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Abstract: Predicting the effect of climate change on rice yield is crucial as global food demand
rapidly increases with the human population. This study combined simulated daily weather data
(MarkSim) and the CERES-Rice crop model from the Decision Support System for Agrotechnology
Transfer (DSSAT) software to predict rice production for three planting seasons under four climate
change scenarios (RCPs 2.6, 4.5, 6.0, and 8.5) for the years 2021 to 2050 in the Keduang subwatershed,
Wonogiri Regency, Central Java, Indonesia. The CERES-Rice model was calibrated and validated for
the local rice cultivar (Ciherang) with historical data using GenCalc software. The model evaluation
indicated good performance with both calibration (coefficient of determination (R2) = 0.89, Nash–
Sutcliffe efficiency (NSE) = 0.88) and validation (R2 = 0.87, NSE = 0.76). Our results suggest that
the predicted changing rainfall patterns, rising temperature, and intensifying solar radiation under
climate change can reduce the rice yield in all three growing seasons. Under RCP 8.5, the impact on
rice yield in the second dry season may decrease by up to 11.77% in the 2050s. Relevant strategies
associated with policies based on the results were provided for decision makers. Furthermore, to
adapt the impact of climate change on rice production, a dynamic cropping calendar, modernization
of irrigation systems, and integrated plant nutrient management should be developed for farming
practices based on our results in the study area. Our study is not only the first assessment of the
impact of climate change on the study site but also provides solutions under projected rice shortages
that threaten regional food security.

Keywords: MarkSim; DSSAT; climate change; adaptation; rice production

1. Introduction

The effects of global climate change, such as varying rainfall intensity, duration,
and frequency; extreme weather; increasing temperatures; significant variations in solar
radiation; increasing greenhouse gaseous emissions, can have an impact on agricultural,
forest, and other natural resources, including water sourced from climate-sensitive water
reservoirs [1–4]. In the agricultural sector, climate change will affect crop growth and
yields as well as production due to an increasing number of drought and flood events,
which will indirectly affect economic stability, although the impact will vary with region
and crop type [5–7]. Moreover, developing countries will suffer more than developed
countries due to agricultural production strategies driven by economic plans under climate
change scenarios. According to reports, the global temperature will increase by 2–3 ◦C in
2030–2050 [8], and temperature increases of up to 2 ◦C or higher are expected to reduce
the yields of global prime crops, such as rice, maize, and wheat [9]. Furthermore, climate
change has led to substantial changes in the dates of planting and harvesting, which has
led to changes in the growing season due to variations and uncertainties in rainfall and
temperature, thereby impacting food demand [10,11].
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Rice, which is the staple food for most people around the world, is produced at ap-
proximately 480 MMT annually [12], and is consumed by approximately 557 million people
in Asia. It serves as a cornerstone of cultural, social, and economic development [9,12].
However, meeting the food demands of an ever-increasing human population remains
challenging [13]. A 10–100% increase in crop production is required for sustaining the
global population by 2050 [14]. Moreover, an annual conversion of 2.7–4.9 million hectares
(ha) of land to cropland is required to meet the future estimated food production [15]. In-
donesia’s population and rice consumption are projected to increase by approximately 31%
(2015: 257 million; 2050: 322 million) and 45% [16], respectively, resulting in potential food
shortages and affecting food security [17]. Conversely, several factors affect rice production,
including management practices such as tillage operations, cultivar type, sowing density,
transplantation date, plant density, fertilizer management, chemical application, and water
management. Furthermore, environmental factors, such as temperature, precipitation,
solar radiation, wind speed, and humidity, directly impact crop growth and yield [18].
Moreover, the climate in Indonesia is predicted to become hotter and more seasonal, with
delayed onset of the summer monsoon and reduced rice production by approximately
14% [19] that could further impair food security. Climate change could also cause losses
of 12,446 ha of agricultural area and 885,430 t of rice production [20], whereby rice paddy
fields recently suffering from drought reached 25,580 to 867,930 ha per year and damaged
4614 to 192,331 ha of land [21].

