Analysis of Flow Characteristics and Pressure Drop for an Impinging Plate Fin Heat Sink with Elliptic Bottom Profiles
Abstract
:1. Introduction
2. Materials and Methods
- (1)
- Steady incompressible flow;
- (2)
- Negligible buoyancy, viscous heating;
- (3)
- Constant fluid properties.
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
Nomenclature | |
b | fin spacing, m |
Dh | hydraulic diameter, m |
f, fapp | friction factor and apparent friction factor, respectively |
H | fin height, m |
Kc, Ke | contraction and expansion loss coefficient, respectively |
loss coefficient due to 90 deg bend in airflow | |
modified Knudsen number | |
L | length of heat sink base, m |
Leff | effective length, m |
Nf | number of fins |
pressure drop, Pa | |
channel Reynolds number, | |
s | impingement inlet width, m |
t | fin thickness, m |
tb | base plate thickness, m |
u v w | velocity components of X,Y,Z coordinates |
W | width of heat sink base, m |
x+ | dimensionless flow length |
Greek symbols | |
eigenvalue | |
μ | dynamic viscosity, |
density of air, kg/m3 | |
fraction of frontal free flow area | |
Subscripts | |
1 | based upon vertical channel |
2 | based upon horizontal channel |
ch | channel |
References
- Jang, S.P.; Kim, S.J. Fluid flow and thermal characteristics of a microchannel heat sink subject to an impinging air jet. Trans. ASME J. Heat Transf. 2005, 127, 770–779. [Google Scholar] [CrossRef]
- Biber, C.R. Pressure drop and heat transfer in an isothermal channel with impinging flow. IEEE Trans. Compon. Packag. Manuf. Technol. Part A 1997, 20, 458–462. [Google Scholar] [CrossRef]
- Duan, Z.P.; Muzychka, Y.S. Pressure drop of impingement air cooled plate fin heat sinks. Trans. ASME J. Electron. Packag. 2007, 129, 190–194. [Google Scholar] [CrossRef] [Green Version]
- Ma, H.; Duan, Z.P.; Su, L.B.; Ning, X.R.; Bai, J.; Lv, X.H. Fluid flow and entropy generation analysis of Al2O3-Water nanofluid in microchannel plate fin heat sinks. Entropy 2019, 21, 739. [Google Scholar] [CrossRef] [Green Version]
- Ma, N.Y.; Duan, Z.P.; Ma, H.; Su, L.B.; Liang, P.; Ning, X.R. Lattice Boltzmann simulation of the hydronamic entrance region of rectangular microchannels in the slip regime. Micromachines 2018, 9, 87. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.K.; Kim, S.J.; Bae, J.K. Comparison of thermal performances of plate-fin and pin-fin heat sinks subject to an impinging flow. Int. J. Heat Mass Transf. 2009, 52, 3510–3517. [Google Scholar] [CrossRef]
- Yang, Y.T.; Lin, S.C.; Wang, Y.H.; Hsu, J.C. Numerical simulation and optimization of impingement cooling for rotating and stationary pin-fin heat sinks. Int. J. Heat Fluid Flow 2013, 44, 383–393. [Google Scholar] [CrossRef]
- Wong, K.C.; Indran, S. Impingement heat transfer of a plate fin heat sink with fillet profile. Int. J. Heat Mass Transf. 2013, 65, 1–9. [Google Scholar] [CrossRef]
- Do, K.H.; Kim, T.H.; Kim, S.J. Analytical and experimental investigations on fluid flow and thermal characteristics of a plate-fin heat sink subject to a uniformly impinging jet. Int. J. Heat Mass Transf. 2010, 53, 2318–2323. [Google Scholar] [CrossRef]
- Ndao, S.; Peles, Y.; Jensen, M.K. Effects of pin fin shape and configuration on the single-phase heat transfer characteristics of jet impingement on micro pin fins. Int. J. Heat Mass Transf. 2014, 70, 856–863. [Google Scholar] [CrossRef]
- Tang, Z.G.; Liu, Q.Q.; Li, H.; Min, X.T. Numerical simulation of heat transfer characteristics of jet impingement with a novel single cone heat sink. Appl. Therm. Eng. 2017, 8, 840–852. [Google Scholar] [CrossRef]
- Li, X.C. Conjugate heat transfer of jet impingement on short fins with different shapes. In Proceedings of the 11th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, Orlando, FL, USA, 28–31 May 2008; pp. 49–56. [Google Scholar]
