Odours in Sewerage—A Description of Emissions and of Technical Abatement Measures
Abstract
:1. Introduction
2. Malodorous Gases in the Sewer System
- Conduits characterised by limited gradients and hence low flow rates;
- Connection sewerage wells;
- Sewage pumping stations;
- Syphon transitions.
- Sedimentation wells;
- Rain inlets;
- Siphons at inlets.
3. Legal Conditions
4. Possibilities of Preventing Odour Annoyance
5. Summary
Author Contributions
Funding
Conflicts of Interest
References
- Barbusinski, K.; Kalemba, K.; Kasperczyk, D.; Urbaniec, K.; Kozik, V. Biological methods for odor treatment—A review. J. Clean. Prod. 2017, 152, 223–241. [Google Scholar] [CrossRef]
- Capelli, L.; Sironi, S.; Del Rosso, R.; Guillot, J.M. Measuring odours in the environment vs. dispersion modelling: A review. Atmos. Environ. 2013, 79, 731–743. [Google Scholar] [CrossRef]
- Tiziano, Z.; Reiser, M.; Naddeo, V.; Belgiorno, V.; Kranert, M. Odour emissions characterization from wastewater treatment plants by different measurement methods. CET 2014, 40, 37–42. [Google Scholar] [CrossRef]
- Hayes, J.E.; Stevenson, R.J.; Stuetz, R.M. The impact of malodour on communities: A review of assessment techniques. Sci. Total Environ. 2014, 500, 395–407. [Google Scholar] [CrossRef]
- Gostelow, P.; Parsons, S.A.; Stuetz, R.M. Odour measurements for sewage treatment works. Water Res. 2001, 35, 579–597. [Google Scholar] [CrossRef]
- Kazora, A.S.; Mourad, K.A. Assessing the Sustainability of Decentralized Wastewater Treatment Systems in Rwanda. Sustainability 2018, 10, 4617. [Google Scholar] [CrossRef]
- Shammay, A.; Sivret, E.C.; Le-Minh, N.; Fernandez, R.L.; Evanson, I.; Stuetz, R.M. Review of odour abatement in sewer networks. J. Environ. Chem. Eng. 2016, 4, 3866–3881. [Google Scholar] [CrossRef]
- Sivret, E.C.; Wang, B.; Parcsi, G.; Stuetz, R.M. Prioritisation of odorants emitted from sewers using odour activity values. Water Res. 2016, 88, 308–321. [Google Scholar] [CrossRef]
- Talaiekhozani, A.; Bagheri, M.; Goli, A.; Khoozani, M.R.T. An overview of principles of odor production, emission, and control methods in wastewater collection and treatment systems. J. Environ. Manag. 2016, 170, 186–206. [Google Scholar] [CrossRef]
- Hluštík, P.; Novotný, J. The Testing of Standard and Recyclable Filter Media to Eliminate Hydrogen Sulphide from Sewerage Systems. Water 2018, 10, 689. [Google Scholar] [CrossRef]
- Fisher, R.M.; Barczak, R.J.; Hayes, J.E.; Stuetz, R.M. Framework for the use of odour wheels to manage odours throughout wastewater biosolids processing. Sci. Total Environ. 2018, 634, 214–223. [Google Scholar] [CrossRef] [PubMed]
- Barczak, R.J.; Kulig, A. Comparison of different measurement methods of odour and odorants used in the odour impact assessment of wastewater treatment plants in Poland. Water Sci. Technol. 2017, 75, 944–951. [Google Scholar] [CrossRef] [PubMed]
- Choi, I.; Lee, H.; Shin, J.; Kim, H. Evaluation of the effectiveness of five odor reducing agents for sewer system odors using an on-line total reduced sulfur analyzer. Sensors 2012, 12, 16892–16906. [Google Scholar] [CrossRef] [PubMed]
