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Abstract: In this study, a mobile air pollution sensing unit based on the Internet of Things framework
was designed for monitoring the concentration of fine particulate matter in three urban areas. This
unit was developed using the NodeMCU-32S microcontroller, PMS5003-G5 (particulate matter
sensing module), and Ublox NEO-6M V2 (GPS positioning module). The sensing unit transmits data
of the particulate matter concentration and coordinates of a polluted location to the backend server
through 3G and 4G telecommunication networks for data collection. This system will complement
the government’s PM2.5 data acquisition system. Mobile monitoring stations meet the air pollution
monitoring needs of some areas that require special observation. For example, an AIoT development
system will be installed. At intersections with intensive traffic, it can be used as a reference for
government transportation departments or environmental inspection departments for environmental
quality monitoring or evacuation of traffic flow. Furthermore, the particulate matter distributions
in three areas, namely Xinzhuang, Sanchong, and Luzhou Districts, which are all in New Taipei
City of Taiwan, were estimated using machine learning models, the data of stationary monitoring
stations, and the measurements of the mobile sensing system proposed in this study. Four types of
learning models were trained, namely the decision tree, random forest, multilayer perceptron, and
radial basis function neural network, and their prediction results were evaluated. The root mean
square error was used as the performance indicator, and the learning results indicate that the random
forest model outperforms the other models for both the training and testing sets. To examine the
generalizability of the learning models, the models were verified in relation to data measured on
three days: 15 February, 28 February, and 1 March 2019. A comparison between the model predicted
and the measured data indicates that the random forest model provides the most stable and accurate
prediction values and could clearly present the distribution of highly polluted areas. The results of
these models are visualized in the form of maps by using a web application. The maps allow users to
understand the distribution of polluted areas intuitively.

Keywords: Internet of Things; machine learning; air pollution; PM2.5; wireless sensor network

1. Introduction

Air pollution is the byproduct of human activities. However, the traditional method
of collection fails to classify the pollution and cannot produce objective results. Many
scientists are focused on the study of air pollution monitoring. El Fazziki et al. proposed
an analytical system of pollution that is based on road infrastructure. This system was
designed by using road networks in cities with Hadoop operation and the Dikstra algorithm
to predict the real time air pollution of different road sections. Hu et al. [1] proposed a
model for predicting the concentration of carbon monoxide. In the aforementioned study,
the data of static and mobile monitoring systems could be used to predict and analyze CO
concentration of the city of Sydney. The results of air pollution distribution of Sydney were
visualized with a web application [2]. Kadri et al. proposed a distributed air pollution
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monitoring system based on solar power supply. This system transmits real time pollution
information through webpages and mobile applications [3]. Mead et al. stated that air
pollution monitoring for urban areas must be conducted at suitable spatial and temporal
scales to facilitate the monitoring of the complicated environment. To address problems
concerning the spatial scale, the aforementioned authors designed a microscale and low-
cost gas sensor [4]. Predić et al. proposed the utilization of smart equipment to simplify
monitoring. They used smart phones to construct an integrated platform for the wireless
sensing of air quality (Exposure Sense). This platform, enabling third party sensing devices
to be connected easily through a standard USB port, provides customized pollution data
and uploads data to global sensor networks regularly [5]. On other hand, Shaban et al.
proposed the construction of air pollution models by using a support vector machine,
M5 pruned model tree, and artificial neural network. Multistep forecasting of urban
air pollution was conducted, and the future concentrations of SO2, NO2, and O3 were
predicted [6]. Hasenfrate et al. proposed the construction of high resolution pollution
maps by using a land use regression model. They installed wireless sensor nodes on trams
in Zürich in order to solve the problem of the spatial variation of ultrafine particles [7].
Bacco et al. proposed an air pollution monitoring network based on information and
communications technology. The network consists of stationary and mobile sensor nodes,
and data collection is conducted with unmanned aerial vehicles. Incorporating a mobile
social network application through which people express their subjective feelings, this
network collects both objective data (sensors) and subjective feelings (people’s perception)
simultaneously [8].

