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Abstract: The recent sequential appearance of infectious pathogens has caused ongoing social and
economic damage. Despite the very high potential for pathogen transmission within indoor multi-use
facilities, there are insufficient measures for the systematic analysis, diagnosis, and reduction in
such transmission. Although real-time environmental information is available for pollutants such as
particulate matter, carbon dioxide, and nitrogen dioxide in South Korea, an automatic network for the
real-time measurements of harmful microorganisms has not yet been established. Therefore, in this
study, we analyzed the concentrations of bacteria and fungi in different types of multiple-use facilities
in Bucheon, South Korea, using the analytic hierarchy process (AHP) method. All multi-use facilities
in the region were classified into six types: facilities for pollution-sensitive groups (e.g., children or the
elderly) and transportation-related, public transportation, temperature-controlled, food preparation,
and other facilities. Next, the importance of each facility type in terms of bacterial and fungal
abundance was evaluated using the AHP method, according to criteria selected using the AHP
method. The highest importance was assigned to multi-use facilities for air-pollution-sensitive
groups, which were associated with higher user density and more confirmed cases of COVID-19;
the second-highest importance was assigned to public-transportation facilities. Bacteria detected
at representative multi-use facilities were identified using 16S rRNA sequencing and included the
human pathogens Bacillus anthracis, Bacillus cereus, Pseudomonas fluorescens, Erwinia billingiae, and
Enterobacter cloacae. This study is the first to measure monthly and seasonal concentrations of bacteria
and fungi at 30 multi-use facilities in Bucheon. The results of this study will be useful for designing
systematic measures for the control of infectious bacteria and fungi in various types of multi-use
facilities, according to their specific characteristics.

Keywords: 16S rRNA sequencing; analytic hierarchy process (AHP); bacteria; fungi; multi-use facilities

1. Introduction

The recent sequential appearance of infectious diseases such as Middle East Respi-
ratory Syndrome (MERS) (2015) and Coronavirus disease (COVID-19) (2019) has caused
ongoing social and economic damage. Pathogens can spread rapidly in indoor multi-use
facilities due to their confined space, high user density, and high user residence times [1–10].
In South Korea, the indoor air quality of high-traffic multi-use facilities (According to the In-
door Air Quality Management Act, this facility is used by unspecified people and includes
underground stations, underground shopping malls, and medical institutions) is monitored
24 h per day by the South Korea Environment Corporation and Ministry of Environment.
However, the automatic measurement network that provides this service monitors only par-
ticle matter (PM10, PM2.5), carbon dioxide, nitrogen dioxide, and other pollutants, whereas
harmful microorganisms such as bacteria and fungi are not systematically evaluated.
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Airborne bacteria comprise live and dead pathogenic and non-pathogenic bacteria. In
indoor environments, airborne bacteria can cause infectious diseases, acute toxicity, aller-
gies, and cancer, and are associated with a wide range of adverse health effects [1,3,4,11–15].
Additionally, the transmission of viral respiratory diseases in public facilities is a very
important factor [16]. A Swedish study suggested that indoor air quality in school environ-
ments could affect morbidity related to asthma symptoms, particularly in terms of airborne
bacteria levels [17]. In South Korea, multi-use facilities for pollutant-sensitive groups are
required to maintain indoor airborne bacteria levels to less than 800 CFU/m3, whereas
equivalent facilities overseas have recommended maximum levels ranging from 500 to
20,000 CFU/m3 [1,3].

Concentrations of airborne fungi and bacteria are correlated with the development and
exacerbation of asthma [1,2,18,19]. In South Korea, climate change has increased the heat
and humidity during the summer rainy seasons and prolonged winters, promoting mold
growth [2]. The World Health Organization (WHO) recommends limiting mold concen-
trations to below 500–1000 CFU/m3, whereas in South Korea, the recommended standard
is below 500 CFU/m3; however, few countries have regulated mold exposure [1,2,20]
and species-centered management of airborne bacterial and fungal exposure remains rare
worldwide because such analyses are time-consuming and costly [1,2].

