Effect Thresholds of Metals in Stream Sediments Based on In Situ Oligochaete Communities
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Area
2.2. Sampling and Examination of Oligochaete Communities
2.3. Chemical Analyses
2.4. Derivation of Thresholds
2.4.1. Effect Thresholds Per Metal
2.4.2. Metal Contamination Index and Effect Threshold for all Metals Combined
2.5. Study of Relationships between the mPELoligo-Q, Percentage of Organic Matter and Oligochaete Metrics
3. Results
3.1. Description of the Database
3.2. Relationships between Metal Concentrations and IOBS
3.3. Derivation of the TELoligo and PELoligo Thresholds
3.4. Relationships between the mPELoligo-Q and Percentage of Organic Matter and Oligochaete Metrics
3.5. Determination of the mPELoligo-Q Threshold
3.6. Comparison between the IOBS Results and Degrees of Metal Contamination of Sediments
3.7. Comparison of TELoligo and PELoligo with Existing SQG
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Höss, S.; Claus, E.; Von der Ohe, P.; Brinke, M.; Güde, H.; Heininger, P.; Traunspurger, W. Nematode species at risk—A metric to assess pollution in soft sediments of freshwaters. Environ. Int. 2011, 37, 940–949. [Google Scholar] [CrossRef] [PubMed]
- Wang, W. Factors affecting metal toxicity to (and accumulation by) aquatic organisms—Overview. Environ. Int. 1987, 13, 437–457. [Google Scholar] [CrossRef]
- Gurung, B.; Race, M.; Fabbricino, M.; Komínková, D.; Libralato, G.; Siciliano, A.; Guida, M. Assessment of metal pollution in the Lambro Creek (Italy). Ecotoxicol. Environ. Saf. 2018, 148, 754–762. [Google Scholar] [CrossRef] [PubMed]
- Wolfram, G.; Höss, S.; Orendt, C.; Schmitt, C.; Adamek, Z.; Bandow, N.; Großschartner, M.; Kukkonen, J.V.K.; Leloup, V.; Lopez Doval, J.C.; et al. Assessing the impact of chemical pollution on benthic invertebrates from three different European rivers using a weight-of-evidence approach. Sci. Total Environ. 2012, 438, 498–509. [Google Scholar] [CrossRef]
- Lafont, M.; Jézéquel, C.; Vivier, A.; Breil, P.; Schmitt, L.; Bernoud, S. Refinement of biomonitoring of urban water courses by combining descriptive and ecohydrological approaches. Ecohydrol. Hydrobiol. 2010, 10, 3–11. [Google Scholar] [CrossRef]
- Chapman, P.M. The sediment quality triad approach to determine pollution-induced degradation. Sci. Total Environ. 1990, 97, 815–825. [Google Scholar] [CrossRef]
- MacDonald, D.D.; Ingersoll, C.G.; Berger, T.A. Development end evolution of consensus-based sediment quality guidelines for freshwater ecosystems. Arch. Environ. Contam. Toxicol. 2000, 39, 20–31. [Google Scholar] [CrossRef]
- De Deckere, E.; De Cooman, W.; Leloup, V.; Meire, P.; Schmitt, C.; Von der Ohe, P. Development of sediment quality guidelines for freshwater ecosystems. J. Soils Sediments 2011, 11, 504. [Google Scholar] [CrossRef]
- Ingersoll, C.G.; Haverland, P.S.; Brunson, E.L.; Canfield, T.J.; Dwyer, F.J.; Henke, C.E.; Kemble, N.E.; Mount, D.R.; Fox, R.G. Calculation and evaluation of sediment effect concentrations for the amphipod Hyalella azteca and the midge Chironomus riparius. J. Great Lakes Res. 1996, 22, 602–623. [Google Scholar] [CrossRef]
