Effects of Management Practices on Soil Properties and Plant Nutrition in Hay Meadows in Picos de Europa
Abstract
:1. Introduction
2. Materials and Methods
2.1. Farmers Interviews
2.2. Edaphic Analyses
2.3. Nutrient Analyses
2.4. Statistical Analyses
3. Results
3.1. Farmers Interviews
3.2. Soil Features and Meadow Management
3.3. Dry Matter and Nutrient Concentration in Grasses, Legumes and Other Families
4. Discussion
4.1. Soil Features and Meadow Management
4.2. Dry Matter and Nutrient Concentration in Grasses, Legumes and Other Families
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Reiné Viñales, R. 6510 Prados de siega de montaña (Arrhenatherion). In Bases Ecológicas Preliminares Para la Conservación de los Tipos de Hábitat de Interés Comunitario en España; Ministerio de Medio Ambiente, y Medio Rural y Marino, Secretaría General Técnica, Centro de Publicaciones: Madrid, Spain, 2009; 60p. [Google Scholar]
- Chocarro Gómez, C. 6520 Prados de siega de montaña (Triseto-Polygonion bistortae). In Bases Ecológicas Preliminares Para la Conservación de los Tipos de Hábitat de Interés Comunitario en España; Ministerio de Medio Ambiente, y Medio Rural y Marino, Secretaría General Técnica, Centro de publicaciones: Madrid, Spain, 2009; 48p. [Google Scholar]
- Ferrer, C.; Barrantes, O.; Broca, A. La noción de biodiversidad en los ecosistemas pascícolas españoles. Pastos 2001, 31, 129–184. [Google Scholar]
- Gibon, A.; Balent, G.; Alard, D.; Raich, J.M.; Ladet, S.; Mottet, A.; Julien, M.P. L’usage de l’espace par les exploitations d’élevage de montagne et la gestion de la biodiversité. Fourrages 2004, 178, 245–263. [Google Scholar]
- Mora, A.; Rojo, F. Gestión activa de prados de siega en el Valle de Valdeón. Lopinga 2016, 1, 13–14. [Google Scholar]
- Perrino, E.V.; Musarella, C.M.; Magazzini, P. Management of grazing Italian river buffalo to preserve habitats defined by Directive 92/43/EEC in a protected wetland area on the Mediterranean coast: Palude Frattarolo, Apulia, Italy. Euro. Mediterr. J. Environ. Integr. 2021, 13, 1682. [Google Scholar] [CrossRef]
- Perrino, E.V.; Wagensommer, R.P. Crop wild relatives (CWR) priority in Italy: Distribution, ecology, in situ and ex situ conservation and expected actions. Sustainability 2021, 13, 1682. [Google Scholar] [CrossRef]
- Barrantes, O.; Ferrer, C.; Reiné, R. Indicadores Para la Conservación de los Hábitat 6510 y 6520 (Prados de Siega de Montaña) en el Pirineo Aragonés (2010). Departamento de Agricultura y Economía Agraria. Universidad de Zaragoza, Spain. Available online: https://www.researchgate.net/profile/Ramon_Reine/publication/267808958_INDICADORES_PARA_LA_CONSERVACION_DE_LOS_HABITAT_6510_Y_6520_PRADOS_DE_SIEGA_DE_MONTANA_EN_EL_PIRINEO_ARAGONES_Autores/links/552385940cf29dcabb0f018e/INDICADORES-PARA-LA-CONSERVACION-DE-LOS-HABITAT-6510-Y-6520-PRADOS-DE-SIEGA-DE-MONTANA-EN-EL-PIRINEO-ARAGONES-Autores.pdf (accessed on 10 July 2020).