Chen et al. designed an anomaly detection framework for the supervision of sensor
states and the determination of equipment malfunction. With this framework, the sensor
maintenance operation can be conducted as soon as possible to ensure the credibility of
the sensor data [9]. Singh et al. proposed the reconstruction of air pollution graphs by
using the cokriging method. They analyzed the ozone and PM10 concentrations in an
urban area in Northern Italy. Seasonal prediction, which the kriging interpolation method
failed to complete, was achieved by using the cokriging method [10]. Sivaraman et al.
proposed a low-cost mobile sensing unit that involved installing sensing equipment on
cars and transmitted data to the back end in the form of a Google map through the 3G
network. Sivaraman et al. used the aforementioned system to perform large range air
pollution analysis of the Sydney metropolis [11]. Qu et al. proposed a comprehensive
weather data visualization system that incorporates circular pixel bar charts embedded
into polar systems, parallel coordinates, and weighted complete graphs. This proposed
system was used to analyze air pollution problems in Hong Kong and specifically to
reveal the correlations between wind direction, wind speed, and pollution [12]. Gu et al.
developed a recurrent air quality predictor. By using key weather data and pollution values
to determine the air pollutant concentration, the predictor predicts air quality several hours
ahead, thus eliminating nonlinear and chaotic interference and resolving the problem
of decreasing correlation with time [13]. Boubrima et al. deployed a low-cost wireless
sensor network to design a model and to estimate sensor installation positions, achieving
a sensor network with fine spatiotemporal granularity [14]. Al-Ali et al. used an online
general packet radio service sensor array applied in air pollution monitoring to establish a
personal application server with Internet connection, which was then tested in an urban
area [15]. Chen et al. proposed a real time air pollution forecasting system. This system
reduced the hardware cost to 10% of the original cost through the application of the Internet
of Things (IoT) and predicted air pollution trends within a certain time range through
neural network training [16]. Dam et al. proposed a wearable air quality monitor for air
pollution analysis in different environments. This monitor can surmount the shortcomings
of traditional distributed air pollution monitoring [17]. Qin et al. proposed a PM2.5
prediction system based on two deep neural networks, namely long short term memory
and convolutional neural networks, to perform time series forecasting of the changes in the
PM2.5 concentration [18]. Duangsuwan et al. proposed an air quality monitoring method
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based on NB-IoT, which involved using a sensing system comprising a low power wide
area network for the real time monitoring of PM10, CO, CO2, and O3 concentrations and
noise [19].

PM2.5 concentration changes with time and area. In the present study, monitoring
was performed using the Taiwanese government’s regional monitoring stations and mobile
sensing devices. The regional monitoring stations provide continuous high stability and
high accuracy pollutant concentration monitoring data. However, only limited regional
monitoring stations have been set up due to their high cost. Mobile sensing devices
facilitate detailed monitoring in each area, have the advantages of low cost and portability,
and can be installed on streets. However, these devices are relatively unstable and prone
to incomplete data collection. Built on the IoT framework, this study capitalized on the
advantages of both mobile sensing devices and regional monitoring stations for pollutant
concentration prediction. Machine learning models were used to design a prediction
system for the PM2.5 concentration in urban areas. Changes in the PM2.5 concentration
in urban areas were predicted in real time, and pollution distribution maps were then
generated using a web application. To sum up these studies mentioned above, combining
the Internet of Things framework and machine learning is the novel idea for our further
study.

Metropolitan areas are densely populated areas where the quality of air has a direct
impact on health. Until now, air pollution monitoring in metropolitan areas has mainly
been carried out by government agencies through the installation of fixed monitoring
stations. Although these stations are highly accurate, they are expensive to install and
occupy large space. As a result, the number of stations is sparse, and the distances between
them are generally far apart, making it difficult to estimate the true pollution value of a
particular area. In order to monitor fine particulate pollution more accurately, this research
proposes a metropolitan area fine particulate prediction system based on the Internet of
Things (IoT) and combined with a machine learning model.

