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Abstract: More than 8.6 million people suffer from neurological disorders that affect their gait
and balance. Physical therapists provide interventions to improve patient’s functional outcomes,
yet balance and gait are often evaluated in a subjective and observational manner. The use of
quantitative methods allows for assessment and tracking of patient progress during and after
rehabilitation or for early diagnosis of movement disorders. This paper surveys the state-of-the-art
in wearable sensor technology in gait, balance, and range of motion research. It serves as a point of
reference for future research, describing current solutions and challenges in the field. A two-level
taxonomy of rehabilitation assessment is introduced with evaluation metrics and common algorithms
utilized in wearable sensor systems.
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1. Introduction

Researchers study gait, balance and joint kinematics in people with movement disorders.
Movement disorders may be due to problems of musculoskeletal, neurologic or other body systems.
In 2008, about 33 million American adults had balance problems caused by medications, ear infection,
injuries or neurological disorders [1]. Some of the common neurological disorders that cause gait and
balance problems are Stroke, Alzheimer’s disease (AD), Parkinson’s disease (PD), Multiple Sclerosis
(MS), and Ataxia. The number of people affected by these neurological disorders are more than
18 million people worldwide [2–5].

Physical therapists help individuals with movement disorders by providing interventions to
reduce pain; increase range of motion and muscle strength; improve balance; improve gait and mobility;
and prevent falls [6]. Physical therapists often evaluate rehabilitation outcomes in a subjective manner,
through visual observation, clinical impression, and through tests and measures. Researchers have
developed applications to assess rehabilitation outcomes using novel technologies such as external
sensors, smartphones, and wearable sensors. The performance of sensor systems depend entirely on
the interaction of the subject with the sensor used; external sensors are deployed in the environment
around the subject, while smartphones and wearable sensors are mounted on the subject [7].

Common external sensors are camera-based, floor-based sensors, or force platforms.
A camera-based system can either use one or multiple cameras placed at points of interest around the
environment where the subject will perform the specified exercise or activity, like walking or turning.
Sensors used in floor-based systems are placed in mats on the floor to measure force and pressure
when the subject walks on them [8]. Force platform-based systems, similar to floor-based systems,
use force and pressure while a person is standing on the platform to measure postural stability or gait.
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Floor-based sensors and force platform systems are used in research labs or clinically to provide very
detailed spatiotemporal gait variables and postural stability measurements, respectively. The main
drawbacks of these systems are their cost and lack of portability; they are primarily confined to
research labs and rarely available for use in clinical settings. Additionally, camera-based systems
are unable to track the subject outside of the camera’s visibility, leading to purchasing additional
sensors to increase the system’s range of visibility, while increasing the cost of the overall system [7,9].
In addition, camera-based systems are computationally expensive to obtain accurate results and may
raise privacy concerns. Camera-based systems have been used primarily to conduct motion analysis
in research labs, but recently, camera systems have been deployed in people’s homes to track their
daily activities or assess their fall risk [10,11].

Unlike external sensors, wearable sensors are cheaper and mounted to the subject’s body,
eliminating cost and portability limitations set by external sensors [9]. The high level of portability
allows physical therapists and researchers to analyze gait and balance not only in research laboratories
but also in clinic, in patient’s home or out the community. The accuracy of a wearable sensor system
will depend on how many sensors are used, where and how are the sensors located, and other
challenges that will be further discussed. There are many types of wearable sensors that are used in
applications ranging from monitoring subject’s physiologic responses like heart rate, ECG, or blood
glucose [11], to measuring gait, balance, and RoM during movements like walking, turning, sit to
stand or postural sway. Wearable sensors have been utilized in conjunction with tests and measures,
like the Timed Up and Go, to provide more detailed and objective balance data [12]. Wearable sensors
have also been used to study changes in gait and balance over time in people with neurodegenerative
diseases and to investigate improvements post interventions [13].

This review paper will not cover external sensors, but will focus on the use of wearable sensors in
gait, balance, and RoM analysis. Other papers have reviewed the use of wearable sensors in gait or
balance, however, none have reviewed the literature on gait, balance, and lower extremity and trunk
RoM [12,14,15]. It is important to review the literature in gait, balance, and RoM collectively since
researchers and clinicians often evaluate the interplay between gait, balance, and lower extremity
and trunk RoM. Therefore, this review surveys the wearable sensor system methodologies currently
used to examine gait, balance, and RoM. Additionally, current reviews do not discuss the technical
aspects in wearable sensor technologies that can affect the outcomes of gait, balance, and RoM
measurements. This review discusses common design issues when using wearable sensors and
describes how quantitative parameters are extracted from wearable sensors in gait, balance, and RoM
research. Thus, the purpose is to review current literature on the use of wearable sensors in gait,
balance, and ROM analysis.

