C.; Diallo, Y. Uniformity of granular fertilizer applications with a spinner truck. App. Eng. Agric. 2004, 20, 289–295. [Google Scholar] [CrossRef]
- Kemp, T.; Carolina Eastern Inc., Charleston, SC, USA. Personal communication, 2018.
Particle Size | Ash | Lime | FGDG | Lime/Ash | FGDG/Ash |
---|---|---|---|---|---|
mm | Percent finer by weight | ||||
>12.5 | 3.1 | 0.0 | 0.0 | 4.2 | 2.2 |
8.0–12.7 | 3.9 | 0.0 | 1.0 | 3.5 | 2.9 |
4.0–8.0 | 12.9 | 0.6 | 4.7 | 12.3 | 12.8 |
2.0–4.0 | 17.3 | 0.7 | 3.7 | 13.9 | 14.7 |
1.0–2.0 | 18.3 | 1.7 | 1.6 | 12.8 | 13.1 |
0.5–1.0 | 16.6 | 14.3 | 0.5 | 15.5 | 11.9 |
<0.5 | 27.9 | 82.7 | 88.5 | 37.7 | 42.4 |
Plant Nutrient | Ash | Lime | FGDG |
---|---|---|---|
P (g kg−1) | 68 | 0.1 | 0.04 |
K (g kg−1) | 59 | 0.3 | 0.4 |
Ca (g kg−1) | 134 | 396 | 250 |
Mg (g kg−1) | 13 | 3 | 0.6 |
S (g kg−1) | 8 | 7 | 192 |
Cu (mg kg−1) | 1151 | BD 1 | BD |
Fe (mg kg−1) | 4827 | 2847 | 541 |
Mn (mg kg−1) | 1084 | 40 | BD |
Mo (mg kg−1) | 12 | BD | BD |
Zn (mg kg−1) | 797 | BD | BD |
Filler | Ratio | Ash | Plant Available P |
---|---|---|---|
Filler/Ash | Percentage | Percentage | |
Lime | 1:3 | 75 | 34.8de 1 |
1:2 | 66 | 46.9abcde | |
1:1 | 50 | 55.7a | |
2:1 | 33 | 52.0ab | |
3:1 | 25 | 51.3abc | |
FGDG | 1:3 | 75 | 48.5abcd |
1:2 | 66 | 37.0cde | |
1:1 | 50 | 33.7e | |
2:1 | 33 | 41.3bcde | |
3:1 | 25 | 39.3bcde | |
p > F 2 | 0.03 | ||
Means Over Ratio | |||
Lime | 48.2 | ||
FGDG | 40.0 | ||
Ash | 46.5 | ||
Contrast Comparisons of Means | p > F | ||
Lime vs. Ash | 0.74 | ||
FGDG vs. Ash | 0.20 | ||
Lime vs. FGDG | 0.01 |
Filler | Ratio | P | K |
---|---|---|---|
Filler/Ash | mg kg−1 | mg kg−1 | |
Lime | 1:3 | 97 | 131 |
1:2 | 102 | 143 | |
1:1 | 99 | 139 | |
2:1 | 103 | 142 | |
3:1 | 136 | 171 | |
FGDG | 1:3 | 115 | 138 |
1:2 | 103 | 141 | |
1:1 | 109 | 131 | |
2:1 | 90 | 131 | |
3:1 | 123 | 140 | |
p > F 1 | 0.52 ns | 0.09 ns | |
Means Over Ratios | |||
Lime | 108 | 145 | |
FGDG | 108 | 136 | |
Ash | 86 | 128 | |
Control | 48 | 80 | |
Contrast Comparisons of Means | p > F | ||
Ash vs. Control | 0.036 | <0.001 | |
Lime vs. Control | <0.001 | <0.001 | |
FGDG vs. Control | <0.001 | <0.001 | |
Lime vs. Ash | 0.06 | 0.02 | |
FGDG vs. Ash | 0.06 | 0.26 | |
Lime vs. FGDG | 0.95 | 0.03 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bauer, P.J.; Szogi, A.A.; Shumaker, P.D. Fertilizer Efficacy of Poultry Litter Ash Blended with Lime or Gypsum as Fillers. Environments 2019, 6, 50. https://doi.org/10.3390/environments6050050
Bauer PJ, Szogi AA, Shumaker PD. Fertilizer Efficacy of Poultry Litter Ash Blended with Lime or Gypsum as Fillers. Environments. 2019; 6(5):50. https://doi.org/10.3390/environments6050050
Chicago/Turabian StyleBauer, Philip J., Ariel A. Szogi, and Paul D. Shumaker. 2019. "Fertilizer Efficacy of Poultry Litter Ash Blended with Lime or Gypsum as Fillers" Environments 6, no. 5: 50. https://doi.org/10.3390/environments6050050
APA StyleBauer, P. J., Szogi, A. A., & Shumaker, P. D. (2019). Fertilizer Efficacy of Poultry Litter Ash Blended with Lime or Gypsum as Fillers. Environments, 6(5), 50. https://doi.org/10.3390/environments6050050