2. Problem Statements
2.1. System Architectures

The structure of the system used in this study is displayed in Figure 1. This system
consists of four parts: an environment sensing unit, a wireless transmission channel, a
cloud database, and a web application.
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The environment sensing unit is composed of the Chnia, Ai-Thinker, NodeMCU-
32S microcontroller, a Switzerland, Ublox, GPS neo-6M V2 positioning module, a China,
PLANTOWER, PMS5003 G5 PM sensing module, a power bank, and Internet connection
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equipment. Figure 2 depicts the hardware equipment. To prevent the environment sensing
unit from being damaged by wind or rain, a double layer case design was adopted. The
case is displayed in Figure 3. Figure 4 illustrates the process of the environment sensing,
and the time interval between each data upload is 5 s.
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Cell sites in Taiwan have extremely high distribution density and are managed by
government agencies at all times. Thus, a telecommunication network, comprising cell
sites, provides high coverage, stable transmission, and high reliability. After the sensors
collect environment data, the system enters the wireless transmission stage. Subsequently,
the Chnia, Ai-Thinker, NodeMCU-32S microcontroller communicates with the Internet
connection equipment through Wi-Fi, connects to the 3G or 4G telecommunication network
through a subscriber identity module (SIM) card, and sends the environment data to the
backend database for storage.

The backend database system is constructed by using California, USA, ORACLE,
MySQL, which is a relational database management system, and the XAMPP software
package developed by Kai ‘Oswald’ Seidler and Kay Vogelgesang. XAMPP allows users to
construct web servers on personal computers and manage the database. The environment
data are stored in MySQL, and California, USA, ORACLE, SQL grammar and PHP grammar
founded by Rasmus Lerdorf are used to access the data for organization and analysis.

The web application was constructed using the Apache HTTP server developed by
Apache foundation and interacts with users through Leaflet, which is a frontend map
package. Leaflet has the characteristics required by most map systems. It can switch
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between satellite cloud images and street maps according to users’ needs. The lightweight
nature of Leaflet reduces the running load. Users can inquire the pollution distribution
locations through webpages to understand PM pollution. Figure 5 displays the heat
distribution in Leaflet.
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2.2. IoT for Fine Suspended Particulate Monitoring

The pollution of fine suspended particulates is an issue of increasing concern to
all countries, and we hope to mitigate the pollution situation in the course of economic
development. The monitoring of PM2.5 pollution is usually carried out by fixed monitoring



Environments 2021, 8, 99 6 of 21

stations set up by the government, mainly by the Environmental Protection Administration
of the Executive Yuan in Taiwan. Large stationary monitoring stations are highly accurate
and have excellent system stability. However, they are expensive to build, occupy large
space, and are located far away from each other, which limits the number of stations.
For example, the Taipei metropolitan area covers an area of 2457.1253 km2 and has a
population of 7,032,434, but there are only 20 large monitoring stations, so it is difficult to
directly reflect the true pollution level. Figure 6 (cited from the Environmental Protection
Administration, Executive Yuan) shows the distribution of fixed monitoring stations in the
Taipei metropolitan area.

1 

 

 

Figure 6. Location of air quality measurement stations in the Taipei.

Another way of monitoring PM2.5 is manual monitoring. The person in charge of
sampling uses specially treated filter to collect at a specific point and sends the paper back
to the laboratory for analysis. The advantage of manual monitoring is that it eliminates as
many external environmental disturbances as possible and calculates the pollution value
by weighing under controlled environmental conditions such as temperature and humidity.
However, the entire process must go through a complete experimental analysis process
and often takes two to three weeks to produce the final results, so it does not provide an
early warning effect to the public.

With the booming development of single chip technology, environmental sensing
technology and wireless transmission technology, the application of Internet of Things is
becoming more and more mature. In recent years, a variety of portable mobile sensing
devices have emerged one after another. The Edi Green Air Box is a three way cooperation
platform between the private sector, research institutes, and the government and can be
placed on public transportation for stable environmental data collection. Through the
Internet of Things, the PM2.5 pollution values of the area can be obtained from the alleys
and streets, which can compensate for the insufficient number of fixed monitoring stations
and the time consuming nature of manual collection. However, the relative instability of
mobile sensor system data sensing may also be due to external factors causing fragmented
data. Both fixed stations and mobile sensors have their own advantages and disadvantages,
and it is impossible to give too much weight to the data results of one or the other, so the
best approach for PM2.5 pollution analysis is to use both methods.
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3. Design of the PM Predictive System
3.1. PM Pollution Dataset