Therefore, systematic analysis, diagnosis, and reduction measures for airborne bacteria
and fungi in multi-use facilities are presently insufficient. In this study, we classified multi-
use facilities in Bucheon, South Korea, into six categories: facilities for groups sensitive to
pollution (e.g., children or the elderly) and transportation-related, public-transportation,
temperature-controlled, food-preparation, and other facilities. Next, we analyzed the
relative importance of each facility type according to airborne bacterial and fungal con-
centrations using a combination of 16S rRNA gene sequencing, DNA extraction, and the
analytic hierarchy process (AHP). In particular, our study also differed from previous
studies in that we used representative multi-use facilities in our analysis. If the previous
study only targeted some facilities, this study established a method for surveying and
ranking multi-use facilities that may be applied in future studies; this study is also the
first to apply 16S rRNA sequencing to identify the main species of bacteria and human
pathogens at targeted multi-use facilities. It will be necessary to provide solutions for
each facility based on the results of the detection of pathogens harmful to the human body.
The results of this study may be used to guide the design of measures to control airborne
bacteria and fungi in various types of multi-use facilities to improve public safety.

2. Materials and Methods
2.1. Study Site and Experimental Period

This study included multi-use facilities throughout the Bucheon area, which had the
highest rate of traffic congestion in South Korea in 2014 and a population of 15,575 people/km2

in 2019, representing the highest population density in Gyeonggi Province, South Korea
(Figure 1).

Multi-use facilities in Bucheon were surveyed from 15–29 July and then again from
11–18 August 2021. Following these surveys, we selected representative multi-use facilities,
in which concentrations of bacteria and fungi were measured from November 2021 to April
2022 using the collision method, which is the main method used to test indoor air quality.
The collision method assumes that microorganisms collide with the medium as indoor
air is collected. Within each facility, a single site with high concentrations of bacteria and
fungi was selected for regular swab analysis using a Pipette Swab Plus kit (3M, St. Paul,
MN, USA). In the cotton swab sampling, the surface to be tested is set to 10 cm × 10 cm
in the target site where the collision criminal is performed, and sampling is performed
three times each. DNA was extracted from the samples using a SPINeasy DNA Kit for
Soil (MP Biomedicals Korea, Seoul, Korea), and quantitative analysis and next-generation
sequencing (NGS)-based metagenome analysis were performed to identify the bacteria
present in the samples.
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general sampling capacity was 50–200 L. Three samples were taken with a minimum in-
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Figure 1. Study area and sampling locations.

2.2. Experimental Equipment and Mentods

Concentrations of bacteria and fungi were measured using a microbial sampler (MAS-
1000 ECO, Taewon Shibata, Seoul, Korea). These measurements were conducted in accor-
dance with the “Measuring Method of Airborne Mold in Indoor Air” (ES 02702.1a) and
“Measuring Method of Total Airborne Bacteria in Indoor Air” (ES 02701.1c) indoor-air-
quality test standards of the Ministry of the Environment, Korea. The sampling period was
6 months. The single-collection flow rate of the sampler was 100 L/min, once per month.
The collection time was 1.5 min, the total collection capacity was 150 L, and the general
sampling capacity was 50–200 L. Three samples were taken with a minimum interval of
20 min between samples. Three consecutive samples were collected per sampling location
(Figure 2). Bacteria were cultured in TSA medium and Fungi in MEA medium. Following
indoor air sampling, bacteria were incubated at 35 ± 1 ◦C for 48 h, and fungi were cultured
at 25 ± 1 ◦C for 4–5 days. Concentrations are expressed in CFU/m3.
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Following the first survey, we categorized multi-use facilities according to 11 selection
criteria, and collected data on 417 people involved with these facilities. Based on the
data collected in the first survey, in a second survey, we collected data to evaluate the
relative importance of each multi-use facility type in terms of airborne bacterial and fungal
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concentrations. The selection criteria included the number of confirmed cases of COVID-19,
airtightness (i.e., qualitative degree of occlusion), user density, user residence time, fatality
rate, overcrowding, airborne population, infection education and control measures, ven-
tilation frequency, and user accessibility. The relative weights of these selection criteria
were determined according to the geometric mean for each facility type, with a threshold
consistency ratio of ≤ 0.1.

