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Abstract

:

In this study, two discretization numerical methods, modal discretization and spatial discretization methods, were proposed and compared when applied to the gyroscopic structures. If the distributed gyroscopes are attached, the general numerical methods should be modified to derive the natural frequencies and complex modes due to the gyroscopic effect. The modal discretization method can be used for cases where the modal functions of the base structure can be expressed in explicit forms, while the spatial discretization method can be used in irregular structures without modal functions, but cost more computational time. The convergence and efficiency of both modal and spatial discretization techniques are illustrated by an example of a beam with uniformly distributed gyroscopes. The investigation of this paper may provide useful techniques to study structures with distributed inertial components.






Keywords:


gyroscopic structure; modal discretization; spatial discretization; complex modes; numerical methods












1. Introduction


Modern mechanical structures, especially intelligent flexible mechanical structures, are densely distributed with sensors, processors, and actuators [1]. Some transducers may apply inertial actions to the flexible structure, although they are also parts of the whole structure. In this study, structures with distributed gyroscopes will be studied, which has been verified as applicable in the control of soft structures such as space manipulation arms [2,3,4].



The gyroelastic continua have been proposed by Hughes and D’Eleuterio to describe the mathematical modeling of structures with continuously distributed gyroscopes [5,6]. The dynamics of flexible structures with distributed appendages can be investigated by modal discretization techniques such as the Galerkin method by introducing a set of trial mode functions, which are usually the modal functions of the corresponding structure without appendages [7,8,9]. Modal discretization techniques have shown powerful applications to structures with regular shapes (explicit modal functions) [10,11,12,13,14]. However, modal discretization becomes unpractical when treating structures with irregular or complicated contours. Without analytical modal functions, modal discretization loses the configuration base. Although the base modal shapes can be obtained by the finite element method and transferred to the modal discretization procedure, the manipulations are apparently cumbersome.



Spatial discretization techniques such as the finite element method could tackle the dynamics of structures with arbitrary shapes. However, the available commercial finite element software provides no general modules to treat flexible structures with distributed gyroscopes. The distributed gyroscopes introduce a new dynamic effect to the structures and the most important contribution is the gyroscopic coupling effect, which is usually neglected in low angular momentum examples. With increasing angular momentum, the gyroscopic coupling becomes dominating and varies the frequency and modal motion drastically [15,16,17,18,19,20]. Gyroscopic coupling can be employed as a mechanism of sensor to detect rotating angles, which has been discussed in the literature [21,22,23].



Although gyroscopic continua such as axially moving materials [24] and rotating components [25] have been studied widely, structures with discrete rotors have received less attention. In this study, we propose a spatial discretization technique designed to tackle flexible structures with distributed gyroscopes. The eigenfrequencies are studied and discussed. Both modal discretization and spatial discretization will be studied and compared by an example of gyroscope-distributed beam. The current study may expose the gyroscopic structures to more general numerical techniques.




2. Model Description


To validate the modal discretization and spatial discretization techniques, a beam model with uniformly distributed gyroscopes was studied and the natural frequencies and complex modes extracted and compared.



As described in Figure 1, an Euler beam supported by two hinges is distributed with N gyroscopes. The gyroscopes provide mass and angular momentum, but do not alter the deformation of the beam. The current simple model can be used directly to slender rotor systems [26,27], drill strings [28,29], and gyroscopic structures.




3. Modal Discretization


To describe the displacements of the beam elements and gyroscope elements, two reference frames are used: the inertial frame Fb with the origin on one end of the beam on which the displacement of the beam is measured, and the non-inertial frame Fri on which the rigid rotors are described (Figure 2). The undeformed position vector of an arbitrary small element dm in the beam is     l →  m    measured in Fb, the displacement vector is     u →  m   , and the rotational angular vector is     β →  m   . Similarly, the undeformed position vector and the displacement vector of the element dmri on the ith rotor are     l →   r i    ,     u →   r i    , and     β →   r i    , respectively. Measured on the non-inertial frame Fri, the position vector of the rotor element is     r →   r i    . The rotating velocity of the rotor is     ω →   r i   =   Ω  i  =    [   Ω i  , 0 , 0  ]   T    with respect to the frame Fri.



The translational and rotational displacements of the element dm can be cast into the generalized coordinates by using the beam’s modal functions without gyroscopes:


    u →  m  =   f  b T    T  m    τ  b   



(1)






    β →  m  =   f  b T    R  m    τ  b   



(2)




where fb is the matrix of unit vectors of the Fb basis vectors; Tm and Rm are the translational and rotational displacement vectors, respectively, the values of which are given by the sine functions of the supported beam modes on the element position; and τb is the generalized modal coordinate variable vector.



By the geometry of the elements shown in Figure 2, the total displacements of the beam and the ith rotor measured in Fb are


    r →   m , b   =   l →  m  +   u →  m   



(3)






    r →   m , r i   =   l →   r i   +   u →   r i   +   r →   r i    



(4)







The corresponding velocities are


    v →   m , b   =    u →  ˙  m     



(5)






    v →   m , r i   =    u →  ˙   r i   +    β →  ˙   r i   ×   r →   r i   +   ω →   r i   ×   r →   r i    



(6)




and the accelerations are


    a →   m , b   =    u →  ¨   m , b    



(7)






    a →   m , r i   =    u →  ¨   r i   +    β →  ˙   r i   ×  (     β →  ˙   r i   ×   r →   m , r i    )  +    β →  ˙   r i   ×  (    ω →   r i   ×   r →   m , r i    )  +    β →  ¨   r i   ×   r →   m , r i   +    ω →  ˙   r i   ×   r →   m , r i    



(8)




where      β →  ˙   r i   ×  (     β →  ˙   r i   ×   r →   m , r i    )    is small and ignored in Equation (8).



The velocities and accelerations can be expressed in the modal discretized variables by substituting Equations (1) and (2) into Equations (5)–(8):


    v →   m , b   =   f  b T    T   m , b      τ ˙   b   



(9)






    v →   m , r i   =   f  b T   (    T   r i   −   A   b , r i      r ˜    m , r i     A   r i , b     R   r i    )     τ ˙   b  −   f   r i  T     r ˜    m , r i     Ω  i   



(10)






    a →   m , b   =   f  b T    T   m , b      τ ¨   b    ( 1 )  



(11)






    a →   m , r i   =   f  b T   (    T   r i   −   A   b , r i      r ˜    m , r i     A   r i , b     R   r i    )     τ ¨   b  −   f   r i  T      β ˜  ˙    r i      r ˜    m , r i     Ω  i  −   f   r i  T     r ˜    m , r i      Ω ˙   i   



(12)




where Ab,ri = fbfriT is the transform matrix between the two frames Fb and Fri; fb and fri are the unit vector of the Fb frame and Fri frame, respectively; and      r ˜    m , r i     and      β ˜    r i     are the tilde matrix of vectors rm,ri and βri, respectively.