- Rodriguez, P.; Reynoldson, T.B. The Pollution Biology of Aquatic Oligochaetes; Springer Science+Business Media: Berlin, Germany, 2011; p. 224. [Google Scholar]
- Vivien, R.; Tixier, G.; Lafont, M. Use of oligochaete communities for assessing the quality of sediments in watercourses of the Geneva area and Artois-Picardie basin (France): Proposition of heavy metal toxicity thresholds. Ecohydrol. Hydrobiol. 2014, 14, 142–151. [Google Scholar] [CrossRef]
- AFNOR. Qualité de L’eau–Échantillonnage, Traitement et Analyse des Oligochètes dans les Sédiments des eaux de Surface Continentales; Association Française de Normalisation (AFNOR): Paris, France, 2016. [Google Scholar]
- Race, M.; Nabelkova, J.; Fabbricino, M.; Pirozzi, F.; Raia, P. Analysis of Heavy Metal Sources for Urban Creeks in the Czech Republic. Water Air Soil Pollut. 2015, 226, 322. [Google Scholar] [CrossRef] [Green Version]
- EC, European Commission. European Technical Guidance Document (TGD) for Deriving Environmental Quality Standards No. 27, Common Implementation Strategy for the Water Framework Directive (2000/60/EC). Guidance Document No. 27 Technical Guidance for Deriving Environmental Quality Standards; Technical Report-2011-055; Office for Official Publications in the European Communities: Brussels, Belgium, 2018.
- Prygiel, J.; Rosso-Darmet, A.; Lafont, M.; Lesniak, C.; Ouddane, B. Use of oligochaete communities for assessment of ecotoxicological risk in fine sediment of rivers and canals of the Artois-Picardie water basin (France). Hydrobiologia 1999, 410, 25–37. [Google Scholar] [CrossRef]
- Rosso, A.; Lafont, M.; Exinger, A. Effets des métaux lourds sur les peuplements d’oligochètes de l’Ill et de ses affluents (Haut-Rhin, France). Ann. Limnol. 1993, 29, 295–305. [Google Scholar] [CrossRef]
- Rosso, A.; Lafont, M.; Exinger, A. Impact of heavy metals on benthic oligochaete communities in the river Ill and its tributaries. Water Sci. Technol. 1994, 3, 241–248. [Google Scholar] [CrossRef]
- Rosso, A. Description de L’impact des Micropolluants sur les Peuplements d’Oligochètes des Sédiments de Cours D’eau du Basin Versant de l’Ill (Alsace). Elaboration D’une Méthode Biologique de Diagnostic de L’incidence des Micropolluants. Ph.D. Thesis, Université Claude Bernard, Lyon, France, 1995. [Google Scholar]
- Lafont, M. Contribution à la Gestion des Eaux Continentales: Utilisation des Oligochètes Comme Descripteurs de L’état Biologique et du Degré de Pollution des Eaux et des Sédiments. Ph.D. Thesis, UCBL, Lyon, France, 1989. [Google Scholar]
- MacDonald, D.D.; Carr, R.S.; Calder, F.D.; Long, E.R.; Ingersoll, C.G. Development and evaluation of sediment quality guidelines for Florida coastal waters. Ecotoxicology 1996, 5, 253–278. [Google Scholar] [CrossRef] [PubMed]
- Wessa, P. Pearson Correlation (v1.0.13) in Free Statistical Software (v1.2.1). Office for Research Development and Education. Available online: https://www.wessa.net/rwasp_correlation.wasp/ (accessed on 6 January 2020).
- US EPA. Calculation and Evaluation of Sediment Effect Concentrations for the Amphipod Hyalella Azteca and the Midge Chironomus Riparius; EPA 905-R96-008; Great Lakes National Program Office, Region V: Chicago, IL, USA, 1996.