The dataset used in this study is the PM2.5 pollution dataset collected for three urban
areas in Taiwan, namely Xinzhuang, Sanchong, and Cailiao Districts, from 13 December
2018, to 9 February 2019. The adopted dataset is a winter pollution dataset that contains
11,854 data points. The time interval between each data upload is 5 s, and the data
sensor travels at a speed lower than 70 km/h. Accordingly, the distance between each
measurement location is within 100 m. The data structure consists of seven types of
information, namely pollutant measurement time (h), longitude, latitude, the pollutant
concentration at Xinzhuang Station, the pollutant concentration at Sanchong Station, the
pollutant concentration at Cailiao Station, and the pollutant concentration measured by
the sensor. The sensing unit designed in this study was used to collect four types of
data, namely data on longitude, latitude, pollutant measurement time, and pollutant
concentration. The data of the stationary stations were obtained from the open database of
the Taiwanese government.

Figure 7 displays the data recorded at 11:00 A.M. on 20 January 2019. In this figure,
the horizontal axis represents the longitude and the vertical axis represents the latitude.
The pollution level is depicted with the heat scale at the right side of Figure 7. The average
PM2.5 value on the aforementioned day was 34 µg/m3. The road section at the upper left
had high pollutant concentration; thus, it exhibits an orangish red color. Figure 8 depicts
the data recorded at 10:00 A.M. on 3 January 2019. Most of the areas are in dark blue,
which indicates that these areas had low pollution levels. Only few road sections had a
marginally high pollutant concentration, which are indicated by a slight green color.

Environments 2021, 8, x FOR PEER REVIEW 7 of 21 
 

 

3. Design of the PM Predictive System 
3.1. PM Pollution Dataset 

The dataset used in this study is the PM2.5 pollution dataset collected for three urban 
areas in Taiwan, namely Xinzhuang, Sanchong, and Cailiao Districts, from 13 December 
2018, to 9 February 2019. The adopted dataset is a winter pollution dataset that contains 
11,854 data points. The time interval between each data upload is 5 s, and the data sensor 
travels at a speed lower than 70 km/h. Accordingly, the distance between each measure-
ment location is within 100 m. The data structure consists of seven types of information, 
namely pollutant measurement time (h), longitude, latitude, the pollutant concentration 
at Xinzhuang Station, the pollutant concentration at Sanchong Station, the pollutant con-
centration at Cailiao Station, and the pollutant concentration measured by the sensor. The 
sensing unit designed in this study was used to collect four types of data, namely data on 
longitude, latitude, pollutant measurement time, and pollutant concentration. The data of 
the stationary stations were obtained from the open database of the Taiwanese govern-
ment. 

Figure 7 displays the data recorded at 11:00 A.M. on 20 January 2019. In this figure, 
the horizontal axis represents the longitude and the vertical axis represents the latitude. 
The pollution level is depicted with the heat scale at the right side of Figure 7. The average 
PM2.5 value on the aforementioned day was 34 μg/m3. The road section at the upper left 
had high pollutant concentration; thus, it exhibits an orangish red color. Figure 8 depicts 
the data recorded at 10:00 A.M. on 3 January 2019. Most of the areas are in dark blue, 
which indicates that these areas had low pollution levels. Only few road sections had a 
marginally high pollutant concentration, which are indicated by a slight green color. 

 
Figure 7. Mobile sensing data at 11:00 A.M. on 20 January 2019. Figure 7. Mobile sensing data at 11:00 A.M. on 20 January 2019.



Environments 2021, 8, 99 8 of 21
Environments 2021, 8, x FOR PEER REVIEW 8 of 21 
 

 

 
Figure 8. Mobile sensing data at 10:00 A.M. on 3 January 2019. 