- Li, H.Y.; Chen, K.Y.; Chiang, M.H. Thermal-fluid characteristics of plate-fin heat sinks cooled by impingement jet. Energy Convers. Manag. 2009, 50, 2738–2746. [Google Scholar] [CrossRef]
- Khattak, Z.; Ali, H.M. Air cooled heat sink geometries subjected to forced flow: A critical review. Int. J. Heat Mass Transf. 2019, 130, 141–161. [Google Scholar] [CrossRef]
- Chang, Y.W.; Chang, C.C.; Ke, M.T. Thermoelectric air-cooling module for electronic devices. Appl. Therm. Eng. 2009, 29, 2731–2737. [Google Scholar] [CrossRef]
- Wang, C.C.; Hung, C.I.; Chen, W.H. Design of heat sink for improving the performance of thermoelectric generator using two-stage optimization. Energy 2012, 39, 236–245. [Google Scholar] [CrossRef]
- Saraireh, M. Computational fluid dynamics simulation of plate fin and circular pin fin heat sinks. Jordan J. Mech. Ind. Eng. 2016, 10, 99–104. [Google Scholar]
- Hussain, A.A.; Freegah, B.; Khalaf, B.S.; Towsyfyan, H. Numerical investigation of heat transfer enhancement in plate-fin heat sinks: Effect of flow direction and fillet profile. Case Stud. Therm. Eng. 2019, 13, 100388. [Google Scholar] [CrossRef]
- Feng, S.S.; Kuang, J.J.; Lu, T.J. Heat transfer and pressure drop characteristics of finned metal foam heat sinks under uniform impinging flow. Trans. ASME J. Electron. Packag. 2015, 137, 14–27. [Google Scholar] [CrossRef]
- Hadad, Y.; Ramakrishnan, B.; Alkharabsheh, S.; Chiarot, P.R.; Sammakia, B. Numerical modeling and optimization of a V-groove warm water cold-plate. In Proceedings of the 33rd Thermal Measurement, Modeling & Management Symposium (SEMI-THERM), San Jose, CA, USA, 13–17 March 2017. [Google Scholar]
- Kaloudis, E.; Nikas, K.S. A parametric numerical study of fluid flow and heat transfer in a computer chassis. Int. Rev. Mech. Eng. 2015, 9, 242–250. [Google Scholar] [CrossRef]
- Prstic, S.; Bar-Cohen, A. “Heat shield”—An enhancement device for an unshrouded forced convection heat sink. J. Electron. Packag. 2006, 128, 172–176. [Google Scholar] [CrossRef]
- Mesalhy, O.M.; El-Sayed, M.M. Thermal performance of plate fin heat sink cooled by air slot impinging jet with different cross-sectional area. Heat Mass Transf. 2015, 51, 889–899. [Google Scholar] [CrossRef]
- Chen, W.H.; Huang, S.R.; Lin, Y.L. Performance analysis and optimum operation of a thermoelectric generator by Taguchi method. Appl. Energy 2015, 158, 44–54. [Google Scholar] [CrossRef]
- Rezania, A.; Rosendahl, L.A. A comparison of micro-structured flat-plate and cross-cut heat sinks for thermoelectric generation application. Energy Convers. Manag. 2015, 101, 730–737. [Google Scholar] [CrossRef]
- Leng, C.; Wang, X.D.; Wang, T.H.; Yan, W.M. Optimization of thermal resistance and bottom wall temperature uniformity for double-layered microchannel heat sink. Energy Convers. Manag. 2015, 93, 141–150. [Google Scholar] [CrossRef]
- Naphon, P.; Wiriyasart, S.; Arisariyawong, T.; Nakharintr, L. ANN, numerical and experimental analysis on the jet impingement nanofluids flow and heat transfer characteristics in the micro-channel heat sink. Int. J. Heat Mass Transf. 2019, 131, 329–340. [Google Scholar] [CrossRef]
- Huang, C.H.; Chen, Y.H. An optimal design problem in determining non-uniform fin heights and widths for an impingement heat sink module. Appl. Therm. Eng. 2014, 63, 481–494. [Google Scholar] [CrossRef]
- Chen, G.J.; Liu, Y.Y.; Rao, Y.; He, J.H.; Qu, Y.F. Numerical investigation on conjugate heat transfer of impingement/effusion double-wall cooling with different crossflow schemes. Appl. Therm. Eng. 2019, 155, 515–524. [Google Scholar] [CrossRef]
- Liang, C.H.; Tong, X.M.; Lei, T.Y.; Li, Z.X.; Wu, G.S. Optimal design of an air-to-air heat exchanger with cross-corrugated triangular ducts by using a particle swarm optimization algorithm. Appl. Sci. 2017, 7, 554. [Google Scholar] [CrossRef] [Green Version]