To apply Kane’s Equation, the rotating velocity of each gyroscope should be considered as a generalized coordinate. Hence, the generalized coordinates and generalized velocities of the system are      [    τ  b    T  ,  φ 1  , … ,  φ i  , … ,  φ n   ]   T    and      [     τ ˙   b    T  ,  Ω 1  , … ,  Ω i  , … ,  Ω n   ]   T   , respectively. If the first k order modes are used in the discretization, the number of generalized coordinates is k + n.



Based on Equation (9), the partial velocities of the beam element dm are


    p   v →     m , b  1  =   ∂   v →   m , b     ∂    τ ˙   b    =   f  b T    T   m , b   ,    



(13)






    p   v →     m , b   1 + i   =   ∂   v →   m , b     ∂   Ω  i    = 0   ( i = 1 , 2 ,   … ,   n )  



(14)







Based on Equation (10), the partial velocities of the ith gyroscopes are


    p   v →     m , r i  1  =   ∂   v →   m , r i     ∂    τ ˙   b    =   f  b T   (    T   r i   −   A   b , r i      r ˜    m , r i     A   r i , b     R   r i    )   



(15)






    p   v →     m , r i   1 + i   =   ∂   v →   m , r i     ∂   Ω  i    = −   f   r i  T     r ˜    m , r i   ,   ( i = 1 , 2 ,   … ,   n )  



(16)







The generalized inertial forces of the beam and rotors can be obtained by integrating the product of the partial velocity and acceleration over all of the structure:


      F  I    =    ∫  beam      p   v →    b 1  ⋅   a →   m , b   d m    +   ∑  i = 1  n      ∫  i th   rotor      p   v →     r i   1 + i   ⋅   a →   m , r i   d  m  r i             =   E  a     τ ¨   b  +  ∑   (    R   r i  T    A   b , r i       β ˙  ˜    r i    J  r i  x    Ω  i   )    +  ∑   (    R   r i  T    A   b , r i    J  r i  x     Ω ˙   i   )    ,    



(17)




where


     E  a  =   E  b  +  ∑   (   m  r i      T   r i  T    T   r i   +   R   r i  T     J ^    r i      R   r i    )      ,     E  b  =      ∫  beam    T      m , b  T    T   m , b   d m   



(18)







When the normalized modal functions are used, Eb is the identity matrix. Under the small deformation assumption, the transformation matrix Ab, ri and Ari, b are approximately identity matrices, which makes the angular momentum vector of the gyroscopes


     J ^    r i   =   A   b , r i   ⋅   J   r i   ⋅   A   r i , b   ≈   J   r i   = diag  (   J  r i  x  ,  J  r i  y  ,  J  r i  z   )   



(19)







On the other hand, the generalized active force due to the nominal stiffness of the structure is


    F  A  =   Λ  b    τ  b   



(20)




where the stiffness matrix is defined as the diagonal array constituted by the square of the circular frequencies of the beam without any attachments,


    Λ  b  = d i a g (  ω 1 2  , … ,  ω i 2  , … ,  ω m 2  )  



(21)







Substituting Equations (17) and (20) into Kane’s Equation


    F  i I  +   F  i A  = 0  



(22)




and neglecting the angular accelerations of the gyroscopes, one obtains the final ordinary differential equation governing the generalized displacement


    E  a     τ ¨   b  +  G     τ ˙   b  +   Λ  b    τ  b  =  0   



(23)




where the skew-symmetric gyroscopic matrix G is


    G  =  ∑    G  i      ,     G  i  =    (    R   r i   2 T     R   r i  3  −   R   r i   3 T     R   r i  2   )   J  r i  x    Ω  i    



(24)







The superscript numbers in Equation (24) denote the row number of the corresponding matrix. The gyroscopic term expressed in the generalized coordinate in Equation (23) plays a key role, which leads to frequency bifurcation and complex modes.



The linear gyroscopic ordinary governing Equation (23) can be solved numerically and the natural frequencies and complex modes can be obtained by transferring the generalized variables back into physical deformations via relations (1) and (2).




4. Spatial Discretization


Spatial discretization is more adaptable than modal discretization when treating structures with complicated shapes, whose explicit mode functions cannot be obtained in a straightforward manner. In this study, we took the beam model with distributed gyroscopes to show the technique of spatial discretization. The segment of beam and segment of gyroscopes were considered as presented in Figure 3. This spatial discretization technique can also be expanded to other irregular structures.



Every node of the beam element has six DOFs, three translational displacements (u, v, w), and three rotational displacements (θx, θy, θz) along the three coordinates x, y, and z, respectively. The transversal rotational angles are


   θ y  =   ∂ v   ∂ x     ,    θ z  = −   ∂ w   ∂ x    



(25)







The displacement vector of an arbitrary position in element e with length le is


   {   Δ e   ( x )   }  =    [  u , v , w ,  θ x  ,  θ y  ,  θ z   ]   T   



(26)







The displacement vector can be expressed using the classical finite element cubic interpolating equation for bending deflections and linear interpolating equation for axial and torsional deflections, so that


   {   Δ e   ( x )   }  =  [ N ]   {   δ e   }   



(27)




where [N] is the shape function matrix of the three-dimensional finite element, and the nodal displacement vector is


   {   δ e   }  =    [   u 1  ,  v 1  ,  w 1  ,  θ  x 1   ,  θ  y 1   ,  θ  z 1   ,  u 2  ,  v 2  ,  w 2  ,  θ  x 2   ,  θ  y 2   ,  θ  z 2    ]   T   



(28)







Equation (27) can be written as


    {    u  ( x )      v  ( x )      w  ( x )     }  =  [   N T   ]   {   δ e   }    ,    {     θ y   ( x )       θ z   ( x )     }  =  [   N θ   ]   {   δ e   }     {   θ x   ( x )   }  =  [   N φ   ]   {   δ e   }    



(29)




where [NT], [Nθ], and [Nφ] are the translation, bending rotation, and torsional rotation shape function matrices, respectively. The shape function expressions can be found in the available references such as [28,30,31].