Climate change will aggravate rice production under climatic variability [22]. Rice
growth is sensitive to temperature, where warm daytime temperatures provide ideal condi-
tions, and extreme heat events over 35 ◦C for even a few hours can impair plant physiology
and deteriorate rice quantity and quality [8]. Rice requires substantially more water than
other grain crops, namely 450–700 mm during its growing season or 1.9–2.25 mm/day [23].
Rice grows poorly if water-stressed, particularly during the transplanting and reproduc-
tive stages [24]. In Indonesia, most rice is grown during the rainy season under rainfed
conditions with minimal irrigation where precipitation level and timing are critical. These
factors will be more vulnerable under climate change since rainfall will also have significant
temporal and spatial variations that affect rice management strategies.

Mitigating potential food security issues by projecting future rice production in In-
donesia through a climate and crop simulation model is crucial to anticipate the impact
of climate change on rice production. Recently, DSSAT-CERES-Rice with a combined
climate model has been widely used to assess the impacts of climate change on future
rice production [25–27]. In the present study, a combination of top-down and bottom-up
approaches adopted from a previous study [26] is proposed by evaluating and predicting
the effect of climate change on rice production using a climate and crop model. Climate
models will predict the climate in the future, and crop models will simulate crop growth
and yield using other predicted future climate input data such as soil properties data, man-
agement practices, and agronomic characteristics. This study aimed to evaluate climate
change scenarios that impact rice production through several climate change scenarios
using a combination of the MarkSim daily weather generator and DSSAT-CERES-Rice for
predicting future rice production with different (representative concentration pathways
(RCP) 2.6, RCP 4.5, RCP 6.0, and RCP 8.5) scenarios on rice production in Indonesia for the
2021–2050 period. Farmers, researchers, and policymakers can utilize the results of this
research to determine optimal rice production management practices for anticipating and
adapting to future climate change.

2. Materials and Methods
2.1. Study Site

The study area was located in Gemawang, Girimarto District, Wonogiri Regency,
Central Java, Indonesia. It is situated within the Keduang watershed (7◦42′ S–7◦55′ S and
110◦58′ E–111◦13′ E; Figure 1). Rice in this area is cultivated in terraces, which benefits
from the unique steep terrain where almost 30% of land use is terraced paddy fields. The
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climate characteristics of this area are typically tropical monsoons with a general rainy
season throughout the year [28]. The climate is characterized into two seasons: dry season
(April until September) and wet season (October until March). There are typically three
rice growing periods, a single wet season crop followed by two dry season crops. The
total annual rainfall in this area is approximately 2500–3000 mm per year, which is mostly
concentrated around the mountainous area, and the humidity is very high. The average
annual temperature in the Keduang subwatershed is 27.08 ◦C, with a maximum and
minimum temperature of 35.41 ◦C and 9.5 ◦C, respectively.
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Indonesia.

2.2. Data Collection

The data requirements for simulating the crop model were obtained from several
sources. Soil data information, such as soil properties, soil texture, runoff coefficient,
and soil organic carbon, were obtained from the Research and Development Technology
of Watershed Management programs under the Ministry of Environment and Forestry.
Observed meteorological parameters, such as precipitation, Tmax, Tmin, solar radiation,
wind speed, and relative humidity, were obtained from the Water Resources Institution
under the Ministry of Public Works. Rice yield and management practices, including
cultivar use, tillage application, planting management, organic amendment, fertilizer
management, chemical application as well as harvesting management, were collected from
the Agricultural Department of Wonogiri Regency and interviews with local farmers. All
data were used for simulating rice production with a crop simulation model combined
with climate models. Additionally, the methodological framework, which utilized a top-
down approach for assessing future rice production in three different growing seasons, is
presented in Figure 2.
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2.3. Climate Change Scenarios

Future climate change scenarios were simulated using the MarkSim weather generator
from 2021 to 2050 under several RCPs (RCP 2.6, RCP 4.5, RCP 6.0, and RCP 8.5), which
can be accessed at http://gismap.ciat.cgiar.org/MarkSimGCM (accessed on 12 February
2021). Recently, MarkSim has been used to generate future weather data for assessing
crop production [29–34]. The long-term weather database, which is generated by MarkSim,
requires specific locations; monthly average Tmax and Tmin, and precipitation; the average
number of precipitation events in each month [33,34]. MarkSim was selected to simulate
future climate in the study area based on its specific adaptation to the tropics. The general
procedure in MarkSim used interpolated climate surfaces to fit the Markov model for
estimating climate data, which was further constructed for the DSSAT crop model to
create new CLI and WTG files under a range of GCM’s and scenarios. In this study, we
used 17 climate change models (BCC-CSM1-1, BCC-CSM1-1-M, CSIRO-Mk3-6-0, FIO-ESM,
GFDL-CM3, GFDL-ESM2G, GFDL-ESM2M, GISS-E2-H, GISS-E2-R, HadGEM2-ES, IPSL-
CMSA-LR, IPSL-CMSA-MR, MIROC-ESM, MIROC-ESM-CHEM, MIROCS, MRI-CGCM3,
and NorESM1-M), which were assembled for future climate scenarios under different RCPs.
The future climate data generated by MarkSim were analyzed using one-way analysis of
variance, and means were compared using Tukey’s honestly significant difference tests for
comparison, with a probability level of 5%. All statistical analyses were performed using R
programming language.