- Peiretti, P.G.; Tassone, S.; Vahdni, N.; Battelli, G.; Gai, F. Evaluation of the nutritive value and the fatty acid, phenol, tannin and terpenoid contents of nine pastures in an Alpine District during the summer season. Agriculture 2020, 10, 42. [Google Scholar] [CrossRef] [Green Version]
- Dudek, T.; Wolański, P.; Rogut, K. The content of macro- and micro minerals in the sward of different types of semi natural meadows of temperate climate in SE Poland. Agronomie 2020, 10, 1–12. [Google Scholar]
- Cernusca, A.; Tappeiner, U.; Bahn, M.; Bayfield, N.; Chemini, C.; Fillat, F.; Graber, W.; Rosset, M.; Siegwolf, R.; Tenhunen, J. Ecomont Ecological effects of land use changes on European terrestrial mountain ecosystems. Pirineos 1996, 147–148, 145–172. [Google Scholar] [CrossRef]
- Adugna, A.; Abegaz, A. Effects of land use changes on the dynamics of selected soil properties in northeast Wellega, Ethiopia. Soil 2016, 2, 63–70. [Google Scholar] [CrossRef] [Green Version]
- Emiru, N.; Gebredikan, H. Effects of land use changes and soil depth on soil organic matter, total nitrogen and available phosphorous contents of soils in Senbat Watershed, Western Ethiopia. J. Agric. Biol. Sci. 2013, 8, 206–212. [Google Scholar]
- Mayel, S.; Jarrah, M.; Kuka, K. How does grassland management affect physical and biochemical properties of temperate grassland soils? A review study. Grass Forage Sci. 2021, 1–30. [Google Scholar] [CrossRef]
- Messiga, A.J.; Ziadi, N.; Bélanger, C.; Morel, C. Soil nutrients and other major properties in grassland fertilized with nitrogen and phosphorous. Soil Sci. Soc. Am. J. 2013, 77, 643–652. [Google Scholar] [CrossRef]
- Vargová, V.; Kanianska, R.; Kizeková, M.; Šiška, B.; Kováčiková, Z.; Michalec, M. Changes and interactions between grassland ecosystem soil and plant properties under long-term mineral fertilization. Agronomy 2020, 10, 375. [Google Scholar] [CrossRef] [Green Version]
- Hrevušová, Z.; Hejcman, M.; Hakl, J.; Mrkvička, J. Soil chemical properties, plant species composition, herbage quality, production and nutrient uptake of an alluvial meadows after 45 years of N, P and K application. Grass Forage Sci. 2014, 70, 205–218. [Google Scholar] [CrossRef]
- Ulén, B.; Bechmann, M.; Fölster, J.; Jarvie, H.P.; Tunney, H. Agriculture as a phosphorus source for eutrophication in the north-west European countries, Norway, Sweden, United Kingdom and Ireland: A review. Soil Use Manag. 2007, 23, 5–15. [Google Scholar] [CrossRef]
- Smits, N.A.C.; Willems, J.H.; Bobbink, R. Long-term after-effects of fertilisation on the restoration of calcareous grasslands. Appl. Veg. Sci. 2008, 11, 279–286. [Google Scholar] [CrossRef]
- Rivas-Martínez, S.; Bandullo, J.M.; Allue, J.L.; Montero, J.L.; González, J.L. Memoria del Mapa de Series de Vegetación de España; Ediciones ICONA-MAPA: Madrid, Spain, 1987; ISBN 84-85496-25-6. [Google Scholar]
- Aguiar, C.; Castro, J.P.; Bastos, P.; Monteiro-Henriques, T.; Cambecedes, J.; García Manteca, P.; de la Fuente, G.L.; Afif, E.; Mora, A.; Guzmán, D.; et al. GT1. Diagnóstico de la situación de prados de siega en el territorio SUDOE. In Report Coordinated by Carlos Aguiar within the Interreg SUDOE Project “SOS PRADERAS”; Díaz, T.E., Ed.; University of Oviedo: Oviedo, Spain, 2018. [Google Scholar]
- Soil Survey Staff. In Claves Para la Taxonomía de Suelos; Servicio de Conservación de los Recursos Naturales; Departamento de Agricultura de los Estados Unidos: Washington, DC, USA, 2010.