The element composed of a rigid gyroscope can be assumed as a distributed elastic beam with additional momentum. The ith gyroscope with finite length le, ri has the displacements


   u  r i   = u ,    v  r i   = v ,    w  r i   = w ,    θ  x , r i   =  θ x  + φ ,    θ  y , r i   =  θ y  ,    θ  z , r i   =  θ z   



(30)







The gyroscope elements share the same features with beam elements except the extra gyroscope rotation angle φ. Hence, the kinetic energy an arbitrary element is


  T =  1 2     ∫ 0   l  e j       (    v  b    T   m b    v  b  +   ω  b    T    I  b    ω  b   )  d x    +  Δ  i , j    1 2     ∫ 0   l  e , r i       (    v   r i     T   m  r i     v   r i   +   ω   r i     T    I   r i     ω   r i    )  d x     



(31)




where the symbol Δi,j denotes if the gyroscope i has been installed on the position j:


   Δ  i , j   =  {    1        i = j ,     0        i ≠ j .      



(32)







The variables and parameters in Equation (31) are stated as follows. The mass density of the beam element and the ith gyroscope are mb and mri, respectively. The translational and angular velocity vectors of the beam and gyroscopes are


     v  b  =  [     u ˙       v ˙       w ˙     ]    ,     ω  b  =  [        θ ˙  x  −  θ y    θ ˙  z          θ ˙  y  −   θ ˙  z   θ x          θ ˙  z  +   θ ˙  y   θ x       ]    



(33)






     v   r i   =  [     u ˙       v ˙       w ˙     ]      ω   r i   =  [        θ ˙  x  +  φ ˙  −  θ y   θ ˙    z          θ ˙  y  cos  (   θ x  + φ  )  −  θ ˙    z  sin  (   θ x  + φ  )          θ ˙  z  cos  (   θ x  + φ  )  +  θ ˙    y  sin  (   θ x  + φ  )       ]    



(34)







The moment of inertia of the beam element and the ith gyroscope are


     I  b  =  [       I p     0   0     0     I c     0     0   0     I c       ]    ,     I   r i   =  [       I  p , r i      0   0     0     I  c , r i      0     0   0     I  c , r i        ]    



(35)







Substituting Equations (33)–(35) to Equation (31), the kinetic energy can simplified as


  T =  1 2     {    δ ˙  e   }   T   [   M e   ]   {    δ ˙  e   }  +  Δ  i , j    (   1 2     {    δ ˙  e   }   T   [   M  e , r i    ]   {    δ ˙  e   }  −  Ω i     {    δ ˙  e   }   T   [   G  e , r i    ]   {   δ e   }   )   



(36)




where


     [   M e   ]  =  [   M T e   ]  +  [   M φ e   ]  +  [   M θ e   ]  ,        [   M T e   ]  =    ∫ 0   l e      m b     [   N T   ]   T   [   N T   ]  d x    ,    [   M φ e   ]  =    ∫ 0   l e      I p     [   N φ   ]   T   [   N φ   ]  d x    ,    [   M θ e   ]  =    ∫ 0   l e      I c     [   N θ   ]   T   [   N θ   ]  d x    ,    



(37)






     [   M  e , r i    ]  =  [   M T  e , r i    ]  +  [   M θ  e , r i    ]  +  [   M φ  e , r i    ]  ,      [   M T  e , r i    ]  =    ∫ 0   l  e , r i       m  r i      [   N T   ]   T   [   N T   ]  d x    ,    [   M θ  e , r i    ]  =    ∫ 0   l  e , r i       I  c , r i      [   N θ   ]   T   [   N θ   ]  d x ,       [   M φ  e , r i    ]  =    ∫ 0   l  e , r i       I  p , r i      [   N φ   ]   T   [   N φ   ]  d x    ,    



(38)






   [   G  e , r i    ]  =  [     ∫ 0   l  e , r i       I  p , r i      [   N   θ z     ]   T   [   N   θ y     ]  d x     ]   



(39)







The potential energy of the beam element is


  U =  1 2     ∫ 0   l e     E A    (    ∂ u   ∂ x    )   2  d x    +  1 2     ∫ 0   l e     E  J y     (    ∂  θ y    ∂ x    )   2  d x +  1 2     ∫ 0   l e     E  J z     (    ∂  θ z    ∂ x    )   2  d x       +  1 2     ∫ 0   l e     G J    (    ∂  θ x    ∂ x    )   2  d x     



(40)




where A is the cross-sectional area; Iy and Iz are the area of moment of inertia around the y and z axes; and the J polar area moment of inertia. It is assumed that the gyroscopes do not contribute to the total potential energy.



Substituting the kinetic energy and potential energy into Lagrange Equation


   d  d t    (    ∂  L    ∂  {    δ ˙  e   }     )  −   ∂  L    ∂  {   δ e   }    =  {   Q e   }  ,   L =   U – T ,    



(41)




the governing equation of the jth element is then


   [   M  a   e    ]   {    δ ¨  e   }  +  Δ  i , j    Ω i   [   G  a   e    ]   {    δ ˙  e   }  +  [   K  a   e    ]   {   δ e   }  =  {   Q e   }   



(42)




where    {   Q e   }    is generalized active force, and


   [   M  a e    ]  =  [   M e   ]  +  Δ  i , j    [   M  e , r i    ]  ,    [   G  a e    ]  =    [   G  e , r i    ]   T  −  [   G  e , r i    ]  ,    [   K  a e    ]  =  [   K e   ]  .  



(43)







When the gyroscopic term of Δi,j vanishes, the spatial discretized Equation (42) recovers to the classical one of a pure beam case.



By assembling the mass, gyroscopic and stiffness matrices of the individual elements, the global matrices of the entire structure can be obtained:


   [ M ]   {  δ ¨  }  +  Δ  i , j    Ω i   [ G ]   {  δ ˙  }  +  [ K ]   { δ }  =  { Q }   



(44)




where the N-nodes displacement vector is


   { δ }  =    [   u 1  ,  v 1  ,  w 1  ,  θ  x 1   ,  θ  y 1   ,  θ  z 1   ,  u 2  ,  v 2  ,  w 2  ,  θ  x 2   ,  θ  y 2   ,  θ  z 2   , … …  u N  ,  v N  ,  w N  ,  θ N  ,  θ N  ,  θ N   ]   T   



(45)







Further applying the boundary conditions and neglecting the active forces, the final governing equations are


   [   M o   ]   {    δ ¨  o   }  +  Δ  i , j    Ω i   [   G o   ]   {    δ ˙  o   }  +  [   K o   ]   {   δ o   }  = 0  



(46)







The Δ symbol describes the position where the gyroscopes are installed and the gyroscopic effect works in the vicinity of the exact position. While all of the gyroscopes are for the modal discretization case, Equation (23) takes the gyroscopic effect on the whole system.