2. Review Method

This review was performed following the Preferred Reporting Items for Systematic Reviews and
Meta-Analyses (PRISMA) statement [16].

2.1. Literature Search Strategy

PubMed, Scopus, and IEEE Xplore were used to identify articles that use wearable sensor
technology to measure and/or analyze gait, balance, and/or range of motion. The following keywords
were used to search within title, abstract, and/or articles’ keywords: “gait”, “balance”, “wearable
sensor”, “wearable device”, “IMU”, “EMG”, “smartphone”, “accelerometer”, “gait variability”,
“inertial sensor”, “postural sway”, “range of motion”, “gait analysis”, “insole sensor”, and combinations
of all these keywords.

2.2. Study Selection: Inclusion Criteria and Quality Assessment

After articles were identified through electronic databases, they were screened by their title and
abstract. Articles were included if they were written in English. Articles were excluded if they did not
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use any type of body worn wearable sensors to measure gait, balance, and/or RoM, were published
before January 2009, were conference abstracts, review articles or case studies.

A quality assessment was performed for each of the included studies independently (Table 1).
The quality assessment is based on three different sub-scales presented by Hagströmer et al.: internal
validity (IV)—addresses methodological bias, external validity (EV)—addresses the extent that the
findings can be generalized to the population based on the study subjects, and quality of the reported
data (QV)—assesses if the information provided is sufficient and unbiased [17]. The quality assessment
checklist used in this review is based on the 15-item checklist proposed by Ghislieri et al., which is
similar to those commonly used in the literature for systematic reviews [17–21]. The score, or number
of “Yes”s, was calculated for each article.

Articles were classified based on the score obtained: “high quality” if the score > 10, “moderate
quality” if the score was between 5 and 10, and “low quality” if the score < 5. Only “high quality”
articles were selected.

Table 1. Quality assessment checklist used in this survey.

Item Criteria Validity Type Outcome

1 The purpose of the study is clearly stated IV Yes/No

2 The research question is relevant to the purpose of the study EV Yes/No

3 Inclusion and/or exclusion criteria are described EV Yes/No

4 Data collection clearly described IV/EV Yes/No

5 Same data collection procedure for all subjects EV Yes/No

6 Reliable data processing clearly described IV/EV Yes/No

7 Data loss <20% EV Yes/No

8 Outcomes are relevant to the topic EV Yes/No

9 Outcomes are same for all subjects IV Yes/No

10 Scientific question stated in the aim is answered IV Yes/No

11 Results are clearly presented and discussed IV Yes/No

12 Appropriate statistical analysis techniques used QV Yes/No

13 Statistical test used clearly stated QV Yes/No

14 Analytical software used is clearly stated and referenced QV Yes/No

15 Sufficient number of subjects QV Yes/No

3. Results

A total of 1677 articles were identified. After excluding 646 duplicates, 659 articles were screened
based on their title and abstract, 131 were selected for full-text assessment. After excluding articles
based on assessment results, 56 articles were included in this systematic review. A flow diagram
showing the study selection is presented in Figure 1. Table 2 presents a description of the studies
included providing the reference, the year of publication, and the objective of the study. Table 3
presents the main characteristics of the studies included such as parameters extracted, the population
that participated in the study, sensors used, their locations, and their level of obtrusiveness.
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Figure 1. Flow Diagram of Search Strategy.
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Table 2. Literature on Wearable Sensors in Gait, Balance, and RoM Research Included in the Review.

Reference Year Objective

Van den Noort et al. [22] 2009
Evaluate the use of goniometry in estimating the joint angle of the catch simultaneously with
inertial sensors.

Franco et al. [23] 2012 Implement a Kalman filter using a smartphone to estimate 3-D angulation of the trunk.

Spain et al. [24] 2012
Study if wearable sensors can detect differences in balance and gait between people with
MS with normal walking speeds and healthy controls.

Martori et al. [25] 2013 Develop a wearable motion analysis system to evaluate gait that consists on six IMUs.

Crea et al. [26] 2014 Describe a wearable pressure-sensitive insole sensor for lower-limb amputees feedbacks.

Dewey et al. [27] 2014 Assess suitability of instrumented gait and balance measures for PD diagnosis and estimation.

Hsu et al. [28] 2014
Develop gait and balance analysis algorithms to gather quantitative data considered early
indicators of AD.

Patterson et al. [29] 2014 Compare a mobile technology application with a commonly used subjective balance assessment.

Tzallas et al. [30] 2014 Describe a system for continuous remote monitoring of patients with PD.

Wentick et al. [31] 2014
Investigate whether detection of gait initiation in transfemoral amputees can be useful for
voluntary control of lower extremity prostheses.

Alberts et al. [32,33] 2015
Develop a biomechanically based quantification of the BESS using inertial sensors data.
Determine whether inertial data provide sufficient resolution of center of gravity
movements to quantify postural stability.