To evaluate the relative importance of each multi-use facility type, we selected a
representative multi-use facility for each facility type in Bucheon, and concentrations
of bacteria and fungi, as well as temperature and humidity, were measured using the
collision method. At each representative facility, three different locations were selected
as high-concentration points, and sampling, temperature and humidity were conducted
three times in the morning and afternoon once per month. The measurement time in the
morning and after was measured at a time when there was a lot of movement of people.
A soil kit (SPINeasy DNA Kit for Soil (MP Biomedicals Korea, Seoul, Korea)) was used
to extract DNA from swab samples and DNA extraction was conducted as follows. We
added 100–500 mg of soil to a lysing matrix E tube, and then added 980 µL of S1 lysis
buffer, 120 µL S2 lysis buffer, and 10 µL RNase and vortexed the sample. Next, the sample
was homogenized in a fast-prep instrument for 20 s at 6.0 m/s and then centrifuged at
14,000× g for 5 min. The supernatant was transferred to a clean 2.0 mL microcentrifuge
tube and 250 µL of inhibitor was added. The mixture was shaken 10 times and then
centrifuged at 14,000× g for 10 min. A supernatant sample (900 µL) was transferred to a
clean 2.0 µL microcentrifuge tube and 900 µL of binding solution was added. Next, we
transferred 800 µL of the mixture to an S1 column placed on top of a 2.0 µL collection tube,
which was centrifuged at 14,000× g for 1 min. This process was repeated once and the
remaining mixture was discarded. Next, we added 500 µL of Wah buffer to the column
and centrifuged it at 14,000× g for 1 min. The washing step was repeated, and then the
empty column was centrifuged without adding liquid at 14,000× g for 2 min for drying.
The collection tube was discarded and the column was placed in a 1.5 µL collection tube
and air dried for 5 min at room temperature. Next, we heated deep eutectic solvent (DES)
buffer to 55 ◦C using a water bath and then added 100 µL pre-heated DES buffer to the
center of the column. The mixture was centrifuged at 14,000× g for 1 min to obtain eluted
DNA, which was then stored at 20 ◦C until quantitative analysis.

For NGS-based metagenome analysis, we used polymerase chain reaction (PCR) to
target the V3–V4 region of bacteria 16S rRNA. Bacterial concentrations were confirmed
using a DNA analysis instrument (Quant-iT PicoGreen, Thermo Fisher Scientific Korea
Ltd., Incheon, South Korea). The DNA was amplified by PCR and its presence or absence
was verified through electrophoresis. The PCR conditions were as follows: 25 cycles of pre-
denaturation at 95 ◦C for 3 min, denaturation at 95 ◦C for 30 s, annealing at 55 ◦C for 30 s,
and extension at 72 ◦C for 30 s, with a final extension at 72 ◦C for 5 min. The primers 341F
and 805R were used (forward primer: 5′-TCGTCGGCAGCGTCAGATGTGTATAAGAG
ACAGTCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACGGGNGGCWGCAG-
3′; reverse primer: 5′-GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGTCTCGTGG
GCTCGGAGATGTGTATAAGAGACAGGACTACHVGGGTATCTAATCC-3′). Electrophore-
sis was performed using 10 µL of DNA and 2 µL of loading dye on 0.7% agarose gel. The
PCR product was approximately 428 bp in size.

We commissioned 3BIGS (Seoul, South Korea) to perform NSG-based metagenomic
analysis using an Illumina MiSeq system (Illumina, San Diego, CA, USA). MiSeq performs
cluster generation, sequencing, and data analysis using a single instrument. Each sequence
was analyzed from phylum to species using the Ribosomal Database Project pyrosequencing
pipeline classifier.
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3. Results and Discussion
3.1. Classification of Facilities Based on AHP and Derivation of Selection Criteria

Using the results of the first survey, we classified the multi-use facilities into six cate-
gories: facilities for pollution-sensitive groups (i.e., daycare and postpartum centers and fa-
cilities for the elderly, infirm, and disabled), transportation-related facilities (i.e., those with
large population fluctuations, including underground stations, waiting rooms, passenger
terminals, and underground shopping malls), public-transportation facilities (i.e., mobile
facilities such as subways, trains, and express buses), temperature-controlled facilities
(i.e., low-noise facilities including libraries, museums, art galleries, and exhibition halls),
food-preparation facilities (i.e., large bulk stores, restaurants, cafes, funeral halls, movie
theaters, and wedding halls), and other facilities (i.e., facilities with high temperature and
humidity, including public baths, indoor parking lots, religious facilities, lodging facilities,
indoor sports facilities, government offices, swimming pools, entertainment facilities, and
call centers).

The 11 selection criteria used in our AHP analysis included the numbers of confirmed
cases of COVID-19, airtightness (i.e., qualitative degree of occlusion), user density, user ac-
tivity, user residence time, fatality rate, overcrowded residences, floating population, infec-
tion education and control measures, ventilation frequency, and accessibility [5–10,20–30].
The number of corona confirmed cases was only for the population residing in Bucheon,
and it was included because it was necessary to review it as a factor in selecting multi-use
facilities from a different perspective from other variables in relation to the corona issue. In
addition, as the fatality rate included facilities used by the sensitive class such as medical
institutions and nursing facilities, this item was reviewed. The characteristics of each
facility are reflected as a whole.