2.4. Crop Simulation Model

We applied DSSAT-CERES-Rice version 4.7 [35–37] to assess future rice production
under climate change scenarios. The DSSAT-CERES-Rice model was utilized to simulate
the growth and yield of crops by using morphological and physical characteristics [26].
Overall, developing a DSSAT model requires four primary data: (1) weather data, including
Tmax, Tmin, precipitation, and solar radiation (obtained from the Water Resource Institution
under the Ministry of Public Works); (2) soil data, including soil properties, nutrients,
and drainage; (3) field management data, obtained from the Agricultural Department of
Wonogiri Regency, and interviews with local farmers; (4) rice experiment data, such as rice
varieties obtained from the Agricultural Department of the Wonogiri Regency. For weather

http://gismap.ciat.cgiar.org/MarkSimGCM
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data, we used the 2007–2017 period to calibrate and validate the DSSAT crop simulation
model.

2.5. Calibration and Validation of Crop Simulation Model

Rice yield and its characteristic agronomic data, obtained from the Agricultural De-
partment of Wonogiri Regency, were used for calibrating and validating the DSSAT model.
We used the 2007–2012 period for calibration and the 2013–2017 period for validation. Our
study focused on the Ciherang rice variety, which grows under three different growth
conditions: the wet season, the first dry season, and the second dry season. The GenCalc
program was used for estimating the cultivar coefficients of the Ciherang variety to calcu-
late cultivar coefficients (Table 1) [35], which describe the rice growth and development.
GenCalc calculates the cultivar coefficient to obtain the minimum root mean square error
(RMSE) and normalized root mean square error (RMSEn) between simulated and observed
data, in which the final run of GenCalc produces the revised set of cultivar coefficients
for the new rice variety [38]. We used the coefficient of determination (R2), RMSE, Nash–
Sutcliffe efficiency (NSE), percent bias (PBIAS), and index of agreement (D-index or D-stat)
for evaluating the model performance.

R2 =

 ∑n
i=1
(

Pobs − Pobs
)(

Psim − Psim
)√

∑n
i−1
(

Pobs − Pobs
)2

∑n
i−1
(

Psim − Psim
)2

2

(1)

RMSE =

√
1
n ∑n

i=1(Pobs − Psim)
2 (2)

NSE = 1− ∑n
i=1(Pobs − Psim)

2

∑n
i=1
(

Pobs − Pobs
)2 (3)

PBIAS =
∑n

i=1

(
Pobs

i − Psim
i

)
× 100

∑n
i=1 Pobs

i
(4)

D− index = 1−
[
∑n

i=1(psim − pobs)
2/ ∑n

i=1(|psim − pobs|)2 + (|pobs − pobs|)2
]

(5)

Table 1. The value ranges of rice genotype parameters for calibration [15,35,38].

Parameter Definition Range

Phenology genetic coefficients

P1 The time from seedling to emergence in ◦C (more than 9 ◦C from base temperature), during which
rice will not respond to changes in photoperiod. (unit: GDD) 100–900

P2O Crucial photoperiod or the longest day length when peak development occurs (unit: h) 10–14

P2R The sensitive extent of each hour increase in photoperiod (>P2O) to delay phasic development
causing panicle initiation. (unit: GDD) 20–600

P5 The time from the beginning of grain filling to physiological maturity, which is >9 ◦C from the base
temperature (unit: GDD) 100–900

Growth genetic coefficients

G1 The potential maximum spikelet number coefficient per g of main culm dry weight (unit: spikelets
per g of main culm) 35–80

G2 The weight of a single grain under suitable growing conditions (unit: g) 0.02–0.04