- Jajac, N.; Marović, I.; Rogulj, K.; Kilić, J. Decision Support Concept to Selection of Wastewater Treatment Plant Location—The Case Study of Town of Kutina, Croatia. Water 2019, 11, 717. [Google Scholar] [CrossRef]
- Kordana, S. The identification of key factors determining the sustainability of stormwater systems. E3S Web Conf. 2018, 45, 33. [Google Scholar] [CrossRef] [Green Version]
- Singh, R.; Zhao, F.; Ji, Q.; Saravanan, J.; Fu, D. Design and Performance Characterization of Roadside Bioretention Systems. Sustainability 2019, 11, 2040. [Google Scholar] [CrossRef]
- Grygierek, M.; Kalisz, P. Influence of mining operations on road pavement and sewer system—Selected case studies. J. Sustain. Min. 2018, 17, 56–67. [Google Scholar] [CrossRef]
- Li, L.; Shan, B.; Yin, C. Stormwater runoff pollution loads from an urban catchment with rainy climate in China. Front. Environ. Sci. Eng. 2012, 6, 672–677. [Google Scholar] [CrossRef]
- Olds, H.T.; Corsi, S.R.; Dila, D.K.; Halmo, K.M.; Bootsma, M.J.; McLellan, S.L. High levels of sewage contamination released from urban areas after storm events: A quantitative survey with sewage specific bacterial indicators. PLoS Med. 2018, 15, e1002614. [Google Scholar] [CrossRef]
- Starzec, M. The impact of construction of piling partitions on the retention efficiency of a sewerage network. E3S Web Conf. 2018, 45, 87. [Google Scholar] [CrossRef] [Green Version]
- Tian, J.; Cheng, J.; Gong, Y. Optimization of municipal pressure pumping station layout and sewage pipe network design. Eng. Optim. 2018, 50, 537–547. [Google Scholar] [CrossRef]
- García, J.; Vigueras-Rodriguez, A.; Castillo, L.; Carrillo, J. Evaluation of Sulfide Control by Air-Injection in Sewer Force Mains: Field and Laboratory Study. Sustainability 2017, 9, 402. [Google Scholar] [CrossRef]
- Pochwat, K.; Iličić, K. A simplified dimensioning method for high-efficiency retention tanks. E3S Web Conf. 2018, 45, 65. [Google Scholar] [CrossRef]
- Pochwat, K.B.; Słyś, D. Application of Artificial Neural Networks in the Dimensioning of Retention Reservoirs. Ecol. Chem. Eng. S 2018, 25, 605–617. [Google Scholar] [CrossRef] [Green Version]
- Bąk, Ł.; Szeląg, B.; Sałata, A.; Studziński, J. Modeling of Heavy Metal (Ni, Mn, Co, Zn, Cu, Pb, and Fe) and PAH Content in Stormwater Sediments Based on Weather and Physico-Geographical Characteristics of the Catchment-Data-Mining Approach. Water 2019, 11, 626. [Google Scholar] [CrossRef]
- Hadera, D.; Asfaw, B. Socioeconomic Impact Assessment of Highway Drainage Outlet Erosion, Case Study of Mekelle to Adigrat Highway, Tigray, Ethiopia. J. Civil. Environ. Eng. 2016, 6, 215. [Google Scholar] [CrossRef]
- Lewkowska, P.; Cieślik, B.; Dymerski, T.; Konieczka, P.; Namieśnik, J. Characteristics of odors emitted from municipal wastewater treatment plant and methods for their identification and deodorization techniques. Environ. Res. 2016, 151, 573–586. [Google Scholar] [CrossRef]
- Wang, B.; Sivret, E.C.; Parcsi, G.; Wang, X.; Stuetz, R.M. Characterising volatile organic compounds from sewer emissions by thermal desorption coupled with gas-chromatography-mass spectrometry. Chem. Eng. 2012, 30, 73–78. [Google Scholar]
- Explore Chemistry. Available online: https://pubchem.ncbi.nlm.nih.gov/ (accessed on 25 June 2019).