5. Numerical Results and Comparison


To compare the modal discretization and spatial discretization techniques, a simply supported beam with ten uniformly distributed gyroscopes was studied as a demonstrating example. The length, density, cross section radius, Young’s modulus, and shear modulus were    10   m   ,      1200   kg / m   3   ,   0.1    m   ,      7.84 × 10   6    Pa  ,      2.667 × 10   6    Pa  , respectively. The length, density, inner and outer radius for the each gyroscope were   0.082 m  ,      8000   kg / m   3   , 0.1 m, 0.2 m, respectively.



In Figure 4, the first four pairs of natural frequencies computed by 121 order modal discretization and 121-element spatial discretization are presented with varying angular momentum of the uniformly distributed gyroscopes. With the supplement of the gyroscopes, any one of the natural frequencies, denoting the planar modes, bifurcates into two, denoting the lower backward whirling (BW) and the higher forward whirling (FW) of three dimensional complex modes. The first four orders of the complex modes of both backward whirling and forward whirling are demonstrated in Figure 5. Similar phenomena on the frequency and complex mode appeared in [11], but the angular momentum was assumed to be continuously distributed.



The varying frequencies with zig-zag configurations are related to the veering phenomenon, which has been discussed in gyroscopic structures such as rotors, blades, and gears [17,32,33,34]. In the current study, we did not consider the veering phenomenon, but focused on the numerical methods that have the power to show the gyroscopic dynamics.



To show the convergence of the two methods, the results from the different discretization orders are listed in Table 1, Table 2, Table 3, Table 4, Table 5, Table 6, Table 7, Table 8, Table 9, Table 10, Table 11, Table 12, Table 13, Table 14, Table 15, Table 16 and Table 17. The frequency unit in all tables is expressed as ‘rad/s’. In Table 1, Table 2, Table 3, Table 4, Table 5, Table 6, Table 7, Table 8 and Table 9, the natural frequencies for the different momentum of gyroscopes are presented to show the accuracy with the increasing modal discretization order k. It can be found that the results are satisfactory when the discretization order k is two times higher than the maximum mode being studied. If only lower vibration modes are used, the lower discretization order can be adopted to save computation time consumption. The modal discretization method has been shown to be efficient and powerful when dealing with a regular structure whose modal functions without attachments are explicit.



The spatial discretization method provides an efficient technique to treat irregular structures. In Table 9, Table 10, Table 11, Table 12, Table 13, Table 14, Table 15 and Table 16, the natural frequencies are listed for different angular momentum to show the convergence with increasing element numbers. The power of the spatial discretization has been demonstrated by satisfactory results. With increasing element numbers, the computation time will increase. However, lower order discretization may provide data with sufficient accuracy. Compared to modal discretization, more computational cost is required. Such a drawback opens the chance to deal with structures of irregular shapes.



For both methods, the higher gyroscope momentum requires higher order discretization to ensure accuracy. In Table 17, the results of the modal discretization and spatial discretization were compared with the gyroscope momentum up to 2000 Nms, where the 240 order discretization was used. The deviations between the natural frequencies of the two methods were less than 5%, which validates the accuracy of both methods.




6. Conclusions


In this paper, modal discretization and spatial discretization methods were presented and compared in the study of a flexible structure with distributed gyroscopes. Using the gyroscopic beam example, it was found that the modal discretization was more efficient when dealing with lower order vibration modes and the spatial discretization costs more computation time. The modal discretization method requires explicit mode functions of the base structure, which is not applicable to irregular components. The spatial discretization method allows manipulations of flexible structures of any shape, although the computation cost is higher.
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Figure 1. Diagram of an Euler beam with distributed gyroscopes. 
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Figure 2. The displacements of the beam and the gyroscopes. 






Figure 2. The displacements of the beam and the gyroscopes.



[image: Applsci 10 00160 g002]







[image: Applsci 10 00160 g003 550] 





Figure 3. The diagrams of the beam element and gyroscope element. 
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Figure 4. The varying natural frequencies with increasing angular momentum. (a) The results of the modal discretization. (b) The results of the spatial discretization. 
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Figure 5. The vibration modes when   h = 5   Nms  . 
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Table 1. Natural frequencies via modal discretization (h = 0).






Table 1. Natural frequencies via modal discretization (h = 0).





	

	
Order

	
1

	
2

	
3

	
4




	
K

	






	
11

	
0.119

	
0.476

	
1.071

	
1.904




	
33

	
0.119

	
0.476

	
1.071

	
1.904




	
55

	
0.119

	
0.476

	
1.071

	
1.903




	
77

	
0.119

	
0.476

	
1.071

	
1.903




	
99

	
0.119

	
0.476

	
1.071

	
1.903




	
121

	
0.119

	
0.476

	
1.071

	
1.903




	
165

	
0.119

	
0.476

	
1.071

	
1.903




	
187

	
0.119

	
0.476

	
1.071

	
1.903




	
209

	
0.119

	
0.476

	
1.071

	
1.903




	
231

	
0.119

	
0.476

	
1.071

	
1.903
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Table 2. Natural frequencies via modal discretization (h = 100 Nms).






Table 2. Natural frequencies via modal discretization (h = 100 Nms).





	

	
Order

	
1 BW

	
1 FW

	
2 BW

	
2 FW

	
3 BW

	
3 FW

	
4 BW

	
4 FW




	
K

	






	
11

	
0.0377

	
0.150

	
0.340

	
0.360

	
0.618

	
1.005

	
1.404

	
3.246




	
33

	
0.0376

	
0.149

	
0.334

	
0.353

	
0.584

	
0.877

	
1.187

	
1.321




	
55

	
0.0375

	
0.147

	
0.324

	
0.344

	
0.558

	
0.844

	
1.170

	
1.223




	
77

	
0.0375

	
0.147

	
0.324

	
0.343

	
0.555

	
0.828

	
1.120

	
1.220




	
99

	
0.0374

	
0.146

	
0.322

	
0.341

	
0.550

	
0.822

	
1.116

	
1.202




	
121

	
0.0374

	
0.146

	
0.322

	
0.341

	
0.549

	
0.817

	
1.100

	
1.201




	
165

	
0.0374

	
0.146

	
0.321

	
0.341

	
0.547

	
0.812

	
1.092

	
1.195




	
187

	
0.0374

	
0.146

	
0.321

	
0.340

	
0.546

	
0.811

	
1.091

	
1.192




	
209

	
0.0374

	
0.146

	
0.320

	
0.340

	
0.546

	
0.810

	
1.089

	
1.192




	
231

	
0.0374

	
0.146

	
0.320

	
0.340

	
0.545

	
0.810

	
1.088

	
1.190











[image: Table] 





Table 3. Natural frequencies via modal discretization (h = 200 Nms).
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Order

	
1 BW

	
1 FW

	
2 BW

	
2 FW

	
3 BW

	
3 FW

	
4 BW

	
4 FW




	
K

	