- García, P.; de la Fuente, G.L.; González, V. Diagnóstico de la situación de prados de siega en el suroeste europeo: Análisis diacrónico en el Parque Nacional de los Picos de Europa. Nat. Cantab. 2018, 6, 1–21. [Google Scholar]
- De la Fuente, G.L.; García, P. Muestreo socioeconómico sobre el manejo de prados de siega en el P.N.P.E. In Unpublished Report Developed by INDUROT-University of Oviedo within the Interreg SUDOE Project “SOS PRADERAS”; Díaz, T.E., Ed.; INDUROT-University of Oviedo: Oviedo, Spain, 2017; Unpublished work. [Google Scholar]
- Thomas, G.W. Soil pH and soil acidity. Methods Soil Anal. Part 3 Chem. Methods 1996, 5, 475–490. [Google Scholar]
- Schulte, E.E.; Hopkins, B.G. Estimation of organic matter by weight loss-on-ignition. In Soil Organic Matter: Analysis and Interpretation Guide; Soil Science Society of America: Madison, WI, USA, 1996; pp. 21–31. [Google Scholar]
- Klute, A. Nitrogen-total. In Methods of Soil Analyses, Part 1, 2nd ed.; Klute, A., Ed.; American Society of Agronomy: Madison, WI, USA, 1996; pp. 595–624. [Google Scholar]
- Mehlich, A. Mehlich 3 soil test extractant: A modification of Mehlich 2 extractant. Soil Sci. Plant. Anal. 1985, 15, 1409–1416. [Google Scholar] [CrossRef]
- Pansu, M.; Gautheyrou, J. Handbook of Soil Analysis: Mineralogical, Organic and Inorganic Methods; Springer Science & Business Media: Berlin, Germany; Springer-Verlag Berlin Heidelberg: Berlin, Germany, 2007; pp. 667–684. [Google Scholar]
- Taboada, M.A.; Álvarez, C.R. Fertilidad Física de los Suelos, 2nd ed.; Agronomy Faculty, University of Buenos Aires: Buenos Aires, Argentina, 2008; ISBN 978-850-29-1074-1. [Google Scholar]
- Shanina, T.M.; Geiman, N.E.; Mikhallovakaya, V.S. Quantitative analysis of heterogenic compounds: Spectrophotometric micro determination of boron. Fresenius Z. Anal. Chem. 1967, 22, 663–667. [Google Scholar]
- Gee, G.W.; Bauder, J.W. Particle size analysis. In Methods of Soil Analysis; Klute, A., Ed.; American Society of Agronomy: Madison, WI, USA, 1996; pp. 383–411. [Google Scholar]
- Smith, T.M.; Smith, R.L. Elements of Ecology, 7th ed.; Person International Edition; Pearson Benjamin Cummings: San Francisco, CA, USA, 2009; ISBN 978-0-321-56147-3. [Google Scholar]
- Jones, J.B.; Wolf, B.; Mill, H.A. Plant Analysis Handbook: A Practical Sampling Preparation; Analysis and Interpretation Guide; Micro-Macro Publishing: Athens, GA, USA, 1991; ISBN 978-1878148001. [Google Scholar]
- Field, A. Discovering Statistics Using IBM SPSS Statistics; Sage: London, UK, 2013. [Google Scholar]
- Trueba, C.; Millán, R.; Schmid, T.; Roquero, C.; Magister, M. Base de datos de propiedades edafológicas de los suelos españoles. Volume II: Asturias, Cantabria y País Vasco. Inf. Técnicos 1998. [Google Scholar]
- Afif, E.; Oliveira, J.A. Relación propiedades edáficas–estado nutricional de pastos en varios puertos de Asturias. In Actas XLVII Reunión Científica de la SEEP, Clave en la Gestión de los Territorios: Integrando Disciplinas; Junta de Andalucía: Córdoba, Spain, 2008; pp. 281–286. [Google Scholar]
- Nicolardot, B.; Recous, S.; Mary, B. Simulations of C and N mineralisation during crop residue decomposition: A simple dynamic model based on the C:N ratio of the residues. Plant Soil 2001, 228, 82–103. [Google Scholar] [CrossRef]
- García, F.O. Fertilidad de Suelos y Fertilización de Cultivos; Ediciones INTA: Buenos Aires, Argentina, 2014; ISBN 978-987-521-565-8. [Google Scholar]
- Tomasic, M.; Zgorelec, Z.; Jurisic, A.; Kisic, I. Cation exchange capacity of dominant soil types in the Republic of Croatia. J. Cent. Eur. Agric. 2013, 14, 84–89. [Google Scholar] [CrossRef]