G3 Scalar vegetative growth coefficient for tillering coefficients relative to IR64 0.6–1.2

G4 The coefficient of temperature scalar. The value is equal to 1 for varieties grown in normal conditions,
>1 for varieties grown in warmer conditions, and <1 for varieties grown in cold conditions. 0.6–1.2
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3. Results
3.1. Future Climate Scenarios

We generated future climate data for RCP 2.6, RCP 4.5, RCP 6.0, and RCP 8.5 using
MarkSim@DSSAT weather file generator to predict the crop yield under future climate
variability scenarios for our study site. We tested a stringent mitigation scenario (RCP 2.6),
two intermediate scenarios (RCP 4.5 and RCP 6.0), and one scenario with very high
greenhouse gas emissions (RCP 8.5) representing different levels of emissions. Figure 3
shows the annual mean future climate predictions under these scenarios. The MarkSim
weather generator was calibrated from GCMs to match the WorldClim dataset that inte-
grated historical weather data from various databases, including the National Oceanic
and Atmospheric Administration, National Climate Data Center, and Global Historical
Climatology Network databases, which used stochastic downscaling and climate typing
to downscale future climate projections for the IPCC GCM model families using Markov
chain regression [33,39].
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Figure 3. Future climate predictions under different scenarios for (a) maximum temperature, (b) minimum temperature,
(c) annual rainfall, and (d) solar radiation.

Future annual Tmax and Tmin in this area are predicted to gradually escalate. For the
2021–2050 period, Tmax is predicted to escalate up to 0.3, 0.4, 0.5, and 0.7 ◦C, and Tmin
is predicted to escalate up to 0.4, 0.7, 0.8, and 1.2 ◦C under RCP 2.6, RCP 4.5, RCP 6.0,
and RCP 8.5, respectively. The annual Tmax and Tmin will vary between 1.3–2.0 ◦C and
0.6–1.5 ◦C relative to historical weather data, respectively. The predicted rainfall pattern
showed a more significant temporal and spatial variation and is projected to decrease
gradually at the end of the 2050s. Rainfall decreased the most under RCP 8.5 scenarios,
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which gradually decreased from 2021 to 2050. However, future rainfall is predicted to vary
widely from 2200 to 2600 mm. Solar radiation will also increase in the future, with the
largest incremental change under RCP 8.5. The increase in solar radiation is related to the
amount of rainfall: high rainfall periods correspond to low solar radiation.

As mentioned above, the growing season in this area is divided into three seasons:
November to February as the wet season, March to June as the first dry season, and July
to October as the second dry season. We divided future climate projections into three
separate seasons under different scenarios. The highest total rainfall will occur during the
wet season due to rainfall starting in the early wet season and will gradually decline the
following month. However, the projected rainfall change indicates that precipitation will
be more concentrated during the wet season, whereas the dry season tends to be drier. The
highest maximum and minimum temperature, as well as the highest solar radiation, all
occur during the second dry season. Overall, RCP 8.5 generated all climate variables in
comparison with the other scenarios, which corroborate with other studies in which RCP
8.5 reflects the highest greenhouse gas concentrations.

3.2. DSSAT Model Calibration and Validation

We utilized the DSSAT ver. 4.7 model to assess the effect of climate change on future
rice yield production. The observed 2007–2012 rice production data were utilized for model
calibration and 2013–2017 data for model validation. The DSSAT-CERES-Rice model was
calibrated and validated for the rice cultivar (Ciherang) using historical data and GenCalc
software. Model calibration determined the genetic coefficient of the rice cultivar (Table 2).
Further model details can be found at https://dssat.net/models-overview/ (accessed on
12 February 2021).

Table 2. The genetic coefficient for Ciherang rice variety.

Parameter Value

P1 388.3
P2R 137.7
P5 408.3

P2O 12.31
G1 74.2
G2 0.027
G3 1.198
G4 1

The models showed good performance in the calibration and validation periods,
respectively: R2 = 0.89 and 0.87 (Table 3), with R2 values of >0.5 considered acceptable [40];
NSE = 0.88 and 0.76, which is within an excellent range; PBIAS values of −0.3 and −1.8
for calibration and validation, respectively, which are excellent; RMSE = 115.52 and 165.85;
D-Index = 0.95 and 0.92. The DSSAT-CERES-Rice results were almost identical between the
observed and simulated rice yield (Figures 4 and 5). Hence, the DSSAT-CERES-Rice model
can be used for estimating future rice production under various climate change scenarios.

https://dssat.net/models-overview/
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Table 3. DSSAT model performance for the Ciherang rice variety.