- Ling, Z.Y.; He, Z.B.; Xu, T.; Fang, X.M.; Gao, X.N.; Zhang, Z.G. Experimental and numerical investigation on non-Newtonian nanofluids flowing in shell side of helical baffled heat exchanger combined with elliptic tubes. Appl. Sci. 2017, 7, 48. [Google Scholar] [CrossRef] [Green Version]
- Chang, S.Y.; Chen, J.C.; Shi, L. Using thermal shock to inhibit biofilm formation in the treated sewage source heat pump systems. Appl. Sci. 2017, 7, 343. [Google Scholar] [CrossRef] [Green Version]
- Biskeborn, R.G.; Horvath, J.L.; Hultmark, E.B. Integral cap heat sink assembly for IBM 4381 processor. In Proceedings of the International Electronics Packaging Conference, Baltimore, MD, USA, 14–18 October 1984; pp. 468–474. [Google Scholar]
- Hilbert, C.; Sommerfeldt, S.; Gupta, O.; Herrell, D.J. High performance micro-channel air cooling. In Proceedings of the 6th Annual IEEE Semiconductor Thermal and Temperature Measurement Symposium, Scottsdale, AZ, USA, 6–8 February 1990; pp. 108–113. [Google Scholar]
- Duan, Z.P.; Liang, P.; Ma, H.; Ma, N.Y. Numerical simulation of pressure drop for three-dimensional rectangular microchannels. Eng. Comput. 2018, 35, 2234–2254. [Google Scholar] [CrossRef]
- Duan, Z.P.; He, B.S. Extended Reynolds analogy for slip and transition flow heat transfer in microchannels and nanochannels. Int. Commun. Heat Mass Transf. 2014, 56, 25–30. [Google Scholar] [CrossRef]
- Duan, Z.P.; He, B.S.; Duan, Y.Y. Sphere drag and heat transfer. Sci. Rep. 2015, 5, 12304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duan, Z.P.; Ma, H.; He, B.S.; Su, L.B. Pressure drop of microchannel plate fin heat sinks. Micromachines 2019, 10, 80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duan, Z.P. Pressure drop for subsonic gas flow in microchannels and nanochannels. Nanoscale Microscale Thermophys. Eng. 2012, 16, 117–132. [Google Scholar] [CrossRef]
- Idelchik, I.E. Handbook of Hydraulic Resistance, 3rd ed.; CRC: Boca Raton, FL, USA, 1993. [Google Scholar]
- Kondo, Y.; Matsuhima, H. Prediction algorithm of pressure drop for impingement cooling of heat sinks with longitudinal fins. Trans. Jpn. Soc. Mech. Eng. Ser. B 1995, 244, 315–327. [Google Scholar]
- Kays, W.M.; London, A.L. Compact Heat Exchangers, 3rd ed.; McGraw-Hill: New York, NY, USA, 1984. [Google Scholar]
- Kim, T.H.; Do, K.H.; Kim, S.J. Closed-form correlations of pressure drop and thermal resistance for a plate fin heat sink with uniform air jet impingement. Energy Convers. Manag. 2017, 136, 340–349. [Google Scholar] [CrossRef]
Dimension | # 1 | # 2 | # 3 | # 4 | # 5 (with Elliptic Bottom Profiles) |
---|---|---|---|---|---|
L (mm) | 127 | 127 | 127 | 127 | 127 |
W (mm) | 122 | 122 | 116 | 116 | 122 |
tb (mm) | 12.7 | 12.7 | 12.7 | 12.7 | 12.7 |
t (mm) | 1.2 | 1.2 | 1.2 | 1.2 | 1.2 |
b (mm) | 2.25 | 2.25 | 4.27 | 4.27 | 2.25 |
H (mm) | 26.5 | 50.0 | 34.0 | 50.0 | 26.5 |
Nf | 36 | 36 | 22 | 22 | 36 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duan, Z.; Lv, X.; Ma, H.; Su, L.; Zhang, M. Analysis of Flow Characteristics and Pressure Drop for an Impinging Plate Fin Heat Sink with Elliptic Bottom Profiles. Appl. Sci. 2020, 10, 225. https://doi.org/10.3390/app10010225
Duan Z, Lv X, Ma H, Su L, Zhang M. Analysis of Flow Characteristics and Pressure Drop for an Impinging Plate Fin Heat Sink with Elliptic Bottom Profiles. Applied Sciences. 2020; 10(1):225. https://doi.org/10.3390/app10010225
Chicago/Turabian StyleDuan, Zhipeng, Xianghui Lv, Hao Ma, Liangbin Su, and Mengqiao Zhang. 2020. "Analysis of Flow Characteristics and Pressure Drop for an Impinging Plate Fin Heat Sink with Elliptic Bottom Profiles" Applied Sciences 10, no. 1: 225. https://doi.org/10.3390/app10010225
APA StyleDuan, Z., Lv, X., Ma, H., Su, L., & Zhang, M. (2020). Analysis of Flow Characteristics and Pressure Drop for an Impinging Plate Fin Heat Sink with Elliptic Bottom Profiles. Applied Sciences, 10(1), 225. https://doi.org/10.3390/app10010225