- Casado-Martinez, M.C.; Schneeweiss, A.; Thiemann, C.; Dubois, N.; Pintado-Herrera, M.; Lara-Martin, P.A.; Ferrari, B.J.D.; Werner, I. Écotoxicité des sédiments de ruisseaux. Les pesticides présents dans les sédiments ont des effets sur les organismes benthiques. Aqua Gas 2019, 99, 62–71. [Google Scholar]
- ICMM. Metals Environmental Risk Assessment Guidance (MERAG); International Council on Mining and Metals (ICMM): London, UK, 2007. [Google Scholar]
- Wildi, M.; Casado-Martinez, M.C.; Ferrari, B.J.D.; Werner, I. Results of a Collaborative Field Trial for the Harmonization of Sediment Sampling and Pretreatment Methodologies; Swiss Centre for Applied Ecotoxicology: Lausanne, Switzerland. (in preparation)
- Höss, S.; Heininger, P.; Claus, E.; Möhlenkamp, C.; Brinke, M.; Traunspurger, W. Validating the NemaSPEAR[%]-index for assessing sediment quality regarding chemical-induced effects on benthic communities in rivers. Ecol. Indic. 2017, 73, 52–60. [Google Scholar] [CrossRef]
- Mayer-Pinto, M.; Underwood, A.J.; Tolhurst, T.; Coleman, R.A. Effects of metals on aquatic assemblages: What do we really know? J. Exp. Mar. Biol. Ecol. 2010, 391, 1–9. [Google Scholar] [CrossRef]
- Pesce, S.; Perceval, O.; Bonnineau, C.; Casado-Martinez, M.C.; Dabrin, A.; Lyautey, E.; Naffrechoux, E.; Ferrari, B.J.D. Looking at biological community level to improve ecotoxicological assessment of freshwater sediments: Report on a first French-Swiss workshop. Environ. Sci. Pollut. Res. 2018, 25, 970–974. [Google Scholar] [CrossRef] [Green Version]
- Ferrari, B.J.D.; Vignati, D.A.L.; Roulier, J.L.; Coquery, M.; Szalinska, E.; Bobrowski, A.; Czaplicka-Kotas, A.; Dominik, J. Chromium bioavailability in aquatic systems impacted by tannery wastewaters. Part 2: New insights from laboratory and in situ testing with Chironomus Riparius. Sci. Total Environ. 2019, 653, 401–408. [Google Scholar] [CrossRef] [Green Version]
- Särkkä, J. The bottom macrofauna of the oligotrophic lake Konne-vesi, Finland. Ann. Zool. Fenn. 1972, 9, 141–146. [Google Scholar]
- Resh, V.H.; Unzicker, J.D. Water quality monitoring and aquatic organisms: The importance of species identification. J. Water Pollut. Control Fed. 1975, 47, 9–19. [Google Scholar] [PubMed]
- Sloof, W. Benthic macroinvertebrates and water quality assessment: Some toxicological considerations. Aquat. Toxicol. 1983, 4, 73–82. [Google Scholar] [CrossRef]
- De Pauw, N.; Heylen, S. Biotic index for sediment quality assessment of watercourses in Flanders, Belgium. Aquat. Ecol. 2001, 35, 121–131. [Google Scholar] [CrossRef]
- Courtney, L.A.; Clements, W.H. Assessing the influence of water and substratum quality on benthic macroinvertebrate communities in a metal-polluted stream: An experimental approach. Freshw. Biol. 2002, 47, 1766–1778. [Google Scholar] [CrossRef] [Green Version]