3.2. Structure of the Machine Learning Models 
The proposed PM2.5 prediction model is displayed in Figure 9. The input features 

are six-dimensional data comprising information on longitude, latitude, the pollutant con-
centration at Xinzhuang Station, the pollutant concentration at Sanchong Station, the pol-
lutant concentration at Cailiao Station, and pollutant measurement time (h). The pollutant 
concentrations at the aforementioned three stations reflected the overall pollution situa-
tion in the corresponding three metropolitan areas. The spatial and temporal input fea-
tures of longitude, latitude, and pollutant measurement time were used to accurately de-
scribe the PM2.5 pollution level of each small region within the metropolitan areas. The 
model output is the PM2.5 value (μg/m3). Four types of machine learning models were 
used for training, namely decision tree, random forest, multilayer perceptron, and radial 
basis function (RBF) neural network. 

 
Figure 9. Structure of the PM prediction model. 

3.3. Model Training Process 
Figure 10 displays the model training process adopted in this study. This process 

comprises five major steps. 

Figure 8. Mobile sensing data at 10:00 A.M. on 3 January 2019.

3.2. Structure of the Machine Learning Models

The proposed PM2.5 prediction model is displayed in Figure 9. The input features
are six-dimensional data comprising information on longitude, latitude, the pollutant
concentration at Xinzhuang Station, the pollutant concentration at Sanchong Station, the
pollutant concentration at Cailiao Station, and pollutant measurement time (h). The
pollutant concentrations at the aforementioned three stations reflected the overall pollution
situation in the corresponding three metropolitan areas. The spatial and temporal input
features of longitude, latitude, and pollutant measurement time were used to accurately
describe the PM2.5 pollution level of each small region within the metropolitan areas. The
model output is the PM2.5 value (µg/m3). Four types of machine learning models were
used for training, namely decision tree, random forest, multilayer perceptron, and radial
basis function (RBF) neural network.
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3.3. Model Training Process

Figure 10 displays the model training process adopted in this study. This process
comprises five major steps.
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3.3.1. Model Training Process

Missing data in the database were removed to prevent them from influencing the
training process. Data outside the range of 0–100 µg/m3 were determined to be abnormal
data and thus were also deleted. Feature scaling is conducted on the data to enhance the
convergence likelihood of the model learning process. MinMaxScaler in scikit-learn was
used for the feature scaling with the scaling ranges of 0 to 1 and −1 to 1. For the decision
tree and random forest models, a feature scaling range of 0–1 was used. For the multilayer
perceptron and RBF neural network models, a feature scaling range of −1 to 1 was used.

Xstd =
X− Xmin

Xmax − Xmin
, (1)

Xminmax = Xstd · (max−min) + min, (2)

where
X is current value;
Xmin is minimum value of the same feature data;
Xmax is maximum value of the same feature data;
max is maximum value of the feature scaling data;
min is minimum value of the feature scaling data;
Xminmax is value after feature scaling.

3.3.2. Data Grouping

The data were reshuffled to increase their randomness. In addition, 80% of the data
were assigned to the training set, and the remaining 20% were assigned to the testing set.
The training set comprised 9483 data points, and the testing set comprised 2371 data points.

3.3.3. Machine Learning Methods

Machine learning adopts appropriate learning rules according to the different situ-
ations in which it is used. This study used the supervised learning method as the basis
for urban pollution analysis. The following sections introduce the calculations of the
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classification and regression decision tree (CART), random forest, multilayer perceptron
(MLP), and RBF network [20,21] methods.

In the CART regression algorithm used in this study, the decision tree uses the split
method to grow from top to bottom, and in each step of the splitting process, the best
attribute is selected for splitting so that the error value is reduced, as shown in Formula (3),
where x(j) represents the selected feature, the feature value s is used as a reference point for
splitting. The data space is cut into two regions R1(j, s), R2(j, s), and the output value y1,
y2 of the region R1, R2 is the average value of the expected output of each region, E means
the expectation operation, and ti means the ith data,

R1(j, s) =
{

x
∣∣∣x(j) ≤ s

}
, R2(j, s) =

{
x
∣∣∣x(j) > s

}
, (3)

y1 = E(ti|xi ∈ R1(j, s)), (4)

y2 = E(ti|xi ∈ R2(j, s)), (5)

The minimum square error of the CART regression algorithm is

min

[
∑

xi∈R1

(ti − y1)
2 + ∑

xi∈R2

(ti − y2)
2

]
,

(6)