Period Year
Rice Yield (kg/ha)

R2 NSE PBIAS RMSE (kg/ha) D-Index
Observation Simulation

Calibration 2007–2012 5665.39 5650.94 0.89 0.88 −0.3 115.52 0.97
Validation 2013–2017 5949.40 6007.73 0.87 0.76 −1.8 165.85 0.95

3.3. Future Rice Production

The DSSAT-CERES-Rice model simulated future rice yield using weather data re-
trieved from MarkSim for all RCPs and the value of rice genotype parameters that were
calibrated and validated. For each scenario, we simulated four RCPs for future rice produc-
tion across three growing seasons, divided into three sections, namely the 2030s (2021–2030),
the 2040s (2031–2040), and the 2050s (2041–2050; Figure 6). During the wet season, the
average rice production compared to the baseline production decreased slightly by the
end of 2050, at 3.81%, 5.84%, 6.62%, and 7.04% for RCP 2.6, RCP 4.5, RCP 6.0, and RCP
8.5, respectively. During the first dry season, the average rice production compared to
the baseline production decreased slightly by the end of 2050, at 2.56%, 5.01%, 6.00%, and
7.28% for RCP 2.6, RCP 4.5, RCP 6.0, and RCP 8.5, respectively. During the second dry
season, the average rice production compared to the baseline production decreased slightly
by the end of 2050, at 2.55%, 3.47%, 4.50%, and 11.77% for RCP 2.6, RCP 4.5, RCP 6.0, and
RCP 8.5, respectively.
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4. Discussion

The global food demand is rising with increasing global population to levels where
the food demand will double by the end of 2050 [41]. Therefore, global agriculture will
need to increase rice production, either by increasing the agricultural land area for rice
cultivation or by enhancing productivity on existing agricultural lands using appropriate
management practices. However, increasing agricultural production will encounter climate
change barriers, which directly affect agricultural production by increasing temperature
and altering rainfall intensity and frequency. These scenarios can reduce food production
by decreasing land production or from crop failure due to drought and flood. Therefore,
forecasting future crop production to avoid crop failure by designing and implementing
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climate change adaptation strategies is crucial for ensuring food security. In this study, we
combined the MarkSim daily weather generator with an ensemble output from 17 GCMs
and the DSSAT-CERES-Rice model to predict future rice production under different climate
change scenarios and determine the probability of adaptive strategies based on climate and
crop model results.

The uncertainty of the climate model to produce realistic results can be attributed to
the scenario, model, time period, and their predicted number of generations [42]. Several
studies have analyzed the uncertainty of climate change on rice production [25,26,43–48].
These studies indicated that uncertainty is a major issue for the adaptation of policies
and strategies to reduce the impacts of climate change on rice production [25,26,43–48].
Uncertainty may arise from various sources, including parameter uncertainty and model
uncertainty [46], such as consideration of soil fertility and nutrient uptake in crop models
and various SSP-RCP scenarios in climate projections. In this study, because temperature
increases were associated with uncertainty in the impact of rainfall on rice production [26],
ensemble models with RCP/emission scenarios were employed to eliminate uncertainties
associated with climate change projections [43,44]. The ensemble models provide the
overall impacts of climate changes in terms of change in rice yields [47]. Moreover, our
study generates large projections using 17 GCM models because a large number of GCM
projections can be considered a way to overcome certain levels of model uncertainty [49,50].
In our study, the MarkSim results showed that temperatures would increase by 2 ◦C at the
end of the 2050s, as seen in a recent study [51,52]. Increases in the minimum and maximum
temperatures have several impacts on rice yield [44]. A large difference between Tmax
and Tmin in the study area can lead to vulnerability in rice growth and development; thus,
water management is required to prevent crop failure; for example, irrigation water supply
may increase rainfed rice yields during the flowering stage [26]. Projected rainfall patterns
showed more significant temporal and spatial variation and will decrease gradually by the
end of the 2050s. Previous studies reported that future rainfall might increase and decrease
in several regions in Indonesia [53], implying that rainfall differs depending on multiple
factors, including topography, location, surface sea temperature, and latitude. Similarly, a
previous study evaluated the effects of climate change on rainfed rice production in the
Songkhram River Basin, Thailand, using the DSSAT-CERES-Rice model, where scenarios
under RCP 8.5 showed the largest reduction in rice production [25,26]. Generally, our
results suggest that climate change alter in rainfall patterns, temperature increases, and
average solar radiation, all of which contribute to reducing rice production across all three
growing seasons under different climate scenarios. The results of our study support other
relevant studies showing that increasing temperature and changing rainfall frequency and
intensity reduce rice production [17]. Moreover, our results corroborate those of previous
studies indicating that RCP 8.5 will lead to the largest reduction in rice production.