- Molineri, C.; Tejerina, E.G.; Torrejón, S.E.; Pero, E.J.I.; Hankel, G.E. Indicative value of different taxonomic levels of Chironomidae for assessing the water quality. Ecol. Indic. 2020, 108, 105703. [Google Scholar] [CrossRef]
- Méndez-Fernández, L.; Casado-Martínez, C.; Martínez-Madrid, M.; Moreno-Ocio, I.; Costas, N.; Pardo, I.; Rodriguez, P. Derivation of sediment Hg quality standards based on ecological assessment in river basins. Environ. Pollut. 2019, 245, 1000–1013. [Google Scholar] [CrossRef]
- Vivien, R.; Holzmann, M.; Werner, I.; Pawlowski, J.; Lafont, M.; Ferrari, B.J.D. Cytochrome c oxidase barcodes for aquatic oligochaete identification: Development of a Swiss reference database. PeerJ 2017, 5, e4122. [Google Scholar] [CrossRef] [Green Version]
- Vivien, R.; Apothéloz-Perret-Gentil, L.; Pawlowski, J.; Werner, I.; Lafont, M.; Ferrari, B.J.D. High-throughput DNA barcoding of oligochaetes for abundance-based indices to assess the biological quality of sediments in streams and lakes. Sci. Rep. 2020, 10, 2041. [Google Scholar] [CrossRef]
Cr | Ni | Zn | Cu | Pb | Cd | Hg | As | OM | |
---|---|---|---|---|---|---|---|---|---|
Whole database (N = 116) | |||||||||
Min | 7.7 | 7.0 | 13.9 | 1.4 | 3.1 | 0.04 | 0.004 | 1.2 | 0.4 |
Max | 117.1 | 111 | 1390.6 | 229 | 100.2 | 1.41 | 0.766 | 14.6 | 30.8 |
Mean | 34.2 | 28.4 | 108.9 | 35.1 | 20.8 | 0.23 | 0.054 | 3.5 | 5.1 |
Median | 27.7 | 22.3 | 56.1 | 16.2 | 13.8 | 0.17 | 0.025 | 2.7 | 2.6 |
Database for estimation of background concentrations (N = 63) | |||||||||
Min | 7.7 | 7.6 | 15.8 | 1.6 | 3.4 | 0.05 | 0.004 | 1.4 | 0.7 |
Max | 98.5 | 94.6 | 345 | 181 | 100.2 | 1.41 | 0.766 | 14.6 | 17.4 |
Mean | 27.6 | 23.7 | 66.5 | 24.6 | 18.3 | 0.21 | 0.045 | 3.8 | 3.8 |
Median | 23.1 | 19.8 | 50 | 13.9 | 10.4 | 0.15 | 0.022 | 2.9 | 2.5 |
Background concentration | 15.1 | 11.4 | 20.2 | 5.12 | 5.2 | 0.09 | 0.009 | 1.6 |
Cr | Ni | Zn | Cu | Pb | Cd | Hg | As | ||
---|---|---|---|---|---|---|---|---|---|
All samples (n = 116) | R2 | 0.148 | 0.199 | 0.225 | 0.268 | 0.214 | 0.168 | 0.185 | 0.0144 |
p | 2 × 10−5 | 5.4 × 10−7 | 7.7 × 10−8 | 2.6 × 10−9 | 1.7 × 10−7 | 4.9 × 10−6 | 1.45 × 10−6 | NS | |
Selected samples | R2 | 0.476 | 0.493 | 0.455 | 0.499 | 0.517 | 0.483 | 0.434 | 0.366 |
p | 7.4 × 10−12 | 2.7 × 10−13 | 1.7 × 10−13 | 2.2 × 10−16 | 1 × 10−15 | 3.2 × 10−13 | 6.9 × 10−13 | 4.7 × 10−8 | |
n | 75 | 81 | 92 | 100 | 92 | 84 | 93 | 68 |
Cr | Ni | Zn | Cu | Pb | Cd | Hg | As | |
TELoligo | 35 | 24 | 46.9 | 10.5 | 12.3 | 0.18 | 0.0218 | 3.6 |
PELoligo | 45.9 | 34.1 | 88.1 | 31 | 23.9 | 0.23 | 0.054 | 5.7 |
Case | Incidence of Exceedance for Individual Metals | Number of Samples | Comments |
---|---|---|---|
Case 1 IOBS ≥ 3 mPELoligo-Q ≤ 0.92 | Less than 4 metals ≥ TELoligo and 2 metals > PELoligo | 25 | |
At least 4 metals ≥ TELoligo and/or 2 metals > PELoligo | 8 | Reduced bioavailability of metals? | |