In the process of random forest training, multiple CARTs are combined for co-training,
and multiple decision trees form a “forest” model, which can improve the prediction dead
ends of a single decision tree model and can reduce the chance of overfitting. The model
is shown in Figure 11. Random forest is different from traditional decision tree models
for testing all features of the dataset. It does not directly search and test all features but
randomly selects node features. Therefore, random forest increases the randomness of the
model and reduces the tree.
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The training process of the multilayer perceptron can be divided into two stages.
In the first stage, the input variables are continuously fed forward to the output layer
through the excitation between nodes, which is a standard feedforward neural network. In
the second stage, the neural network model is trained, and the weights of the model are
corrected one by one through backpropagation (BP) to find a suitable parameter so that the
output of the network model can be made as close as possible to the expected value. . The
error function is defined as shown in Equation (7)

error =
1
2∑

j
(Tj −Yj)

2

,

(7)
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where Tj represents the expected output of the jth neuron in the output layer, and Yj
represents the output of the jth neuron network in the output layer.

The RBF neural network is different from the MLP in that its hidden layer uses a
nonlinear radial basis function as a learning function. The Gaussian function is a commonly
used RBF, and it is also an important core of the RBF neural network. The input variable
is converted to the hidden layer through Gaussian function conversion. The closer the
input variable of the neuron is to the center of the Gaussian function, the higher the level
of excitation of the neuron, and vice versa. Conversely, the degree of excitation decreases
rapidly.

3.3.4. Model Training

The learning models were established using Python programming in scikit-learn and
TensorFlow. Scikit-learn exhibits abundant feature operations and provides an application
programming interface for machine learning algorithms, facilitating the construction of
learning models according to application requirements. The strength of TensorFlow is that
it can be used for the construction of neural network models. Moreover, TensorFlow offers
various reverse transmission methods. The decision tree, random forest, and multilayer
perceptron models were constructed using scikit-learn, and the RBF neural network model
was constructed using TensorFlow.

To reduce overfitting for the decision tree algorithm, the tree model growth was
limited by adjusting the following parameters: max_depth (maximum depth of the tree
structure), min_samples_split (sample size required for the splitting process), and splitter
(splitting method). The random forest algorithm is a combination of multiple decision trees.
The number of decision tress was controlled by adjusting n_estimators.

The four parameters set for the multilayer perceptron model are number of hidden
layers, number of nodes in each layer, activation function, and optimizer. The number
of hidden layers was set as 3, and the number of nodes in each layer was set as 29. The
rectified linear activation function (ReLU) was used, and Adam Optimizer was used as the
optimizer.

The two parameters set for the RBF neural network model were optimizer and number
of nodes. The number of nodes was set as 120, and Adam Optimizer was adopted as the
optimizer.

Table 1 presents the training parameter settings of the learning models.

Table 1. Training parameters of the learning models.

Decision tree
max_depth 15

min_samples_split 11
splitter Random

Random Forest
max_depth 15

min_samples_split 11
n_estimators 20

Multilayer Perceptron

Hidden Layers 3
Nodes 29

Activation Function ReLU
Optimizer AdamOptimizer

RBF Neural Network Nodes
Optimizer

120
AdamOptimizer

3.4. Model Training Process

In this study, the root mean square error (RMSE) and mean absolute error (MAE) were
used as indicators to assess the learning results.

RMES =

√
∑n

i−1 e2
i

n
(8)
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MAE =
∑n

i=1|ei|
n

(9)

where ei is the error between the model output and expected output and n is the total
learning sample size.

3.5. Model Saving

The models were saved using the joblib tool in scikit-learn and the tf.train.Saver tool
in TensorFlow.