Natural or social events may also lead to uncertainty in rice production. In this study,
there was a significant gap in rice production over the years due to El Nino and La Nina
events, which contributed to decreasing rice production due to a lack of water and flooding,
significantly influencing crops growth. This is consistent with the findings of previous
studies that indicated El Nino and La Nina have negative impacts on rainfall intensity,
frequency, and duration as well as rice production, particularly in rainfed ecosystems
that are more vulnerable to El Nino [54,55]. El Nino and La Nina are natural events that
increase or decrease ocean temperatures, affecting rainfall intensity. El Nino delayed
rainfall (leading to less rainfall), whereas La Nina led to higher rainfall. These events
increased the variation of the rice production in the baseline period.

The future rice production was assessed based on the ensemble output and the value of
rice genetics parameters calibrated and validated through GenCalc software. High rainfall
may reduce rice production due to moisture stress [56], severely damaging or even killing
rice plants in areas receiving water from precipitation up to 100 mm, according to future
rice yield simulations. Further, rainfall frequency affects solar radiation, which is essential
for rice growth, especially during the generative stage. Conversely, appropriate drainage
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management during the wet season is key to reducing moisture stress and avoiding flood
events since rainfall intensity is most concentrated in this season [53]. During the first dry
season, the decrease in rice production is lower than that during the wet season because
during the first dry season, the total rainfall falls within the required water supply range
for rice growth. Moreover, the first dry season has the highest number of days without
increasing rainfall, although total annual rainfall shows an increasing trend. Increasing
the maximum and minimum temperatures may reduce the rice production because they
gradually increase during the first dry season until the end of 2050. Overall, the highest
reduction in rice production will occur during the second dry season, which supports
the results of previous studies [57]. As mentioned above, increasing annual maximum
and minimum temperature will be greatest during the second dry season, which directly
influences not only growth duration but also growth pattern and rice crop productivity from
extreme temperatures (low or high), harming the rice plant. Conversely, solar radiation is
an essential driver for biomass production, accumulation, and distribution, but increasing
radiation, as well as elevated CO2 concentration, contribute to global climate change [58].
Most crop failure occurs when the plant encounters water stress due to water scarcity and
high temperature, especially at the end of the vegetative stage and reproductive stages.
Therefore, water availability is a key factor in rice growth, and less water during the early
vegetative stage will substantially impact rice growth [59]. Our study showed that the
Ciherang variety would face similar problems under climate change scenarios. Thus,
policymakers should consider a policy that emphasizes climate adaptation strategies at
the farm level to prevent rice shortages, such as irrigation water supply planning during
the rice-flowering stage [26]. Moreover, shifting of the rice planting date was studied as an
adaptation strategy to reduce the impact of climate change on rice production [60]. Shifting
the fertilizer application date was also proposed for rice production under various climate
change scenarios [26].

Because climate will be more seasonal and temporal in the future, we have recom-
mended several policies and adaptation strategies that can be encouraged at a farm-scale
level in the areas identified in Table 4.

Table 4. Recommended policies and adaptation strategies.