- Affif, E.; Líbano, E.C.; Varela, J.J.G.; Obregón, A.C. Relación Entre las Propiedades del Suelo, Incremento en Volumen Anual y Estado Nutricional de Eucalyptus Globulus y Pinus Radiata D; DON en Asturias (Noroeste de España); University of Oviedo: Oviedo, Spain, 2008. [Google Scholar]
- Bergaya, F.; Vayer, M. CEC of clays: Measurement by adsorption of a copper ethylenediamine complex. Appl. Clay Sci. 1997, 12, 275–280. [Google Scholar] [CrossRef]
- Woodruff, W.F.; Revil, A. CEC-normalized clay-water sorption isotherm. Water Resour. Res. 2011, 47, 11. [Google Scholar] [CrossRef]
- Holford, I.C.R. Soil phosphorus: Its measurements and its uptake by plants. Soil Res. 1997, 35, 227–240. [Google Scholar] [CrossRef]
- Castellanos, J.Z.; Uvalle-Bueno, J.X.; Aguilar-Santelises, A. Manual de Interpretación de Análisis de Suelos y Aguas Agrícolas, Plantas y ECP; Instituto de Capacitación Para la Productividad Agrícola: Chapingo, Mexico, 2000; ISBN 1097729888. [Google Scholar]
- Pocknee, S.; Sumner, M.E. Carbon and nitrogen contents of organic matter determine its soil liming potential. Soil Sci. Soc. Am. J. 1997, 61, 86–92. [Google Scholar] [CrossRef]
- Recena, R.; Díaz, I.; del Campillo, M.C.; Torrent, J.; Delgado, A. Calculation of threshold Olsen P for fertilizer response from soil properties. Agron. Sustain. Dev. 2016, 36, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Afif, E.; Oliveira, J.A. Pérdida de disponibilidad y niveles críticos de fósforo Mehlich 3 en suelos no calcáreos de Asturias. Pastos 2005, 35, 163–178. [Google Scholar]
- Bai, Z.; Li, H.; Yang, X.; Zhou, B.; Shi, X.; Wang, B.; Li, D.; Shen, J.; Chen, Q.; Qin, W.; et al. The critical soil P levels for crop yield, soil fertility and environmental safety in different soil types. Plant Soil 2013, 372, 27–37. [Google Scholar] [CrossRef]
- Jagadamma, S.; Lal, R.; Hoeft, R.G.; Nafziger, E.D.; Adee, E.A. Nitrogen fertilization and cropping system impacts on soil properties and their relationship to crop yield in the Central Corn Belt, USA. Soil Till. Res. 2008, 98, 120–129. [Google Scholar] [CrossRef]
- Vera, A.L.A. El boro como nutriente esencial. Horticultura 2001, 155, 36–47. [Google Scholar]
- Epstein, E. Mineral Nutrition of Plants; Principles and Perspective; John Wiley & Sons: New York, NY, USA, 1972. [Google Scholar]
- Leigh, R.A.; Wyn Jones, R.G. A hypothesis relating critical potassium concentrations for growth to the distribution and functions of this ion in the plant cell. New Phytol. 1984, 97, 1–13. [Google Scholar] [CrossRef]
- Foulds, W. Nutrient concentrations of foliage and soil in South-Western Australia. New Phytol. 1993, 125, 529–546. [Google Scholar] [CrossRef] [PubMed]
- Thompson, K.; Parkinson, J.A.; Band, S.R.; Spencer, R.E. A comparative leaf study of leaf nutrient concentrations in a regional herbaceous flora. New Phytol. 1997, 136, 679–689. [Google Scholar] [CrossRef] [PubMed]
- McNaught, K.J. Potassium deficiency in pastures: I. Potassium content of legumes and grasses. N. Z. J. Agric. Res. 1958, 1, 148–181. [Google Scholar] [CrossRef]
- Rodríguez, M.; García, R.; Andrés, S.; Calleja, A. Cuarenta años de fertilización en prados de la montaña de León. III Influencia sobre la composición química y valor nutritivo. Pastos 2006, 26, 45–79. [Google Scholar]
- Mesa, A.R.; Figueroa, M. Status nutritivo de suelos en áreas ganaderas. I. Suelo Mocarrero. Pastos Forrajes 1979, 2, 255–264. [Google Scholar]
- Molina, E. Análisis de Suelos y su Interpretación (2007). Centro de Investigaciones Agronómicas, Universidad de Costa Rica. Available online: http://www.infoagro.go.cr/Inforegiones/RegionCentralOriental/Documents/Suelos/SUELOS-AMINOGROWanalisiseinterpretacion.pdf (accessed on 3 July 2020).