	
11

	
0.0203

	
0.0805

	
0.185

	
0.338

	
0.574

	
0.632

	
2.265

	
4.801




	
33

	
0.0203

	
0.0799

	
0.181

	
0.314

	
0.468

	
0.576

	
0.623

	
0.784




	
55

	
0.0202

	
0.0786

	
0.174

	
0.297

	
0.449

	
0.536

	
0.615

	
0.781




	
77

	
0.0202

	
0.0785

	
0.174

	
0.295

	
0.437

	
0.534

	
0.584

	
0.726




	
99

	
0.0202

	
0.0782

	
0.173

	
0.292

	
0.435

	
0.526

	
0.582

	
0.725




	
121

	
0.0202

	
0.0782

	
0.173

	
0.291

	
0.431

	
0.526

	
0.573

	
0.710




	
165

	
0.0201

	
0.0781

	
0.172

	
0.290

	
0.429

	
0.523

	
0.568

	
0.703




	
187

	
0.0201

	
0.0781

	
0.172

	
0.289

	
0.428

	
0.522

	
0.568

	
0.703




	
209

	
0.0201

	
0.0781

	
0.172

	
0.289

	
0.427

	
0.521

	
0.566

	
0.700




	
231

	
0.0201

	
0.0780

	
0.172

	
0.289

	
0.427

	
0.521

	
0.566

	
0.699
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Table 4. Natural frequencies via modal discretization (h = 300 Nms).
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Order

	
1 BW

	
1 FW

	
2 BW

	
2 FW

	
3 BW

	
3 FW

	
4 BW

	
4 FW




	
K

	






	
11

	
0.0138

	
0.0545

	
0.126

	
0.230

	
0.401

	
0.898

	
2.749

	
5.880




	
33

	
0.0137

	
0.0541

	
0.123

	
0.212

	
0.317

	
0.420

	
0.528

	
0.617




	
55

	
0.0137

	
0.0531

	
0.118

	
0.200

	
0.303

	
0.415

	
0.526

	
0.616




	
77

	
0.0137

	
0.0531

	
0.118

	
0.199

	
0.295

	
0.393

	
0.488

	
0.564




	
99

	
0.0136

	
0.0529

	
0.117

	
0.197

	
0.294

	
0.391

	
0.487

	
0.564




	
121

	
0.0136

	
0.0529

	
0.117

	
0.197

	
0.291

	
0.385

	
0.476

	
0.549




	
165

	
0.0136

	
0.0528

	
0.116

	
0.196

	
0.289

	
0.382

	
0.472

	
0.543




	
187

	
0.0136

	
0.0528

	
0.116

	
0.195

	
0.289

	
0.382

	
0.472

	
0.543




	
209

	
0.0136

	
0.0528

	
0.116

	
0.195

	
0.288

	
0.380

	
0.470

	
0.540




	
231

	
0.0136

	
0.0528

	
0.116

	
0.195

	
0.288

	
0.380

	
0.469

	
0.540
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Table 5. Natural frequencies via modal discretization (h = 400 Nms).
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Order

	
1 BW

	
1 FW

	
2 BW

	
2 FW

	
3 BW

	
3 FW

	
4 BW

	
4 FW




	
K

	






	
11

	
0.0104

	
0.0411

	
0.0950

	
0.174

	
0.308

	
1.157

	
2.991

	
7.246




	
33

	
0.0104

	
0.0408

	
0.0927

	
0.160

	
0.239

	
0.316

	
0.397

	
0.464




	
55

	
0.0103

	
0.0401

	
0.0891

	
0.151

	
0.229

	
0.312

	
0.396

	
0.463




	
77

	
0.0103

	
0.0401

	
0.0890

	
0.150

	
0.223

	
0.295

	
0.367

	
0.424




	
99

	
0.0103

	
0.0399

	
0.0882

	
0.148

	
0.221

	
0.295

	
0.367

	
0.423




	
121

	
0.0103

	
0.0399

	
0.0882

	
0.148

	
0.219

	
0.290

	
0.358

	
0.412




	
165

	
0.0103

	
0.0398

	
0.0879

	
0.147

	
0.218

	
0.287

	
0.355

	
0.408




	
187

	
0.0103

	
0.0398

	
0.0877

	
0.147

	
0.218

	
0.287

	
0.355

	
0.408




	
209

	
0.0103

	
0.0398

	
0.0877

	
0.147

	
0.217

	
0.286

	
0.353

	
0.405




	
231

	
0.0103

	
0.0398

	
0.0877

	
0.147

	
0.217

	
0.286

	
0.353

	
0.405
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Table 6. Natural frequencies via modal discretization (h = 500 Nms).
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Order

	
1 BW

	
1 FW

	
2 BW

	
2 FW

	
3 BW

	
3 FW

	
4 BW

	
4 FW




	
K

	






	
11

	
0.00832

	
0.0330

	
0.0763

	
0.140

	
0.249

	
1.404

	
3.144

	
8.741




	
33

	
0.00830

	
0.0327

	
0.0744

	
0.129

	
0.192

	
0.253

	
0.318

	
0.371




	
55

	
0.00827

	
0.0321

	
0.0715

	
0.121

	
0.184

	
0.250

	
0.317

	
0.370




	
77

	
0.00827

	
0.0321

	
0.0714

	
0.120

	
0.179

	
0.237

	
0.294

	
0.339




	
99

	
0.00826

	
0.0320

	
0.0708

	
0.119

	
0.177

	
0.236

	
0.294

	
0.339




	
121

	
0.00826

	
0.0320

	
0.0707

	
0.119

	
0.176

	
0.232

	
0.287

	
0.330




	
165

	
0.00825

	
0.0319

	
0.0705

	
0.118

	
0.175

	
0.230

	
0.284

	
0.326




	
187

	
0.00825

	
0.0319

	
0.0704

	
0.118

	
0.174

	
0.230

	
0.284

	
0.326




	
209

	
0.00825

	
0.0319

	
0.0704

	
0.118

	
0.174

	
0.229

	
0.283

	
0.324




	
231

	
0.00825

	
0.0319

	
0.0703

	
0.118

	
0.174

	
0.229

	
0.283

	
0.324
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Table 7. Natural frequencies via modal discretization (h = 1000 Nms).
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Order

	
1 BW

	
1 FW

	
2 BW

	
2 FW

	
3 BW

	
3 FW

	
4 BW

	
4 FW




	
K

	