Based on the results of the first survey, in the second survey, we determined the relative
importance of each of the six multi-use facility types according to the top six selection
criteria: the number of confirmed cases of COVID-19, airtightness, user density, user
residence time, fatality rate, and ventilation frequency. The importance of the multi-use
facility types was ranked in descending order as follows: facilities for pollution-sensitive
groups (0.2094), public-transportation facilities (0.1788), food-preparation facilities (0.1505),
other facilities (0.1343), transportation-related facilities (0.1167), and temperature-controlled
facilities (0.0994) (Table 1). After ranking the multi-use facility types by importance, we
selected representative facilities as target sites for long-term airborne bacterial and fungal
concentration measurements, prioritizing those with high user density and numbers of
confirmed COVID-19 cases.

Table 1. Multi-use-facility importance rankings based on six selected evaluation criteria.

Facility Type Weight Ranking Evaluation Criteria Weight Final Weight Ranking

Facility for
pollutant-sensitive users 0.2094 1

Number of confirmed
COVID-19 cases 0.1341 0.028 3

Airtightness 0.1491 0.017 5

User density 0.1645 0.029 1

User residence time 0.1191 0.012 6

Fatality rate 0.1939 0.029 2

Ventilation frequency 0.1390 0.019 4

Food-preparation
facility 0.1505 3

Number of confirmed
COVID-19 cases 0.1373 0.029 2

Airtightness 0.1639 0.019 5

User density 0.1728 0.031 1

User residence time 0.1368 0.014 6

Fatality rate 0.1512 0.023 3

Ventilation frequency 0.1469 0.020 4



Environments 2022, 9, 136 6 of 18

Table 1. Cont.

Facility Type Weight Ranking Evaluation Criteria Weight Final Weight Ranking

Public
transportation-related

facility
0.1788 2

Number of confirmed
COVID-19 cases 0.1293 0.027 2

Airtightness 0.1586 0.019 5

User density 0.1776 0.032 1

User residence time 0.1301 0.013 6

Fatality rate 0.1658 0.025 3

Ventilation frequency 0.1498 0.020 4

Temperature-controlled
facility 0.0994 6

Number of confirmed
COVID-19 cases 0.1276 0.027 2

Airtightness 0.1668 0.019 4

User density 0.1722 0.031 1

User residence time 0.1311 0.013 6

Fatality rate 0.1639 0.025 3

Ventilation frequency 0.1430 0.019 5

Transportation-related
facility 0.1167 5

Number of confirmed
COVID-19 cases 0.1269 0.027 2

Airtightness 0.1558 0.018 5

User density 0.1771 0.032 1

User residence time 0.1263 0.013 6

Fatality rate 0.1645 0.025 3

Ventilation frequency 0.1427 0.019 4

Other 0.1343 4

Number of confirmed
COVID-19 cases 0.1267 0.027 2

Airtightness 0.1678 0.020 5

User density 0.1732 0.031 1

User residence time 0.1296 0.013 6

Fatality rate 0.1630 0.025 3

Ventilation frequency 0.1465 0.020 4

3.2. Verification of Airborne Bacterial and Fungal Concentration Measurements and NGS Analysis
3.2.1. Concentrations of Airborne Bacteria and Fungi

In this study, we calculated the monthly arithmetic mean of total airborne bacteria
and fungi in 30 multi-use facilities, and found that their concentration levels rarely ex-
ceeded 800 CFU/m3, which is the maintenance standard for total airborne bacteria, and
500 CFU/m3, the recommended standard for mold, respectively. These results may reflect
that our sampling occurred during winter and spring, when bacterial and fungal concen-
trations are lowest. Previous studies reported average bacterial and fungal concentrations
higher than the recommended and maintenance standards during summer [5–10,20–24];
therefore, continuous monitoring should be performed in future studies.

Total airborne bacterial concentrations were high overall in November 2021, except in
food-preparation and temperature-controlled facilities. Total airborne bacterial concentra-
tions were particularly high in “other” facilities such as Bucheon City Hall. In December
2021, total airborne bacterial concentrations were high in facilities for pollution-sensitive
groups such as daycare centers, postpartum-care centers, and nursing homes. In January
2022, total airborne bacterial concentrations remained high in nursing homes and daycare
centers, and other facilities such as public parking lots and vehicle registration departments
had higher total airborne bacterial concentrations than the remaining “other” facilities. In
February 2022, total airborne bacterial concentrations were high in daycare centers, public
parking lots, vehicle registration departments, and at Bucheon City Hall. In March 2022,
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the Bucheon Christian Youth Foundation had the highest total concentration of airborne
bacteria, and facilities for pollution-sensitive groups such as daycare centers had higher
total airborne bacterial concentrations than did other facilities. In April 2022, total airborne
bacterial concentrations were high in temperature-controlled facilities such as Wonmi Li-
brary and in transportation-related facilities such as Bucheon City Hall Station, Sangdong
Station, and Sinjindong Station. Some additional facilities were sampled in March 2022
(Table 2).