- Van Gemert, L.J. Odour Thresholds: Compilations of Odour Threshold Values in Air, Water and Other Media; Oliemans Punter & Partners BV: Zeist, The Netherlands, 2003. [Google Scholar]
- Devos, M.; Patte, F.; Rouault, J.; Laffort, P.; Van Gemert, L.J. Standardized Human Olfactory Thresholds; IRL Press: Oxford, UK, 1990. [Google Scholar]
- Wang, B.; Sivret, E.C.; Parcsi, G.; Stuetz, R.M. Determination of VOSCs in sewer headspace air using TD–GC–SCD. Talanta 2015, 137, 71–79. [Google Scholar] [CrossRef]
- Brancher, M.; Griffiths, K.D.; Franco, D.; De Melo Lisboa, H. A review of odour impact criteria in selected countries around the world. Chemosphere 2017, 168, 1531–1570. [Google Scholar] [CrossRef]
- Kamigawara, K. Odor Regulation and Odor Measurement in Japan; Japanese Ministry of Environment: Tokyo, Japan, 2003. Available online: http://www.env.go.jp/en/lar/odor_measure (accessed on 25 June 2019).
- The Offensive Odor Control Law in Japan. Available online: https://www.env.go.jp/en/laws/air/offensive_odor/all.pdf (accessed on 25 June 2019).
- Both, R.; Sucker, K.; Winneke, G.; Koch, E. Odour intensity and hedonic tone - important parameters to describe odour annoyance to residents? Water Sci. Technol. 2004, 50, 83–92. [Google Scholar] [CrossRef] [Green Version]
- Wysocka, I.; Gębicki, J.; Namieśnik, J. Technologies for deodorization of malodorous gases. Environ. Sci. Pollut. R 2019, 26, 9409–9434. [Google Scholar] [CrossRef] [Green Version]
- Capelli, L.; Sironi, S.; Del Rosso, R.; Céntola, P. Predicting odour emissions from wastewater treatment plants by means of odour emission factors. Water Res. 2009, 43, 1977–1985. [Google Scholar] [CrossRef]
- Estokova, A.; Harbulakova, V.O.; Luptakova, A.; Kovalcikova, M. Analyzing the Relationship between Chemical and Biological-Based Degradation of Concrete with Sulfate-Resisting Cement. Pol. J. Environ. Stud. 2019, 28, 2121–2129. [Google Scholar] [CrossRef]
- Grabas, M.; Tomaszek, J.A.; Czerwieniec, E.; Zamorska, J.; Kukula, E.; Maslon, A.; Gruca-Rokosz, R. Noxiousness of odours and properties of wastewater sludge processing with biopreparation. Environ. Prot. Eng. 2011, 37, 17–25. [Google Scholar]
- Dębowski, M.; Zieliński, M.; Krzemieniewski, M.; Białowiec, A. The use of Fenton’s reaction to limit the process of creaming and formation of hydrogen sulphide in municipal wastewater. Annu. Set Environ. Prot. 2008, 10, 289–300. [Google Scholar]
- Kida, M.; Ziembowicz, S.; Koszelnik, P. Removal of organochlorine pesticides (OCPs) from aqueous solutions using hydrogen peroxide, ultrasonic waves, and a hybrid process. Sep. Purif. Technol. 2018, 192, 457–464. [Google Scholar] [CrossRef]
- Kida, M.; Ziembowicz, S.; Koszelnik, P. Application of an ultrasonic field for the removal of selected pesticides. E3S Web Conf. 2018, 49, 54. [Google Scholar] [CrossRef] [Green Version]
- Yao, H. Application of advanced oxidation processes for treatment of air from livestock buildings and industrial facilities. Tech. Rep. Biol. Chem. Eng. 2015, 2, 1–36. [Google Scholar]