	
11

	
0.00418

	
0.0166

	
0.0383

	
0.0703

	
0.127

	
2.263

	
3.984

	
16.713




	
33

	
0.00417

	
0.0164

	
0.0374

	
0.0645

	
0.0962

	
0.127

	
0.159

	
0.186




	
55

	
0.00415

	
0.0161

	
0.0359

	
0.0607

	
0.0922

	
0.125

	
0.159

	
0.185




	
77

	
0.00415

	
0.0161

	
0.0358

	
0.0604

	
0.0896

	
0.119

	
0.147

	
0.170




	
99

	
0.00414

	
0.0160

	
0.0355

	
0.0597

	
0.0890

	
0.118

	
0.147

	
0.170




	
121

	
0.00414

	
0.0160

	
0.0355

	
0.0596

	
0.0883

	
0.116

	
0.144

	
0.165




	
143

	
0.00414

	
0.0160

	
0.0354

	
0.0593

	
0.0880

	
0.116

	
0.144

	
0.165




	
165

	
0.00414

	
0.0160

	
0.0354

	
0.0592

	
0.0877

	
0.115

	
0.142

	
0.163




	
187

	
0.00414

	
0.0160

	
0.0353

	
0.0591

	
0.0875

	
0.115

	
0.142

	
0.163




	
209

	
0.00414

	
0.0160

	
0.0353

	
0.0591

	
0.0874

	
0.115

	
0.142

	
0.162




	
231

	
0.00414

	
0.0160

	
0.0353

	
0.0590

	
0.0873

	
0.115

	
0.142

	
0.162
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Table 8. Natural frequencies via modal discretization (h = 2000 Nms).
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Order

	
1 BW

	
1 FW

	
2 BW

	
2 FW

	
3 BW

	
3 FW

	
4 BW

	
4 FW




	
K

	






	
11

	
0.00209

	
0.00828

	
0.0192

	
0.0352

	
0.0638

	
2.618

	
6.913

	
33.071




	
33

	
0.00209

	
0.00821

	
0.0187

	
0.0323

	
0.0482

	
0.0635

	
0.0798

	
0.0929




	
55

	
0.00208

	
0.00806

	
0.0180

	
0.0304

	
0.0461

	
0.0627

	
0.0796

	
0.0928




	
77

	
0.00208

	
0.00806

	
0.0179

	
0.0302

	
0.0449

	
0.0593

	
0.0737

	
0.0849




	
99

	
0.00207

	
0.00803

	
0.0178

	
0.0299

	
0.0446

	
0.0591

	
0.0736

	
0.0848




	
121

	
0.00207

	
0.00803

	
0.0178

	
0.0298

	
0.0442

	
0.0581

	
0.0719

	
0.0826




	
165

	
0.00207

	
0.00801

	
0.0177

	
0.0296

	
0.0439

	
0.0577

	
0.0712

	
0.0816




	
187

	
0.00207

	
0.00801

	
0.0177

	
0.0296

	
0.0438

	
0.0576

	
0.0712

	
0.0816




	
209

	
0.00207

	
0.00801

	
0.0177

	
0.0296

	
0.0437

	
0.0574

	
0.0709

	
0.0812




	
231

	
0.00207

	
0.00801

	
0.0177

	
0.0295

	
0.0437

	
0.0574

	
0.0709

	
0.0812
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Table 9. Natural frequencies via spatial discretization (h = 0).
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Order

	
1

	
2

	
3

	
4




	
Element Number

	






	
22

	
0.117

	
0.469

	
1.061

	
1.897




	
33

	
0.118

	
0.472

	
1.064

	
1.895




	
44

	
0.118

	
0.474

	
1.066

	
1.897




	
66

	
0.119

	
0.475

	
1.069

	
1.899




	
88

	
0.119

	
0.476

	
1.070

	
1.900




	
99

	
0.118

	
0.473

	
1.063

	
1.886




	
110

	
0.119

	
0.475

	
1.067

	
1.894




	
121

	
0.119

	
0.476

	
1.071

	
1.901




	
242

	
0.119

	
0.477

	
1.072

	
1.903




	
484

	
0.119

	
0.477

	
1.072

	
1.903
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Table 10. Natural frequencies via spatial discretization (h = 100 Nms).
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Order

	
1 BW

	
1 FW

	
2 BW

	
2 FW

	
3 BW

	
3 FW

	
4 BW

	
4 FW




	
Element Number

	






	
22

	
0.0392

	
0.150

	
0.293

	
0.330

	
0.556

	
0.822

	
1.097

	
1.127




	
33

	
0.0383

	
0.148

	
0.317

	
0.326

	
0.552

	
0.820

	
1.102

	
1.138




	
44

	
0.0380

	
0.147

	
0.324

	
0.327

	
0.550

	
0.816

	
1.096

	
1.153




	
66

	
0.0377

	
0.146

	
0.322

	
0.335

	
0.547

	
0.812

	
1.091

	
1.170




	
88

	
0.0376

	
0.146

	
0.321

	
0.338

	
0.546

	
0.810

	
1.088

	
1.179




	
99

	
0.0354

	
0.130

	
0.291

	
0.347

	
0.472

	
0.712

	
1.032

	
1.204




	
110

	
0.0365

	
0.139

	
0.308

	
0.344

	
0.507

	
0.769

	
1.062

	
1.206




	
121

	
0.0370

	
0.144

	
0.316

	
0.344

	
0.538

	
0.797

	
1.070

	
1.194




	
242

	
0.0373

	
0.145

	
0.319

	
0.344

	
0.544

	
0.806

	
1.082

	
1.195




	
484

	
0.0373

	
0.145

	
0.319

	
0.345

	
0.543

	
0.805

	
1.081

	
1.199
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Table 11. Natural frequencies via spatial discretization (h = 200 Nms).
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Order

	
1 BW

	
1 FW

	
2 BW

	
2 FW

	
3 BW

	
3 FW

	
4 BW

	
4 FW




	
Element Number

	






	
22

	
0.0213

	
0.0810

	
0.180

	
0.299

	
0.423

	
0.444

	
0.584

	
0.728




	
33

	
0.0207

	
0.0795

	
0.176

	
0.294

	
0.436

	
0.471

	
0.576

	
0.715




	
44

	
0.0205

	
0.0789

	
0.174

	
0.292

	
0.432

	
0.491

	
0.572

	
0.708




	
66

	
0.0203

	
0.0784

	
0.173

	
0.290

	
0.429

	
0.509

	
0.567

	
0.701




	
88

	
0.0202

	
0.0782

	
0.172

	
0.289

	
0.427

	
0.517

	
0.565

	
0.699




	
99

	
0.0189

	
0.0688

	
0.155

	
0.249

	
0.372

	
0.527

	
0.536

	
0.624




	
110

	
0.0196

	
0.0739

	
0.165

	
0.267

	
0.403

	
0.525

	
0.551

	
0.656




	
121

	
0.0199

	
0.0768

	
0.169

	
0.284

	
0.420

	
0.527

	
0.555

	
0.686




	
242

	
0.0201

	
0.0778

	
0.171

	
0.288

	
0.424

	
0.529

	
0.562

	
0.694




	
484

	
0.0201

	
0.0777

	
0.171

	
0.287

	
0.424

	
0.533

	
0.561

	
0.692











[image: Table] 