In November 2021, total airborne fungal concentrations were high in the 365 Safety
Education Center and other facilities such as the Bucheon City Hall parking lot. Airborne
fungal concentrations were strongly correlated with humidity. In December 2021, total air-
borne fungal concentrations remained high in the 365 Safety Education Center and Bucheon
City Hall parking lot, as well as public parking lots, postpartum care centers, daycare cen-
ters, and other facilities for pollution-sensitive groups. In temperature-controlled facilities
such as museums and libraries, and in food-preparation facilities such as CGV Excursion
facilities, total airborne fungal concentrations were low. In January 2022, total airborne
fungal concentrations were high in facilities such as the 365 Safety Education Center, public
parking lots, and facilities for pollution-sensitive groups such as postpartum care centers.
Total airborne fungal concentrations were low in cooking facilities such as CGV Excursions
and in temperature-controlled facilities such as museums. In February 2022, total airborne
fungal concentrations were high in Bucheon City Hall and low in the 365 Education Center,
Bucheon Gymnasium, and Bucheon Museum. From March 2022, the sampling area was
expanded, and total airborne fungal concentrations were high in facilities such as the
Bucheon Civic Center, where the recommended standards were exceeded, and in facilities
such as the 365 Safety Education Center, Bucheon City Museum, and Sangdong Library,
and temperature-controlled facilities, total airborne fungal concentrations were low. In
April 2022, total airborne fungal concentrations were high in facilities such as Bucheon City
Hall, Sinjung-dong Station, temperature-controlled facilities such as Wonmi Library, and
transportation-related facilities (Table 3).

Based on the measured bacterial and fungal concentrations, we ranked the importance
of each multi-use facility type using the AHP technique. Facilities for pollution-sensitive
groups were found to have the highest importance in terms of airborne bacterial concen-
trations, whereas “other” facilities had the highest importance in terms of airborne fungal
concentrations (Table 4).

Among samples collected in winter (November 2021 to February 2022), total airborne
bacterial concentrations were high in vehicle registration departments, Bucheon City Hall,
and daycare centers, postpartum care centers, and other facilities for pollution-sensitive
groups; total airborne fungal concentrations were high in “other” facilities such as the
365 Safety Education Center and Bucheon City Hall parking lot. Total airborne bacterial
and fungal concentrations were low in temperature-controlled facilities such as libraries
and in food-preparation facilities such as CGV Excursion (Figure 3). Among samples
collected in spring (March to April 2022), total airborne bacterial concentrations were
high in libraries, daycare centers, and subway stations, whereas total airborne fungal
concentrations were high in libraries, parking lots, civic centers, subway stations, and
various transportation-related facilities. Total airborne bacterial and fungal concentrations
were low in museums and the 365 Safety Education Center. Thus, total airborne bacterial
and fungal levels showed seasonal variation, with higher concentrations in spring than in
winter (Figure 4).
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Table 2. Mean and standard deviation (SD) of total airborne bacterial concentrations among various multi-use facilities by type.

Facility Type Facility November 2021 December 2021 January 2022 February 2022 March 2022 April 2022 Mean Total Airborne
Bacteria (CFU/m3) SD

Facility for
pollutant-sensitive

users

Bucheon City Hall
Daycare Center 96.5 64.8 60.2 64.5 177.5 254.3 119.6 72.6

Bucheon Municipal
Specialized Nursing
Home for the Elderly

104.0 81.3 119.0 32.5 – 117.8 90.9 32.2

Labor Welfare
Corporation Bucheon

Daycare Center
104.5 178.2 92.8 203.8 – 127.0 141.2 42.8

Loen Postpartum Care
Center 106.0 94.0 – – – – 100.0 6.0

Samsung Future
Postpartum Care

Center
92.8 46.5 40.3 27.8 37.8 59.0 50.7 21.1

Food-preparation
facility CGV Excursion 26.3 72.0 11.0 14.0 14.3 30.0 27.9 20.9

Temperature-
controlled

facility

Bucheon City Museum 67.0 22.2 11.8 17.0 14.8 21.3 25.7 18.8

Sangdong Library 32.5 23.7 18.5 27.5 28.8 52.5 30.6 10.7

Wonmi Library 71.5 20.8 21.5 31.0 40.3 437.0 103.7 150.0

Transportation related
facility

Bucheon City Hall
Station – – – – 54.0 366.0 210.0 156.0

Sangdong Station – – – – 58.3 299.8 179.0 120.8

Sinjung-dong Station – – – – 69.8 348.8 209.3 139.5

Sosaeul Station – – – – 31.3 214.0 122.6 91.4
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Table 2. Cont.