Mowing Technique | Meadows (%) | |
---|---|---|
Tractor use | Only tractor | 21 |
Tractor and/or reaper | 8 | |
Tractor and/or reaper + scythe | 29 | |
Reaper + scythe | 42 | |
Fertilization | ||
Only manure | 38 | |
Only slurry | 0 | |
Manure + mineral fertilizer | 8 | |
Slurry + mineral fertilizer | 4 | |
Only mineral fertilizer | 4 | |
No fertilization | 46 |
Parameters | Min. | Max. | Mean | Mean Standard Error | Standard Deviation |
---|---|---|---|---|---|
Soil properties pH 1 | 5.2 | 6.8 | 5.9 | 0.09 | 0.42 |
EC 2 (dS m−1) | 0.04 | 0.18 | 0.10 | 0.01 | 0.03 |
OM 3 (%) | 7.9 | 15.9 | 11.7 | 0.33 | 1.66 |
N (%) | 1.1 | 3.1 | 1.9 | 0.11 | 0.52 |
C/N | 2.0 | 7.2 | 3.8 | 0.21 | 1.05 |
Clay (%) | 8.9 | 34.6 | 17.1 | 1.36 | 6.80 |
Sand (%) | 29.6 | 75.4 | 53.6 | 2.54 | 12.70 |
PM3 4 (mg kg−1) | 23.7 | 53.9 | 39.9 | 1.51 | 7.54 |
Ca (mol kg−1) | 0.03 | 0.08 | 0.06 | 0.29 | 1.43 |
K (mol kg−1) | 0.002 | 0.01 | 0.005 | 0.06 | 0.27 |
Mg (mol kg−1) | 0.009 | 0.04 | 0.02 | 0.16 | 0.78 |
Na (mol kg−1) | 0.01 | 0.02 | 0.02 | 0.03 | 0.16 |
Al (mol kg−1) | 0.01 | 0.03 | 0.02 | 0.14 | 0.67 |
ECEC 5 (mol kg−1) | 0.08 | 0.15 | 0.12 | 0.34 | 1.68 |
CCE 6 (%) | 1.5 | 6.5 | 3.0 | 0.22 | 1.11 |
ACCE 7 (%) | 0.32 | 2.3 | 1.5 | 0.10 | 0.47 |
B 8 (mg kg−1) | 3.7 | 5.1 | 4.4 | 0.07 | 0.36 |
Bulk Density (g cm−3) | 1.3 | 1.6 | 1.5 | 0.01 | 0.06 |
Dry matter and mean values of nutrients in the meadows DM 9 (%) | 8.8 | 32.6 | 23.7 | 1.04 | 5.68 |
DM production (kg ha−1) | 1416 | 7277 | 3543 | 286 | 1432 |
N (%) | 1.2 | 2.8 | 2.1 | 0.77 | 3.86 |
P (%) | 0.5 | 1.3 | 0.8 | 0.41 | 2.06 |
Ca (%) | 0.2 | 1.0 | 0.5 | 0.55 | 2.72 |
Mg (%) | 0.2 | 0.7 | 0.3 | 0.30 | 1.53 |
K (%) | 0.4 | 0.7 | 0.5 | 0.13 | 0.62 |
ZONE | pH 1 | C/N | PM3 2 (mg kg−1) | Exchangeable K (mol kg−1) |
Asturias | 5.7 b (0.41) | 3.3 b (0.72) | 45.7 a (3.82) | 0.004 b (0.14) |
León | 6.1 ab (0.40) | 3.8 ab (0.63) | 36.8 b (4.79) | 0.005 b (0.31) |
Cantabria | 6.2 a (0.15) | 4.8 a (1.63) | 34.8 b (10.76) | 0.008 a (0.24) |
ZONE | Exchangeable Mg (mol kg 1) | Exchangeable Al (mol kg 1) | Boron (mg kg−1) | Sand (%) |
Asturias | 0.02 b (0.45) | 0.03 a (0.75) | 4.2 b (0.39) | 54.4 b (9.88) |
León | 0.02 ab (0.66) | 0.02 b (0.22) | 4.4 ab (0.26) | 44.1 b (7.36) |
Cantabria | 0.03 a (1.1) | 0.02 b (0.07) | 4.7 a (0.35) | 71.1 a (3.69) |
MANAGE. 1 | pH 2 | EC 3 dS m−1 | Exchangeable Ca mol kg−1 | Exchangeable K mol kg−1 | Sand % | GFP 4 % | GFK 5 % |
---|---|---|---|---|---|---|---|