Table 12. Natural frequencies via spatial discretization (h = 300 Nms).
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Order

	
1 BW

	
1 FW

	
2 BW

	
2 FW

	
3 BW

	
3 FW

	
4 BW

	
4 FW




	
Element Number

	






	
22

	
0.0145

	
0.0548

	
0.123

	
0.202

	
0.303

	
0.396

	
0.495

	
0.506




	
33

	
0.0140

	
0.0538

	
0.119

	
0.199

	
0.295

	
0.388

	
0.481

	
0.553




	
44

	
0.0139

	
0.0534

	
0.118

	
0.197

	
0.292

	
0.384

	
0.476

	
0.547




	
66

	
0.0138

	
0.0530

	
0.117

	
0.196

	
0.290

	
0.381

	
0.471

	
0.541




	
88

	
0.0137

	
0.0529

	
0.117

	
0.195

	
0.288

	
0.380

	
0.469

	
0.539




	
99

	
0.0128

	
0.0464

	
0.105

	
0.168

	
0.250

	
0.360

	
0.420

	
0.498




	
110

	
0.0133

	
0.0499

	
0.112

	
0.180

	
0.272

	
0.370

	
0.440

	
0.517




	
121

	
0.0134

	
0.0519

	
0.114

	
0.192

	
0.283

	
0.373

	
0.460

	
0.529




	
242

	
0.0136

	
0.0526

	
0.116

	
0.194

	
0.286

	
0.377

	
0.465

	
0.535




	
484

	
0.0136

	
0.0525

	
0.115

	
0.194

	
0.286

	
0.377

	
0.464

	
0.534
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Table 13. Natural frequencies via spatial discretization (h = 400 Nms).






Table 13. Natural frequencies via spatial discretization (h = 400 Nms).





	

	
Order

	
1 BW

	
1 FW

	
2 BW

	
2 FW

	
3 BW

	
3 FW

	
4 BW

	
4 FW




	
Element Number

	






	
22

	
0.0109

	
0.0414

	
0.0927

	
0.153

	
0.229

	
0.299

	
0.374

	
0.429




	
33

	
0.0106

	
0.0406

	
0.0901

	
0.150

	
0.223

	
0.292

	
0.362

	
0.416




	
44

	
0.0105

	
0.0402

	
0.0891

	
0.148

	
0.220

	
0.289

	
0.358

	
0.411




	
66

	
0.0104

	
0.0400

	
0.0883

	
0.147

	
0.218

	
0.287

	
0.354

	
0.406




	
88

	
0.0103

	
0.0399

	
0.0879

	
0.147

	
0.217

	
0.286

	
0.353

	
0.405




	
99

	
0.0096

	
0.0349

	
0.0793

	
0.126

	
0.189

	
0.271

	
0.316

	
0.374




	
110

	
0.0100

	
0.0376

	
0.0842

	
0.136

	
0.205

	
0.278

	
0.331

	
0.388




	
121

	
0.0101

	
0.0391

	
0.0863

	
0.144

	
0.213

	
0.281

	
0.346

	
0.397




	
242

	
0.0103

	
0.0396

	
0.0873

	
0.146

	
0.216

	
0.284

	
0.350

	
0.401




	
484

	
0.0102

	
0.0396

	
0.0871

	
0.146

	
0.215

	
0.283

	
0.349

	
0.401
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Table 14. Natural frequencies via spatial discretization (h = 500 Nms).






Table 14. Natural frequencies via spatial discretization (h = 500 Nms).





	

	
Order

	
1 BW

	
1 FW

	
2 BW

	
2 FW

	
3 BW

	
3 FW

	
4 BW

	
4 FW




	
Element Number

	






	
22

	
0.00876

	
0.0332

	
0.0745

	
0.1226

	
0.184

	
0.240

	
0.300

	
0.344




	
33

	
0.00850

	
0.0325

	
0.0723

	
0.1201

	
0.179

	
0.234

	
0.291

	
0.333




	
44

	
0.00841

	
0.0323

	
0.0715

	
0.1191

	
0.177

	
0.232

	
0.287

	
0.329




	
66

	
0.00832

	
0.0321

	
0.0708

	
0.1182

	
0.175

	
0.230

	
0.284

	
0.325




	
88

	
0.00829

	
0.0320

	
0.0705

	
0.1178

	
0.174

	
0.229

	
0.282

	
0.324




	
99

	
0.00772

	
0.0280

	
0.0636

	
0.1011

	
0.151

	
0.217

	
0.253

	
0.300




	
110

	
0.00802

	
0.0301

	
0.0675

	
0.1088

	
0.164

	
0.223

	
0.265

	
0.311




	
121

	
0.00813

	
0.0314

	
0.0692

	
0.1157

	
0.171

	
0.225

	
0.277

	
0.318




	
242

	
0.00823

	
0.0318

	
0.0700

	
0.1171

	
0.173

	
0.227

	
0.280

	
0.321




	
484

	
0.00821

	
0.0317

	
0.0699

	
0.1169

	
0.173

	
0.227

	
0.280

	
0.321
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Table 15. Natural frequencies via spatial discretization (h = 1000 Nms).






Table 15. Natural frequencies via spatial discretization (h = 1000 Nms).





	

	
Order

	
1 BW

	
1 FW

	
2 BW

	
2 FW

	
3 BW

	
3 FW

	
4 BW

	
4 FW




	
Element Number

	






	
22

	
0.00440

	
0.0167

	
0.0375

	
0.0616

	
0.0928

	
0.120

	
0.151

	
0.172




	
33

	
0.00427

	
0.0163

	
0.0363

	
0.0602

	
0.0898

	
0.117

	
0.146

	
0.167




	
44

	
0.00422

	
0.0162

	
0.0359

	
0.0597

	
0.0887

	
0.116

	
0.144

	
0.164




	
66

	
0.00418

	
0.0161

	
0.0356

	
0.0593

	
0.0878

	
0.115

	
0.142

	
0.163




	
88

	
0.00416

	
0.0160

	
0.0354

	
0.0590

	
0.0874

	
0.115

	
0.142

	
0.162




	
99

	
0.00387

	
0.0140

	
0.0319

	
0.0507

	
0.0758

	
0.109

	
0.127

	
0.150




	
110

	
0.00402

	
0.0151

	
0.0339

	
0.0545

	
0.0824

	
0.112

	
0.133

	
0.155




	
121

	
0.00408

	
0.0157

	
0.0347

	
0.0580

	
0.0858

	
0.113

	
0.139

	
0.159




	
242

	
0.00413

	
0.0159

	
0.0351

	
0.0587

	
0.0868

	
0.114

	
0.140

	
0.161




	
484

	
0.00412

	
0.0159

	
0.0351

	
0.0586

	
0.0866

	
0.114

	
0.140

	
0.160
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Table 16. Natural frequencies via spatial discretization (h = 2000 Nms).