4. Model Training Comparison
4.1. Comparison of the Model Learning Results

Figures 12–15 display the learning results of the models. Table 2 presents the RMSE
values of the four learning models. The feature scaling range of the decision tree model
was 0–1. The RMSE values of the training and testing sets for the aforementioned model
were 0.0242 and 0.0296, respectively. The learning results for the training and testing sets
were similar, and no apparent overfitting or under fitting was observed. The feature scaling
range of the random forest model was also 0 to 1. The RMSE values of the training and
testing sets for the aforementioned model were 0.0168 and 0.0236, respectively. The random
forest model exhibited the optimal results among all the models. The feature scaling range
of the multilayer perceptron model was −1 to 1. The RMSE values of the training and
testing sets for the aforementioned model were 0.0892 and 0.0899, respectively. The feature
scaling range of the RBF neural network was also −1 to 1. The RMSE values of the training
and testing sets for the aforementioned model were 0.0830 and 0.0872, respectively. The
training and testing results were similar. The random forest model provided the best
learning results, followed by the decision tree and RBF neural network models. The
multilayer perceptron model exhibited the largest errors.
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Table 2. RMSE values of the four adopted learning models.

Model Data Pre Processing Training Testing

Decision tree MinMaxScaler (0~1) 0.0242 0.0296
Random forest MinMaxScaler (0~1) 0.0168 0.0236

Multilayer perceptron MinMaxScaler (−1~1) 0.0892 0.0899
RBF neural network MinMaxScaler (−1~1) 0.0830 0.0872

4.2. Comparison of the Model Output Results

Figure 16a–d show the errors between the output values of the four learning models
and the measured pollutant concentrations. In the figures mentioned above, the Y-axis
indicates the PM2.5 values (µg/m3), and the X-axis indicates the dataset sample size. The
blue lines represent the real pollutant concentrations, and the red lines represent the model
output values. The MAE is used to determine the errors. As displayed in Figure 16a–d, the
overall MAEs of the decision tree, random forest, multilayer perceptron, and RBF neural
network models were 1.0680, 0.8099, 2.2612, and 2.1642 µg/m3, respectively.

Table 3 presents the MAE values of the models. The random forest model exhibited the
optimal performance, followed by the decision tree, RBF neural network, and multilayer
perceptron models.
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Table 3. MAE values of the learning models.

Model MAE (µg/m3)

Decision tree 1.0680
Random forest 0.8099

Multilayer perceptron 2.2612
RBF neural network 2.1642

This chapter introduces the proposed fine aerosol machine learning prediction system
in detail and compares the learning effectiveness of the four learning models with the root
mean square error and the average absolute error. The results show that tree structure
models such as decision trees and random forest models can learn well for various input
features and have better learning results. The random forest model further improves the
learning effect of decision trees.

5. Experimental Results
5.1. Measurement Data

Figure 17a–c shows the measured pollution curves at 07:30 P.M. on 15 February 2019;
02:00 and 06:00 P.M. on 28 February 2019; and 04:30 P.M. on 1 March 2019, respectively.
Figure 17a displays an abrupt change in the pollutant concentration, in which the PM2.5
value reached 96 µg/m3 for an instant before plunging immediately. This high value
was likely caused by a mobile pollution source, such as a dump truck or a vehicle with
excessively high exhaust gas emission. Figure 17b depicts data for two periods. A sudden
jump in the PM2.5 value is observed at the 379th data point. The left side of the jump
represents the data at 02:00 P.M. on 28 February 2019, and the right side of the jump
represents the data at 06:00 P.M. on the same day. In Figure 17c, all the PM2.5 values are
below 40 µg/m3, and no large fluctuation is observed.
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5.2. Model Predicted Data

Figure 18a–c displays the prediction results of the decision tree model. The MAE
values based on the results shown in Figure 18a–c are 5.8774, 4.3325, and 5.8248 µg/m3,
respectively. The pollution prediction curves of the decision tree model exhibit a stair
like shape, which is a result of the features of the decision tree algorithm. The use of a
single decision tree may lead to extreme prediction results. For example, in Figure 18a, the
predicted values were relatively low compared with the measured values beyond the 500th
data point.