Facility Type Facility November 2021 December 2021 January 2022 February 2022 March 2022 April 2022 Mean Total Airborne
Bacteria (CFU/m3) SD

Other

365 Safety Training
Center 132.8 11.0 29.3 10.3 12.8 16.0 35.4 44.1

Bucheon Christian
Youth Association

Foundation
– – – – 288.0 – 288.0 0.0

Bucheon City Hall 115.2 57.8 17.0 154.7 41.8 106.5 82.2 47.3

Bucheon City Hall
Parking Lot 88.1 50.1 23.5 139.8 42.3 107.5 75.2 40.3

Bucheon Civic Center 10.7 11.5 9.2 7.3 39.8 24.5 17.2 11.5

Bucheon Gymnasium 123.2 14.2 23.3 21.3 58.8 160.3 66.8 55.8

Cocoming Kids Land – – – – – 26.0 26.0 0.0

Goriul Cave Market
Public Parking Lot 38.3 23.2 54.0 42.0 83.5 46.3 47.9 18.5

Harang Silver Village – – – – 10.8 – 10.8 0.0

Mega Plus – – – – 77.0 – 77.0 0.0

Starlight Park Public
Parking Lot 24.7 27.8 50.2 26.3 15.3 66.5 35.1 17.5

Middle East Love
Market Public

Parking Lot
25.0 26.8 56.8 15.8 45.3 110.0 46.6 31.5

Okgildong Study
Capsule Reading Room – – – – 114.0 – 114.0 0.0

R2G CrossFit – – – – 19.0 – 19.0 0.0

Top Nonsul Korean
Language School – – – – 19.0 – 19.0 0.0

Vehicle Registration
Division 115.8 83.7 68.7 156.8 116.0 177.8 119.8 38.0

We’ve the State – – – – 27.6 – 27.6 0.0
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Table 3. Mean and standard deviation (SD) of total airborne fungal concentrations among various multi-use facilities by type.

Facility Type Facility November 2021 December 2021 January 2022 February 2022 March 2022 April 2022
Mean Fungus
Concentration

(CFU/m3)
SD

Facility for
pollutant-sensitive users

Bucheon City Hall
Daycare Center 110.0 157.3 67.3 69.3 101.8 82.0 97.9 30.8

Bucheon Municipal
Specialized Nursing
Home for the Elderly

156.8 71.0 60.5 17.8 – 228.3 106.9 75.6

Labor Welfare
Corporation Bucheon

Daycare Center
134.0 151.0 101.8 77.3 – 145.5 121.9 28.1

Loen Postpartum Care
Center 54.0 180.7 – – – – 117.3 63.3

Samsung Future
Postpartum Care Center 167.8 49.2 149.8 43.8 61.8 147.5 103.3 52.4

Food-preparation facility CGV Excursion 48.3 44.5 23.2 41.8 151.8 115.3 70.8 46.3

Temperature-controlled
facility

Bucheon City Museum 126.5 28.7 36.3 14.5 21.8 30.0 43.0 38.0

Sangdong Library 87.2 123.5 63.2 29.8 30.8 120.5 75.8 38.1

Wonmi Library 112.5 34.3 56.8 43.5 135.5 466.5 141.5 149.9

Transportation-related
facility

Bucheon City Hall Station – – – – 69.3 374.0 221.6 152.4

Sangdong Station – – – – 39.0 322.3 180.6 141.6

Sinjung-dong Station – – – – 73.8 490.8 282.3 208.5

Sosaeul Station – – – – 107.8 326.0 216.9 109.1
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Table 3. Cont.