- Wypych, G. Handbook of Odors in Plastic Materials; Elsevier: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Laplanche, A.; Bonnin, C.; Darmon, D. Comparative Study of Odors Removal in a Wastewater Treatment Plant by Wet Scrubbing and Oxidation by Chlorine or Ozone, w: Characterization and control of odours and VOC in the process industries. In Characterization and Control of Odours and VOC in the Process Industries; Elsevier: Amsterdam, The Netherlands, 1994; Volume 61, pp. 277–294. [Google Scholar]
- Ziembowicz, S.; Kida, M.; Koszelnik, P. Removal of dibutyl phthalate (DBP) from landfill leachate using an ultrasonic field. Desalin. Water Treat. 2018, 4, 13. [Google Scholar] [CrossRef]
- Książek, S.; Kida, M.; Koszelnik, P. The occurrence and source of polycyclic aromatic hydrocarbons in bottom sediments of the Wisłok river. Pol. J. Natural Sci. 2016, 31, 373–386. [Google Scholar]
- Barbusiński, K. Intensification of the wastewater treatment process and stabilization of excess sludge using the Fenton reagent. Zeszyty Naukowe. Inżynieria Środowiska 2004, 50, 866–870. [Google Scholar]
- Aygun, A.; Yilmaz, T.; Nas, B.; Berktay, A. Effect of temperature on Fenton oxidation of young landfill leachate: Kinetic assessment and sludge properties. Glob. NEST J. 2012, 14, 487–495. [Google Scholar]
- Długosz, J. Fenton method and its modifications in the treatment leachate-for review. Arch. Waste Manag. Environ. Prot. 2014, 16, 33–42. [Google Scholar]
Substance | Compound | Formula | Boiling Point (°C) |
---|---|---|---|
Sulphur compounds | Hydrogen sulphide | H2S | −60 |
Methyl mercaptan | CH3SH | 6 | |
Ethyl mercaptan | C2H5SH | 35 | |
Allyl mercaptan | CH2=CHCH2SH | 69 | |
Benzyl mercaptan | C6H5CH2SH | 195 | |
Dimethyl sulphide | CH3SCH3 | 37–38 | |
Dimethyl disulphide | CH3S2CH3 | 108–110 | |
Nitrogenous compounds | Ammonia | NH3 | −33.4 |
Methylamine | CH3NH2 | −6.4 | |
Ethylamine | C2H5NH2 | 17 | |
Dimethylamine | (CH3)2NH | 7 | |
Pyridine | C6H6N | 115 | |
Chlorinated compounds | Chlorine | Cl2 | −34 |
Chlorophenol | ClC6H4OH | 175 | |
Carbon tetrachloride | CCl4 | 77 | |
Other organic compounds | Acetic acid | CH3COOH | 118 |
Butyric acid | C2H5COOH | 162 | |
Formaldehyde | HCHO | −19 | |
Phenol | C6H5OH | 79 | |
Acetone | CH3COCH3 | 56 |
Compound | Concentration | Location | Reference |
---|---|---|---|
Hydrogen sulphide H2S | 0.21–270 µg/m3 | Sewer | [30] |
1880 µg/m3 | Australian sewers | [7] | |
29,000 µg/m3 | Pumping station waste gas | [31] | |
3770 ± 1100 µg/m3 | Upstream of a siphon, Sydney, winter | [32] | |
11,198 ± 2951 µg/m3 | Upstream of a siphon, Sydney, summer | [32] | |
357 ± 160 µg/m3 | Pump stations wet well, Sydney, winter | [32] | |
1162 ± 521 µg/m3 | Pump stations wet well, Sydney, summer | [32] | |
1102 ± 34.4 µg/m3 | Inlet (downstream of a siphon), Sydney, winter | [32] | |
4625.1 ± 148 µg/m3 | Inlet (downstream of a siphon), Sydney, summer | [32] | |
Methyl mercaptan CH3SH | 0.0003–38 µg/m3 | Sewer | [30] |
7000 µg/m3 | Pumping station waste gas | [31] | |
293 µg/m3 | Australian sewers | [7] | |
856 ± 78.6 µg/m3 | Upstream of a siphon, Sydney, winter | [32] | |
1290.5 ± 434 µg/m3 | Upstream of a siphon, Sydney, summer | [32] | |
74.7 ± 76.7 µg/m3 | Pump stations wet well, Sydney, winter | [32] | |
359 ± 165 µg/m3 | Pump stations wet well, Sydney, summer | [32] | |