Bauer et al. [34] 2015 Evaluate IMU-system when assessing movement dysfunctions of concurrent validity and reliability.

Ellis & Zhu et al. [35,36] 2015 Describe a smartphone-based application to quantify gait variability.

Godfrey et al. [37] 2015 Investigate the use of a wearable sensor compared to laboratory reference.

Jaysrichai et al. [38] 2015 Measure the knee joint angle using IMUs and reference it with a motion capture system.

Kanzler et al. [39] 2015
Present a method for calculating continuous heel and toe clearance and foot angle in the
sagittal plane without knowing shoe dimensions.

Lee & Kumar et al. [40,41] 2015 Design and validate a smartphone-based system for motor assessment using IMUs.

Lin et al. [42] 2015 Present and evaluate the step count performance of a smart insole system.

Postolache et al. [43] 2015
Develop a system to objectively record ground reaction forces, acceleration and direction of the
feet using wearable sensors.
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Table 2. Cont.

Reference Year Objective

Sijobert et al. [44] 2015 Present an algorithm to estimate stride length using an accelerometer and a gyroscope.

Nouredanesh et al. [45,46] 2015-16
Develop a method that automatically distinguishes compensatory balance responses from
regular stepping pattern.

Bertolotti et al. [47] 2016 Assemble an IMU to provide measurements of limb movements and balance abilities.

Del Din et al. [48] 2015
Quantify a comprehensive range of gait parameters using a single tri-axial accelerometer.
Compare gait data of older adults with PD subjects.

Horak et al. [49] 2016 Study balance and gait to represent independent domains of mobility in PD.

Lee et al. [50] 2016
Compare Multiscale Entropy (MSE) analysis of acceleration data with other features to observe
falling behavior and traditional clinical scales to evaluate falling behavior.

LeMoyne et al. [51] 2016
Facilitate the acuity of the timed 25 foot walk test with the synthesis of wearable and sensors and
machine learning.

Li et al. [52] 2016
Develop a sit to stand detection system to raise an alarm when a individuals stand up without
proper technique or assistance.

Storm et al. [53] 2016
Evaluate accuracy of two algorithms for detection of gait events and temporal parameters during
free-living walking.

Wang et al. [54] 2016
Improve autocorrelation method for gait analysis using EMG signals collected from six muscle
groups of the lower limbs in hemiparetic subjects.

Andó et al. [55] 2017
Propose a multi-sensor architecture for postural sway assessment in elderly and in people with
neurological disorders.

Iijima et al. [56] 2017
Assess quantitatively the gait disorders in the daily lives ofpatients with PD
using with a newly developed portable gait rhythmogram.

Lebel et al. [57] 2017 Assess attitude and heading reference system at multiple segments and joints.

Robert-Lachaine et al. [58] 2017
Determine the technological error and biomechanical model differences between IMUs and
an optoelectronic system.

Schlachetzki et al. [59] 2017 Develop a gait analysis system with wearable sensors to assess gait parameters in PD.

Shazad et al. [60] 2017
Provide an objective, cost-effective method to obtain balance and mobility based fall-risk in
older adults.

Aich et al. [61] 2018
Quantify gait parameters using wearable accelerometers; compare five estimated gait parameters
with a 3D motion capture system automatic discrimination of FoG patients from no FoG patients
using machine learning.
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Table 2. Cont.

Reference Year Objective

Diaz et al. [62] 2018 Propose methods to estimate step length and step width using wearable sensors.

Stack et al. [63] 2018 Detect instability using wearable sensors.

Zhang et al. [64] 2018 Propose a new gait symmetry index to quantify gait symmetry using one accelerometer.

Chomiak et al. [65] 2019 Assess the accuracy and reliability of a wearable sensor system for bio-feedback training.

Chomiak et al. [66] 2019
Describe a pattern recognition algorithm for the automated detection of gait-cycle breakdown and
freezing episodes.

Grinberg et al. [67] 2019 Investigate different types of 3-meter tandem walking tests in fully ambulatory PwMS.

Hsied et al. [68] 2019 Determine if a smartphone can measure static postural stability and distinguish elderly with fall risk.

Mazzeta et al. [69] 2019 Propose a wearable sensor system for auto-continuous analysis of FoG in PD patients.

Mikos et al. [70] 2019 Demonstrate the integration of an FoG detection system into a single sensor node.

Ngueleu et al. [71] 2019 Equip an insole with pressure sensors to detect steps.

Phan et al. [72] 2019
Investigate wearable sensor technology to identify the kinematic features associated with
gait abnormalities seen in cerebellar ataxia.

Reeves et al. [73] 2019 Determine the between-day reliability of peroneus longus EMG in healthy subjects while walking.