Facility Type Facility November 2021 December 2021 January 2022 February 2022 March 2022 April 2022
Mean Fungus
Concentration

(CFU/m3)
SD

Other

365 Safety Training
Center 348.0 261.8 166.3 16.5 21.5 39.8 142.3 127.9

Bucheon Christian Youth
Association Foundation – – – – 113.0 – 113.0 0.0

Bucheon City Hall 118.3 102.5 43.8 155.9 173.2 257.8 141.9 66.3

Bucheon City Hall
Parking Lot 310.6 202.3 67.3 40.5 92.8 264.8 163.0 102.3

Bucheon Civic Center 66.7 35.0 16.8 20.5 546.5 85.8 128.5 188.5

Bucheon Gymnasium 129.0 47.0 99.0 11.7 125.0 118.8 88.4 44.0

Cocoming Kids Land – – – – – 57.0 57.0 0.0

Goriul Cave Market
Public Parking Lot 111.2 79.5 96.5 62.0 129.5 328.5 134.5 89.4

Harang Silver Village – – – – 35.0 – 35.0 0.0

Mega Plus – – – – 123.0 – 123.0 0.0

Middle East Love Market
Public Parking Lot 94.3 171.0 171.0 68.0 45.0 176.3 120.9 53.8

Okgildong Study Capsule
Reading Room – – – – 202.0 – 202.0 0.0

R2G CrossFit – – – – 34.0 – 34.0 0.0

Starlight Park Public
Parking Lot 219.5 109.5 109.0 81.5 91.8 215.3 137.8 57.1

Top Nonsul Korean
Language School – – – – 26.0 – 26.0 0.0

Vehicle Registration
Division 79.5 80.7 110.5 39.5 93.0 298.3 116.9 83.9

We’ve the State – – – – 103.6 – 103.6 0.0
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Table 4. Multi-use-facility importance rankings according to bacterial and fungal concentrations.

Facility Type Mean Bacterial
Concentration (CFU/m3) Ranking Mean Fungal

Concentration (CFU/m3) Ranking

Facilities for
pollutant-sensitive users 100.5 ± 34.9 1 109.5 ± 50.1 2

Food-preparation facilities 27.9 ± 20.9 5 70.8 ± 46.3 5

Temperature-controlled
facilities 53.3 ± 59.9 4 86.8 ± 75.3 4

Transportation-related
facilities 180.2 ± 126.9 3 225.3 ± 152.9 3

Other facilities 67.6 ± 19.0 2 113.2 ± 47.8 1
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3.2.2. DNA Extraction and NGS Analysis Results

Based on these results, we selected one or more facilities with airborne bacterial and
fungal concentrations within each facility type, and performed cluster analysis for each
facility type. Postpartum care centers and daycare centers were selected as representative
facilities for pollution-sensitive groups, and libraries and museums were selected as repre-
sentative temperature-controlled facilities. CGV Excursion was selected as a representative
food-preparation facility, the 365 Safety Education Center and Bucheon City Hall vehicle
registration department were selected as representative “other” facilities, and Sinjung-dong
subway station was selected as a representative transportation facility.

Base-sequence analysis was conducted to identify the most abundant bacteria sampled
in representative multi-use facilities to the species level (Figure 5). Among facilities for
pollution-sensitive groups, Acinetobacter lwoffii (18.32%), Pseudomonas oryzihabitans (15.10%),
Sphingomonas jeddahensis (13.94%), and Bacillus licheniformis (10.38%) were detected in
daycare centers, as well as low concentrations of the human pathogens Staphylococcus
saprophyticus (0.06%) and Bacillus anthracis (0.01%). A large proportion of the bacteria
detected in prenatal care centers consisted of Acinetobacter pittii (53.60%), with lower
amounts of the human pathogens Bacillus cereus (3.71%) and Bacillus anthracis (0.99%). In
libraries, Pseudomonas putida (10.66%) and Pseudomonas silesiensis (10.02%) were mainly
detected, as well as the human pathogens Bacillus anthracis (0.66%), Bacillus cereus (0.60%),
Pseudomonas fluorescens (0.57%), Erwinia billingiae (0.39%), and Enterobacter cloacae (0.01%). In
museums, Pseudomonas cedrina (25.23%) and Lysinibacillus sphaericus (18.88%) were mainly
detected, as well as the human pathogens Bacillus cereus (3.99%), Pseudomonas fluorescens
(2.62%), and Bacillus anthracis (1.20%). The food-preparation facility had a high percentage
of Lysinibacillus sphaericus (36.26%), as well as the human pathogens Bacillus cereus (9.13%)
and Bacillus anthracis (2.89%). In Sinjung-dong subway station, Tissierella creationophila
(14.00%), Achromobacter spanius (11.46%) and Pseudogracilibacillus auburnensis (10.41%) were
mainly detected, and no human pathogens were found. In the 365 Safety Training Center,
the main bacteria detected were Clostridium subterminale (15.55%), Lysinibacillus telephonicus
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(10.53%), and Erwinia aphidicola (10.24%), as well as the human pathogens Bacillus cereus
(7.38%, which was particularly high) and Bacillus anthracis (2.22%). In Bucheon City Hall,
Lysinibacillus sphaericus (17.24%) and Tissierella praeacuta (10.21%) were mainly detected,
as well as the human pathogens Bacillus cereus (7.38%) and Bacillus anthracis (2.22%). In
particular, as Bacillus anthracis, a major cause of bioterrorism in the United States in 2001
and a very dangerous pathogen to the human body, was found in most facilities, it is judged
that early management and solution provision are necessary.
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Although other studies [1] did not look at each facility separately, in the case of
examining some transportation facilities and facilities used by the sensitive class, Morganella
morganii, Acinetovacter guillouiae, and Arthrobacter psychrolactophilus were found to be high in
total airborne bacteria at the species level. Additionally, as for the floating mold, Malassezia
restricta, Aspergillus penxillioides, and Ustilaginidea virens were mainly found at the species
level. As a result of reviewing each facility group in this study, it can be seen that the major
types appearing at the species level are different.

