We reviewed studies linking COVID-19 cases and deaths with the environment, focusing on relationships with air pollution. We found both short- and long-term observational relationships with a range of regulated pollutants, although only two studies considered both cases (i.e., infections) and deaths within a common analytical framework. Most of these studies were limited to a few months of the pandemic period. Statistically significant relationships were found more often for PM
2.5 and NO
2 than for other regulated pollutants, but no rationale was suggested for such short-term relationships; latency was seldom considered for long-term relationships. It was also unclear whether confounding had been adequately controlled in either type of study. Studies of air quality improvement following lockdowns found more robust relationships with local (CO, NO
2) rather than regional (PM
2.5, O
3) pollutants, but meteorological confounding was seldom considered. Only one of seven studies of airborne virus transmission reported actual measurements. Overall, we found the existing body of literature to be more suggestive than definitive. Due to these various deficiencies, we assembled a new state-level database of cumulative COVID-19 cases and deaths through March 2021 with a range of potential predictor variables and performed linear regression analyses on various combinations. As single predictors, we found significant (
p < 0.05) relationships between cumulative cases and household crowding (+), education (−), face-mask usage (−), or voting Republican (+). For cumulative deaths, we found significant relationships with education (−), black race (+), or previous levels of PM
2.5 (+). NO
x (+), and elemental carbon (EC, +). We found no relationships between long-term air quality and cumulative COVID-19 cases. Our associations linking air pollution with COVID-19 mortality were not statistically different from those for all-cause mortality in previous studies. In multiple mortality regressions combining air pollution, race, and education, NO
x and EC remained significant but PM
2.5 did not. We concluded that the current worldwide emphasis on PM
2.5 is misplaced. We predicted air pollutant effects of a few percentage points, but individual differences between races, political identification, and post-graduate education were of the order of factors of 2 to 4. In general, the factors predicting infection were personal and related to COVID-19 exposure, while those predicting subsequent mortality tended to be more situational and related to geography. Overall, we concluded that how you live is more important than where you live.
Full article