1 | 6.1ab (0.39) | 0.11ab (0.11) | 0.06 ab (5.61) | 0.007 a (0.36) | 71.1 a (3.67) | 0.6 ab (2.15) | 0.5 ab (0.52) |
2 | 6.4 a (0.34) | 0.15 a (0.15) | 0.07 a (0.82) | 0.006 ab (0.30) | 50.8 bc (4.34) | 0.5 b (0.95) | 0.5 ab (0.84) |
3 | 5.6 b (0.36) | 0.09 b (0.09) | 0.05 b (1.48) | 0.006 ab (0.23) | 55.6 b (10.77) | 0.9 a (3.23) | 0.6 a (0.46) |
4 | 5.9 b (0.20) | 0.08 b (0.08) | 0.06 ab (1.31) | 0.003 b (0.07) | 40.9 c (5.59) | 0.6 ab (0.94) | 0.5 b (0.75) |
Foliar Nutrients by Family % | Min. | Max. | Mean | Mean Standard Error | Standard Deviation |
---|---|---|---|---|---|
Grasses | |||||
N | 0.6 | 4.2 | 1.2 | 1.87 | 9.37 |
P | 0.4 | 1.4 | 0.7 | 0.50 | 2.51 |
Ca | 0.3 | 0.5 | 0.4 | 0.11 | 0.53 |
Mg | 0.3 | 0.6 | 0.5 | 0.17 | 0.83 |
K | 0.4 | 0.7 | 0.5 | 0.16 | 0.77 |
Legumes | |||||
N | 1.4 | 3.2 | 2.3 | 0.80 | 4.02 |
P | 0.5 | 1.2 | 0.8 | 0.43 | 2.16 |
Ca | 0.1 | 1.4 | 0.6 | 1.15 | 5.75 |
Mg | 0.1 | 0.8 | 0.3 | 0.54 | 2.70 |
K | 0.4 | 0.7 | 0.5 | 0.16 | 0.82 |
Other families | |||||
N | 1 | 3.9 | 2 | 1.12 | 5.58 |
P | 0.5 | 1.7 | 0.9 | 0.51 | 2.56 |
Ca | 0.1 | 1.4 | 0.4 | 0.90 | 4.51 |
Mg | 0.1 | 0.8 | 0.3 | 0.62 | 3.11 |
K | 0.4 | 0.6 | 0.5 | 0.13 | 0.63 |
Species Group | DM (%) | P (%) | Mg (%) |
---|---|---|---|
Grasses | 29.4 a (4.53) | 0.7 b (2.52) | 0.5 a (0.83) |
Legumes | 20.2 b (7.05) | 0.8 ab (2.17) | 0.3 b (2.71) |
Other families | 20.0 b (7.21) | 0.9 a (2.58) | 0.3 ab (3.12) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Álvarez, J.; Afif, E.; Díaz, T.E.; García, L.; Oliveira, J.A. Effects of Management Practices on Soil Properties and Plant Nutrition in Hay Meadows in Picos de Europa. Environments 2021, 8, 38. https://doi.org/10.3390/environments8050038
Álvarez J, Afif E, Díaz TE, García L, Oliveira JA. Effects of Management Practices on Soil Properties and Plant Nutrition in Hay Meadows in Picos de Europa. Environments. 2021; 8(5):38. https://doi.org/10.3390/environments8050038
Chicago/Turabian StyleÁlvarez, Judith, Elías Afif, Tomás E. Díaz, Laura García, and Jose A. Oliveira. 2021. "Effects of Management Practices on Soil Properties and Plant Nutrition in Hay Meadows in Picos de Europa" Environments 8, no. 5: 38. https://doi.org/10.3390/environments8050038
APA StyleÁlvarez, J., Afif, E., Díaz, T. E., García, L., & Oliveira, J. A. (2021). Effects of Management Practices on Soil Properties and Plant Nutrition in Hay Meadows in Picos de Europa. Environments, 8(5), 38. https://doi.org/10.3390/environments8050038