Policies Adaptation Strategies

Preserving the balance of ecosystems and
diversity and the existence of natural
resources as a life support

• Reforestation
• Soil and water conservation practices
• Agroforestry
• Permaculture
• Crop rotation

Applying appropriate technologies

• Dynamic crop calendar
• Use heat-resistant crop varieties
• Reduce tillage
• Increase fertilizer efficiency through appropriate application date and dose
• Implement plant nutrient management
• Organic amendments

Modernization of irrigation systems

• Excavation of ponds
• Retention of rainwater in canals
• Extension of irrigation area
• Evolution of irrigation price policy

Crop weather insurance • Development of a farming protection system from failure due to climate change

The policies and adaptation strategies to rice production at the farm level help off-
set negative impacts of climate change and are easily implemented, including shifting
planting and transplanting dates, changing the sowing density [61], irrigation manage-
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ment, developing new agricultural areas and using heat-resistant crop varieties [62,63],
changing fertilizer application dates, and the dose [26], and reducing tillage and organic
amendments [64]. Appropriate adaptation strategies typically differ from one location to
another due to regional climate effects, which need to be reviewed [65,66]. Current rice
transplanting dates are around the third week of November to the first week of December
(wet season), the third week of March to the first week of April (first dry season), and
the third week of July to the first week of August (second dry season) [67]. We propose
shifting the planting date earlier in the year for all three growing seasons (the fourth week
of October to the first week of November for the wet season, the fourth week of February to
the first week of March for the first dry season, and the fourth week of June to the first week
of July for second dry season), which will coincide with the start of the rainy season in
early October. The patterns of future rainfall are predicted to begin earlier; forwarding the
planting date will help prevent flooding during the wet season and potential water deficits
in the dry season. Therefore, shifting the planting date is important for avoiding crop
failure under spatially and temporally variable rainfall patterns. Moreover, implementing
appropriate fertilizer management practices, such as improving application frequency and
dosage, the number of split doses, number of fertilizers applied per split, and color charts
for increasing rice yield per unit area, has become an important factor in increasing rice
production [68]. For instance, using N fertilizer that fails to appropriately balance P and K
levels negatively affects rice yield, soil quality, and the surrounding environment, as well
as increasing the incidence of crop lodging, weed competition, and pest attacks [68,69]. Im-
plementing plant nutrient management (IPNM) [70] may help increase nutrient efficiency
in these areas by judiciously manipulating nutrient distribution to preserve and enhance
soil fecundity for long-term, sustainable rice productivity [71]. Examples include using
fertilizer nutrients as a supplement for nutrients supplied by different organic sources
available at farms. Saptutyningsih et al. (2020) reported that farmers with high social capi-
tal were willing to adopt adaptation procedures in Indonesia [72]. In addition, educating
farmers to adopt adaptation strategies [73] will help bridge the climate change knowledge
gap between farmers and researchers [74]. Furthermore, to achieve sustainable agriculture
in this area, several strategies can be applied, such as reforestation [75], soil and water
conservation practices [76], agroforestry [77], permaculture [78], and crop rotation [79],
which can contribute to environmental conservation for better ecosystems and diversity,
and the existence of natural resources as life support. Additionally, the development of
crop weather insurance is important to protect farmers’ economies. Finally, the dynamic
cropping calendar, modernization of irrigation systems, and integrated plant nutrient
management plan based on the above adaptation strategies under various climate change
scenarios will be helpful for the adaptation of the negative impacts of climate change on
rice production.

5. Conclusions

We used combination of the MarkSim daily weather generator and DSSAT-CERES-
Rice model to predict future rice yield under different scenarios, which used an ensemble
of 17 global climate models under four different RCPs. The projected future climate
scenarios under different RCPs consistently showed increasing maximum and minimum
temperatures, changing rainfall patterns and variability, and intensifying solar radiation,
with RCP 8.5 showing the largest incremental change. Therefore, we proposed the DSSAT-
CERES-Rice model, which was successfully calibrated and validated by using historically
observed data. It is suitable for simulating future production of the Ciherang rice variety
under climate change scenarios. The future rice production decreased for all three growing
seasons under all climate change scenarios, with the second dry season showing the greatest
reduction of up to 11.77% under RCP 8.5 during the 2050s. Decreased rice production
during the wet season mostly occurs due to moisture stress from high rain frequency and
intensity. During the first and second dry seasons, we found that increasing temperatures,
which reduce rainfall frequency and intensity, as well as intensifying solar radiation, were
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the major factors that led to the reduction in future rice production. Collectively, based
on our results, we proposed policies and strategies for local adaptation to climate change
impacts on rice production, which should be validated and developed for farming practices.
The impacts of climate change may differ across the world. Therefore, the adaptation to
climate changes depends on various climate zones across the world. To reduce uncertainty
and enhance the assessment of policies and strategies for reducing the climate change
impacts on crop production regionally and locally, it is essential to select appropriate data,
models, and parameters.
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