Table 16. Natural frequencies via spatial discretization (h = 2000 Nms).





	

	
Order

	
1 BW

	
1 FW

	
2 BW

	
2 FW

	
3 BW

	
3 FW

	
4 BW

	
4 FW




	
Element Number

	






	
22

	
0.00220

	
0.00834

	
0.0188

	
0.0308

	
0.0465

	
0.0602

	
0.0756

	
0.0862




	
33

	
0.00214

	
0.00817

	
0.0182

	
0.0301

	
0.0450

	
0.0587

	
0.0729

	
0.0833




	
44

	
0.00211

	
0.00810

	
0.0180

	
0.0299

	
0.0444

	
0.0581

	
0.0719

	
0.0823




	
66

	
0.00209

	
0.00805

	
0.0178

	
0.0296

	
0.0440

	
0.0576

	
0.0711

	
0.0814




	
88

	
0.00208

	
0.00802

	
0.0177

	
0.0295

	
0.0438

	
0.0573

	
0.0708

	
0.0810




	
99

	
0.00194

	
0.00702

	
0.0160

	
0.0254

	
0.0379

	
0.0544

	
0.0634

	
0.0750




	
110

	
0.00201

	
0.00756

	
0.0170

	
0.0273

	
0.0412

	
0.0558

	
0.0665

	
0.0777




	
121

	
0.00204

	
0.00788

	
0.0174

	
0.0290

	
0.0429

	
0.0563

	
0.0695

	
0.0795




	
242

	
0.00207

	
0.00798

	
0.0176

	
0.0294

	
0.0434

	
0.0570

	
0.0702

	
0.0804




	
484

	
0.00206

	
0.00797

	
0.0175

	
0.0293

	
0.0433

	
0.0569

	
0.0701

	
0.0802
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Table 17. Comparison between modal and spatial discretization.






Table 17. Comparison between modal and spatial discretization.





	
Order

	
1 BW

	
1 FW

	
2 BW

	
2 FW

	
3 BW

	
3 FW

	
4 BW

	
4 FW






	
100 Nms

	
Modal

	
0.0374

	
0.146

	
0.322

	
0.341

	
0.549

	
0.817

	
1.100

	
1.201




	
Spatial

	
0.0370

	
0.144

	
0.316

	
0.344

	
0.538

	
0.797

	
1.070

	
1.194




	
Deviation (%)

	
1.27

	
1.51

	
1.77

	
−0.82

	
2.15

	
2.41

	
2.70

	
0.58




	
200 Nms

	
Modal

	
0.0202

	
0.0782

	
0.173

	
0.291

	
0.431

	
0.526

	
0.573

	
0.710




	
Spatial

	
0.0199

	
0.0768

	
0.169

	
0.284

	
0.420

	
0.527

	
0.555

	
0.686




	
Deviation (%)

	
1.45

	
1.77

	
2.03

	
2.48

	
2.70

	
−0.23

	
3.01

	
3.33




	
300 Nms

	
Modal

	
0.0136

	
0.0529

	
0.117

	
0.197

	
0.291

	
0.385

	
0.476

	
0.549




	
Spatial

	
0.0134

	
0.0519

	
0.114

	
0.192

	
0.283

	
0.373

	
0.460

	
0.529




	
Deviation (%)

	
1.49

	
1.83

	
2.10

	
2.57

	
2.77

	
3.09

	
3.39

	
3.68




	
400 Nms

	
Modal

	
0.0103

	
0.0399

	
0.0882

	
0.148

	
0.219

	
0.290

	
0.358

	
0.412




	
Spatial

	
0.0101

	
0.0391

	
0.0863

	
0.144

	
0.213

	
0.281

	
0.346

	
0.397




	
Deviation (%)

	
1.51

	
1.85

	
2.13

	
2.61

	
2.80

	
3.12

	
3.41

	
3.70




	
500 Nms

	
Modal

	
0.00826

	
0.0320

	
0.0707

	
0.119

	
0.176

	
0.232

	
0.287

	
0.330




	
Spatial

	
0.00813

	
0.0314

	
0.0692

	
0.116

	
0.171

	
0.225

	
0.277

	
0.318




	
Deviation (%)

	
1.52

	
1.86

	
2.14

	
2.62

	
2.81

	
3.14

	
3.42

	
3.70




	
600 Nms

	
Modal

	
0.00689

	
0.0267

	
0.0590

	
0.0991

	
0.147

	
0.193

	
0.239

	
0.275




	
Spatial

	
0.00679

	
0.0262

	
0.0578

	
0.0965

	
0.143

	
0.187

	
0.231

	
0.265




	
Deviation (%)

	
1.52

	
1.86

	
2.15

	
2.63

	
2.83

	
3.15

	
3.43

	
3.71




	
1000 Nms

	
Modal

	
0.00414

	
0.0160

	
0.0355

	
0.0596

	
0.0883

	
0.116

	
0.144

	
0.165




	
Spatial

	
0.00408

	
0.0157

	
0.0347

	
0.0580

	
0.0858

	
0.113

	
0.139

	
0.159




	
Deviation (%)

	
1.53

	
1.88

	
2.16

	
2.64

	
2.83

	
3.16

	
3.44

	
3.72




	
1500 Nms

	
Modal

	
0.00276

	
0.0107

	
0.0237

	
0.0397

	
0.0589

	
0.0775

	
0.0959

	
0.110




	
Spatial

	
0.00272

	
0.0105

	
0.0232

	
0.0387

	
0.0572

	
0.0750

	
0.0926

	
0.106




	
Deviation (%)

	
1.53

	
1.88

	
2.16

	
2.65

	
2.84

	
3.16

	
3.44

	
3.72




	
2000 Nms

	
Modal

	
0.00207

	
0.00803

	
0.0178

	
0.0298

	
0.0442

	
0.0581

	
0.0719

	
0.0826




	
Spatial

	
0.00204

	
0.00788

	
0.0174

	
0.0290

	
0.0429

	
0.0563

	
0.0695

	
0.0795




	
Deviation (%)

	
1.53

	
1.88

	
2.17

	
2.65

	
2.84

	
3.17

	
3.44

	
3.72
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