Case 2 IOBS < 3 mPELoligo-Q > 0.92 | Less than 4 metals ≥ TELoligo and 2 metals > PELoligo | 0 | |
At least 4 metals ≥ TELoligo and/or 2 metals > PELoligo | 33 | ||
Case 3 IOBS < 3 mPELoligo-Q ≤ 0.92 | Less than 4 metals ≥ TELoligo and 2 metals > PELoligo | 27 | Effects caused by other pollutants than metals and/or high bioavailability of metals. |
At least 4 metals ≥ TELoligo and/or 2 metals > PELoligo | 20 | ||
Case 4 IOBS ≥ 3 mPELoligo-Q > 0.92 | Less than 4 metals ≥ TELoligo and 2 metals > PELoligo | 0 | |
At least 4 metals ≥ TELoligo and/or 2 metals > PELoligo | 3 | Reduced bioavailability of metals by Mn/Fe oxides and/or organic matter for two samples (high concentrations of Mn, Fe and OM)? For one sample, mPELoligo-Q value (0.98) close to the threshold of 0.92. |
Type of Threshold | Cd | Cr | Cu | Hg | Ni | Pb | Zn | As | |
---|---|---|---|---|---|---|---|---|---|
The present study | TELoligo | 0.18 | 35 | 10.5 | 0.0218 | 24 | 12.3 | 46.9 | 3.6 |
PELoligo | 0.23 | 45.9 | 31 | 0.054 | 34.1 | 23.9 | 88.1 | 5.7 | |
Ecotoxicological tests | |||||||||
de Deckere et al. [8] | TELHA10 | 1.2 | 26 | 16 | 0.18 | 7.5 | 31 | 163 | N.D. |
PELHA10 | 2.6 | 45 | 34 | 0.47 | 19 | 68 | 305 | N.D. | |
US EPA [22]; Ingersoll et al. [9] | TELHA28 | 0.58 | 36 | 28 | N.D. | 20 | 37 | 98 | 11 |
PELHA28 | 3.2 | 120 | 100 | N.D. | 33 | 82 | 540 | 48 | |
Ecological studies | |||||||||
de Deckere et al. [8] | LELeco | 0.71 | 25 | 13 | 0.28 | 15 | 19 | 129 | 7.9 |
SELeco | 13 | 90 | 85 | 1.8 | 44 | 167 | 1300 | 50 | |
Mix of ecotoxicological and ecological studies | |||||||||
MacDonald et al. [7] | TEC | 0.99 | 43.4 | 31.6 | 0.18 | 22.7 | 35.8 | 121 | 9.79 |
PEC | 4.98 | 111 | 149 | 1.06 | 48.6 | 128 | 459 | 33 | |
de Deckere et al. [8] | Consensus 1 | 0.93 | 26 | 14 | 0.23 | 11 | 25 | 146 | 7.9 |
Consensus 2 | 7.8 | 68 | 60 | 1.2 | 32 | 118 | 800 | 50 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vivien, R.; Casado-Martínez, C.; Lafont, M.; Ferrari, B.J.D. Effect Thresholds of Metals in Stream Sediments Based on In Situ Oligochaete Communities. Environments 2020, 7, 31. https://doi.org/10.3390/environments7040031
Vivien R, Casado-Martínez C, Lafont M, Ferrari BJD. Effect Thresholds of Metals in Stream Sediments Based on In Situ Oligochaete Communities. Environments. 2020; 7(4):31. https://doi.org/10.3390/environments7040031
Chicago/Turabian StyleVivien, Régis, Carmen Casado-Martínez, Michel Lafont, and Benoit J.D. Ferrari. 2020. "Effect Thresholds of Metals in Stream Sediments Based on In Situ Oligochaete Communities" Environments 7, no. 4: 31. https://doi.org/10.3390/environments7040031
APA StyleVivien, R., Casado-Martínez, C., Lafont, M., & Ferrari, B. J. D. (2020). Effect Thresholds of Metals in Stream Sediments Based on In Situ Oligochaete Communities. Environments, 7(4), 31. https://doi.org/10.3390/environments7040031