4139 ± 197 µg/m3 | Inlet (downstream of a siphon), Sydney, winter | [32] | |
701 ± 14.5 µg/m3 | Inlet (downstream of a siphon), Sydney, summer | [32] | |
Ethyl mercaptan C2H5SH | 0.043–21 µg/m3 | Sewer | [30] |
3.81 µg/m3 | Australian sewers | [7] | |
ND | Upstream of a siphon, Sydney, winter | [32] | |
ND–5.6 µg/m3 | Upstream of a siphon, Sydney, summer | [32] | |
ND | Pump stations wet well, Sydney, winter | [32] | |
ND | Pump stations wet well, Sydney, summer | [32] | |
ND | Inlet (downstream of a siphon), Sydney, winter | [32] | |
ND | Inlet (downstream of a siphon), Sydney, summer | [32] | |
Dimethyl sulphide CH3SCH3 | 0.3–160 µg/m3 | Sewer | [30] |
45,000 µg/m3 | Pumping station waste gas | [31] | |
65.4 µg/m3 | Australian sewers | [7] | |
112 ± 36.4 µg/m3 | Upstream of a siphon, Sydney, winter | [32] | |
208 ± 50.5 µg/m3 | Upstream of a siphon, Sydney, summer | [32] | |
51 ± 11 µg/m3 | Pump stations wet well, Sydney, winter | [32] | |
83.9 ± 22.2 µg/m3 | Pump stations wet well, Sydney, summer | [32] | |
63.5 ± 21.9 µg/m3 | Inlet (downstream of a siphon), Sydney, winter | [32] | |
64.6 ± 3 µg/m3 | Inlet (downstream of a siphon), Sydney, summer | [32] | |
Dimethyl disulphide CH3S2CH3 | 8.72 µg/m3 | Australian sewers | [7] |
˂20 µg/m3 | Pumping station waste gas | [31] | |
1.1–78 µg/m3 | Sewer | [30] | |
19.3 ± 3.27 µg/m3 | Upstream of a siphon, Sydney, winter | [32] | |
44.4 ± 2.3 µg/m3 | Upstream of a siphon, Sydney, summer | [32] | |
15.1 ± 6.75 µg/m3 | Pump stations wet well, Sydney, winter | [32] | |
19.5 ± 1.53 µg/m3 | Pump stations wet well, Sydney, summer | [32] | |
7.91 ± 3.21 µg/m3 | Inlet (downstream of a siphon), Sydney, winter | [32] | |
15.7 ± 7.83 µg/m3 | Inlet (downstream of a siphon), Sydney, summer | [32] | |
Diethyl sulphide C2H5SC2H5 | 1.4–310 µg/m3 | Sewer | [30] |
˂70 µg/m3 | Pumping station waste gas | [31] | |
1.12 µg/m3 | Australian sewers | [7] | |
Diethyl disulphide C2H5S2C2H5 | 0.3–90 µg/m3 | Sewer | [30] |
0.15 µg/m3 | Australian sewers | [7] | |
1.43 µg/m3 | Sewer | [30] | |
90 µg/m3 | Pumping station waste gas | [31] | |
22–124 µg/m3 | sewer | [30] | |
Carbon disulfide CS2 | 620 µg/m3 | Pumping station waste gas | [31] |
11 µg/m3 | Australian sewers | [7] | |
13.8 ± 5.42 µg/m3 | Upstream of a siphon, Sydney, winter | [32] | |
27.1 ± 2.7 µg/m3 | Upstream of a siphon, Sydney, summer | [32] | |
6.09 ± 4.39 µg/m3 | Pump stations wet well, Sydney, winter | [32] | |
9.45 ± 2.09 µg/m3 | Pump stations wet well, Sydney, summer | [32] | |
4.02 ± 0.09 µg/m3 | Inlet (downstream of a siphon), Sydney, winter | [32] | |
9.83 ± 1.02 µg/m3 | Inlet (downstream of a siphon), Sydney, summer | [32] | |
70–180 µg/m3 | Sewer | [30] | |
Carbonyl sulfide COS | 250 µg/m3 | Sewer | [30] |
Isopropan ethiol (CH3)2CHSH | ˂0.25 µg/m3 | Pumping station waste gas | [31] |
Sulfur dioxide SO2 | 870–2600 µg/m3 | Sewer | [30] |
Trichloromethane CHCl3 | 202 µg/m3 | Sewer upstream of a siphon | [28] |
654.25 µg/m3 | Sewer line | [28] | |
55.4 µg/m3 | Australian sewers | [7] | |
Benzene C6H6 | 5.52 µg/m3 | Sewer upstream of a siphon | [28] |
8.85 µg/m3 | Sewer line | [28] | |
Toluene C7H8 | 111.33 µg/m3 | Sewer upstream of a siphon | [28] |