The results of this study will contribute to the development of bacterial control mea-
sures for each type of multi-use facility. The institution can install and apply a constant
monitoring device that measures bacteria and fungi in units of one minute at the point
to check the concentration at all times and develop and apply a reduction solution such
as air purifier technology, antibacterial film, and hand sanitizer system suitable for the
characteristics of each facility.

4. Conclusions

In this study, based on criteria used in the Indoor Air Quality Management Act, we
classified multi-use facilities in Bucheon, South Korea into six categories: facilities for
pollution-sensitive groups, transportation-related facilities, public transportation facilities,
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temperature-controlled facilities, food-preparation facilities, and other facilities. We applied
the AHP method to the categorized facilities to determine the relative importance of each
facility type, as well as the relative importance of the selection criteria used in the former
analysis. The results showed that facilities for pollution-sensitive groups were ranked first,
followed by public transportation facilities, food-preparation facilities, “other” facilities,
transportation-related facilities, and temperature-controlled facilities. The importance of
multi-use facilities was found to be influenced mainly by user density and the number of
confirmed COVID-19 cases.

Total airborne bacterial and fungal concentrations were measured over a six-month
period during winter and spring, when these concentrations are lowest. Previous studies
have shown that airborne bacterial and fungal concentrations can exceed recommended
limits during summer, whereas we found that recommended limits were not exceeded. Our
study also differed from previous studies in that we used representative multi-use facilities
in our analysis; therefore, it is difficult to extrapolate our results to wider areas. However,
this study established a method for surveying and ranking multi-use facilities that may
be applied in future studies; this study is also the first to apply 16S rRNA sequencing to
identify the main species of bacteria and human pathogens at target multi-use facilities.

Our AHP results showed that facilities for pollution-sensitive groups were the most
important among the six multi-use facility types; based on on-site measurements, these
facilities had the highest concentrations of total airborne bacteria and the second highest
concentrations of total airborne fungi. The “other” facility type was ranked second and first
for total airborne bacteria and fungi, respectively. These results were heavily influenced
by user density and the number of confirmed COVID-19 cases; therefore, facilities for
pollution-sensitive groups, “other” facilities, and transportation-related facilities require
continuous management of harmful microorganisms.

Our 16S rRNA gene-sequencing results identified various bacterial species including
human pathogens in each representative multi-use facility. Current indoor air-quality
management guidelines recommend limits of 800 CFU/m3 for bacteria and 500 CFU/m3

for bacteria and fungi. However, the results of this study indicate that real-time monitoring
and library construction of bacterial species is warranted, despite the associated costs.
In particular, guidelines for the management of each multi-use facility type should be
developed based on the human pathogens detected in this study.

As a limitation of this study, first, there may be differences in species between sampling
results by the collision method and 16S RNA analysis. In the culture by collision method,
only microorganisms that can be cultured are detected, whereas 16S RNA includes all
species. Second, this study has a limitation in that it collects bio-aerosols at specific
locations through surface swab analysis. Third, it is necessary to review the funnel route in
the species-level analysis derived from this study, and in the future, it will be necessary to
review the correlation by constructing continuous data.

In future studies, we plan to expand our sampling strategy to include all multi-
use facilities, and to construct a platform that can continuously monitor changes in the
concentrations of harmful bacterial species.
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