Figure 19a–c illustrates the prediction results of the random forest model. The MAE
values based on the results shown in Figure 19a–c are 4.6718, 4.5614, and 4.5789 µg/m3,
respectively. The random forest model performs random training with a combination
of multiple trees to avoid the extreme predictions of a single decision tree. Thus, the
predictions of this model had superior generalizability, and the prediction curves did not
exhibit a stair like shape. In general, the error of the random forest model’s predictions
was approximately 4 µg/m3. Most of the prediction results of this model fell within a
reasonable range.
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Figure 20a–c displays the prediction results of the multilayer perceptron model.
The MAE values based on the results shown in Figure 20a–c were 7.5940, 4.3535, and
8.3501 µg/m3, respectively. For the multilayer perceptron model, only the results in
Figure 20b exhibit satisfactory accuracy. The aforementioned model failed to accurately
predict the pollution results in the two other periods. Thus, the multilayer perceptron
model had substandard generalizability.
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Figure 20. Prediction results of the multilayer perceptron model: model prediction results for (a) 15 February, (b) 28
February, and (c) 1 March 2019.

Figure 21a–c depicts the prediction results of the RBF neural network model. The MAE
values based on the results shown in Figure 21a–c were 7.0793, 3.9603, and 15.1626 µg/m3,
respectively. Figure 21c reveals relatively large errors between the prediction results of the
RBF neural network model and the measured pollutant concentration values, indicating
that this model has marginally insufficient generalizability.
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Table 4 compares the MAE values of the learning models. The random forest model
exhibited stable prediction and the lowest error values overall.

Table 4. MAE values of the learning models.

Estimation Models MAE (µg/m3)

Date 15 February 2019 28 February 2019 1 March 2019

Decision tree 5.8774 4.3326 5.8248
Random forest 4.6718 4.5614 4.5789

Multilayer perceptron 7.5940 4.3535 8.3501
RBF neural network 7.0793 3.9603 15.1626

5.3. Web Application

The random forest model provided stable and favorable prediction outcomes. Thus,
this model was used as the application model. To visualize the PM2.5 distributions in
different regions clearly, a web application was designed in this study. The use of webpages
allows users to grasp pollution changes in different areas easily. The web application was
constructed using Leaflet, and a heat scale is used to indicate the pollution level. The heat
range is set between 0 and 60 µg/m3, and values above 60 µg/m3 are denoted in dark red.
Users can zoom in every area of the maps to obtain detailed information.

In this study, the aforementioned application was used to create pollution level maps
for two periods, namely 07:30 P.M. on 15 February 2019, and 11:00 P.M. on 14 February 2019.
The experiments were conducted with a motorcycle carrying the PM2.5 device and riding
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around the main roads of New Taipei City to collect data for training and testing. Figure 22
displays the measured pollutant concentrations at 07:30 P.M. on 15 February 2019, and
Figure 23 shows the corresponding prediction results. According to the aforementioned
figures, the prediction results are mostly consistent with the measurement results. The
red squares in the two figures are the intersection on Zhongzheng Road and neighboring
roads in Xinzhuang District, both of which are among the most critical traffic sections in
Xinzhuang District. A possible reason why these road sections exhibited high pollution
levels is that 07:30 P.M. is the rush hour.
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Figure 24 shows the measured pollutant concentrations at 11:00 P.M. on 14 Febru-
ary 2019, and Figure 25 illustrates the corresponding prediction results. The measurement
results are similar to the prediction results, and most of the areas exhibit low pollution.
Luzhou District exhibited marginally higher pollution than the other Districts did. A
shortcoming is observed in that the system failed to predict the pollution distribution in
the middle section of the Luzhou District.
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6. Conclusions

In this study, a PM2.5 pollution prediction system was designed for three urban areas
in Taiwan. There are five stages in our designed system: the sensing, data transmission,
database, pollution data visualization, and ML stages. According to the experimental
results, the real time pollution can be predicted accurately. The systematic information
collected can also be shared to government agencies for improvement measures. We can
also use these data to remind the public to evacuate mid-city areas or avoid peak hours.
Providing the quantitative data to the Health Department as a reference, which may help
to prevent respiratory diseases and improve residents’ standards of living.

Author Contributions: Conceptualization, S.-Y.W.; methodology, S.-Y.W.; software, Y.-C.S.; valida-
tion, Y.-C.S.; writing—original draft preparation, W.-B.L.; writing—review and editing, W.-B.L. All
authors have read and agreed to the published version of the manuscript.
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