61.15 µg/m3 | Sewer line | [28] | |
31.7 µg/m3 | Australian sewers | [7] | |
m,p-xylene C8H10 | 105.66 µg/m3 | Sewer upstream of a siphon | [28] |
183.7 µg/m3 | Sewer line | [28] | |
7.35 µg/m3 | Australian sewers | [7] | |
o-xylene C8H10 | 45.71 µg/m3 | Sewer upstream of a siphon | [28] |
70.61 µg/m3 | Sewer line | [28] | |
0.31 µg/m3 | Australian sewers | [7] | |
Decane C10H22 | 14.36 µg/m3 | Sewer upstream of a siphon | [28] |
141.88 µg/m3 | Sewer line | [28] | |
5.70 µg/m3 | Australian sewers | [7] | |
Limonene C10H16 | 110.03 µg/m3 | Sewer upstream of a siphon | [28] |
191.15 µg/m3 | Sewer line | [28] | |
37.8 µg/m3 | Australian sewers | [7] |
Country | Criterion | Name of the Regulation | Reference |
---|---|---|---|
The United Kingdom | The best available technology (Scotland) |
| [33] |
Germany | The minimum distance Duration and frequency Intensity of fragrance Prevention of nuisance Quantitative emission The best available technology |
| [33] |
The Netherlands | Intensity of fragrance Prevention of nuisance Quantitative emission |
| [33] |
Australia | Odour concentration Concentration of substance The minimum distance The best available technology Complaints |
| [33] |
Japan | Odour concentration Odour indicator Quantitative emission |
| [33,34,35] |
Brazil | Concentration of substance Prevention of nuisance Quantitative emission |
| [33] |
New Zealand | The minimum distance Duration and frequency Intensity of fragrance Complaints |
| [33] |
Number | Substance | Concentration (ppm) |
---|---|---|
1 | Acetaldehyde | 0.05–0.5 |
2 | Ammonia | 1–5 |
3 | Butyl aldehyde | 0.009–0.08 |
4 | Butyric acid | 0.001–0.006 |
5 | Dimethyl disulphide | 0.009–0.1 |
6 | Dimethyl sulphide | 0.01–0.2 |
7 | Ethyl acetate | 3–20 |
8 | Hydrogen sulphide | 0.02–0.2 |
9 | Isobutyl alcohol | 0.9–20 |
10 | Isobutyl aldehyde | 0.02–0.2 |
11 | Isovaleraldehyde | 0.003–0.01 |
12 | Isovaleric acid | 0.001–0.01 |
13 | Methyl isobutyl ketone | 1–6 |
14 | Methyl mercaptan | 0.002–0.01 |
15 | Propionic acid | 0.03–0.2 |
16 | Propoinaldehyde | 0.05–0.5 |
17 | Styrene | 0.4–2 |
18 | Toluene | 10–60 |
19 | Trimethylamine | 0.005–0.07 |
20 | Valeraldehyde | 0.009–0.05 |
21 | Valeric acid | 0.0009–0.004 |
22 | Xylene | 1–5 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pochwat, K.; Kida, M.; Ziembowicz, S.; Koszelnik, P. Odours in Sewerage—A Description of Emissions and of Technical Abatement Measures. Environments 2019, 6, 89. https://doi.org/10.3390/environments6080089
Pochwat K, Kida M, Ziembowicz S, Koszelnik P. Odours in Sewerage—A Description of Emissions and of Technical Abatement Measures. Environments. 2019; 6(8):89. https://doi.org/10.3390/environments6080089
Chicago/Turabian StylePochwat, Kamil, Małgorzata Kida, Sabina Ziembowicz, and Piotr Koszelnik. 2019. "Odours in Sewerage—A Description of Emissions and of Technical Abatement Measures" Environments 6, no. 8: 89. https://doi.org/10.3390/environments6080089
APA StylePochwat, K., Kida, M., Ziembowicz, S., & Koszelnik, P. (2019). Odours in Sewerage—A Description of Emissions and of Technical Abatement Measures. Environments, 6(8), 89. https://doi.org/10.3390/environments6080089