Rivolta et al. [74] 2019
Investigate the use of wearable accelerometer to evaluate the fall risk determined by the
Tinetti clinical scale.

Tang et al. [75] 2019
Propose an objective approach to access functional balance using an insole wearable
sensor and an accelerometer.

Weiss et al. [76] 2019 Evaluate strategies employed by PD patients when transitioning from turning to sitting.

Zhao et al. [77] 2019 Present an adaptive method for gait detection.
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Table 3. Main Characteristics of Wearable Sensors in Gait, Balance, and RoM Research Included in the Review.

Reference Analysis Parameters
Extracted Population Sensor(s)

Used
Sensor(s)
Location

Obtrusiveness
Level

Van den Noort et al. [22] ROM
Knee Angle
Ankle Angle 1 healthy IMU Thigh Medium

Franco et al. [23]
Balance

ROM
Trunk angles
Sway ranges 20 healthy Smart Lumbar Low

Martori et al. [25]
Gait

ROM

Stride length
Cadence

Knee flexion
10 healthy IMU

Sternum
Waist

Thighs
Shanks

High

Crea et al. [26] Gait
Swing time
Stance time

Cadence
10 healthy Pressure Insole Low

Dewey et al. [27]
Gait

Balance

Velocity
Cadence

Arm swing
Sway area

Jerk
Path length

Sway distance

135 PD IMU

Ankles
Wrists
Lumbar
Sternum

High

Hsu et al. [28]
Gait

Balance

Stride time
Stride Velocity

Stance time
Swing time

Cadence

21 AD
50 healthy IMU

Feet
Waist Medium

Patterson et al. [29] Balance Postural measure 21 healthy Smart Hold on chest Low

Tzallas et al. [30] Gait Not specified
20 PD short-term
24 PD long-term IMU

Ankles
Wrists
Waist

High

Wentick et al. [31] Gait Gait initiation
3 transfemoral amputees

3 through the knee amputees
IMU
EMG Upper leg High
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Table 3. Cont.

Reference Analysis Parameters
Extracted Population Sensor(s)

Used
Sensor(s)
Location

Obtrusiveness
Level

Alberts et al. [32,33] Balance
Path length

RMS
Equilibrium score

49 healthy for one study
32 healthy for other study Smart Lumbar Low

Bauer et al. [34] ROM
Flexion

Extension
Lateral flexion

22 asymptomatic for validity
24 asymptomatic for reliability IMU

Right thigh
Sacrum

L1 back level
T1 back level

Medium

Ellis & Zhu et al. [35,36] Gait
Step time

Step length
Variability

12 healthy elderly
12 PD Smart Abdomen Low

Godfrey et al. [37] Gait
Step length

Step velocity
Asymmetry

40 healthy young
40 healthy old IMU Lumbar Low

Jaysrichai et al. [38] ROM Knee angle 10 healthy IMU
Shanks
Thighs Medium

Kanzler et al. [39] Gait
Heel clearance
Toe clearance

Foot angle
20 healthy IMU Ankle Low

Lee & Kumar et al. [40,41] ROM Joint angles
19 healthy
20 disable

IMU
Smart

Thighs
Shanks
Ankles

High

Lin et al. [42] Gait Step count 10 healthy Pressure Insole Low

Postolache et al. [43] Gait

Step length
Stride length

Cadence
Gait Speed

6 healthy
IMU

Pressure
Shanks
Insole Low

Sijobert et al. [44] Gait Stride length
10 healthy

12 PD IMU Shanks Low
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Table 3. Cont.

Reference Analysis Parameters
Extracted Population Sensor(s)

Used
Sensor(s)
Location

Obtrusiveness
Level

Nouredanesh et al. [45,46]
Gait

Balance

Normal step
Side step

Crossover step
5 healthy

IMU
EMG

Thighs
Shanks
Lumbar

Medium

Bertolotti et al. [47]
Balance

ROM

Trunk inclination
Sway path
Sway area

Sway mean velocity

10 healthy IMU Lumbar Low

Del Din et al. [48] Gait

Stride time
Stance time
Swing time

Step velocity
Step length
Variability

Diff. Asymmetry

5 healthy IMU Lumbar Low

Horak et al. [49]
Gait

Balance

Postural measures
Trunk acceleration

Gait speed
Cadence

10 healthy
12 PD IMU

Lumbar
Shanks
Arms

High

Lee et al. [50]
Gait

Balance

Jerk
Sway range

Sit-to-stand time
Mean & STD
Step length

65 elderly IMU Lumbar Low

LeMoyne et al. [51] Gait
Stride time

Gyroscope statistics
1 healthy

1 FA IMU Ankles Low

Li et al. [52]
Gait

Balance
Trunk angle

Muscle strength 6 healthy
EMG
Smart

Lumbar
Thighs Medium

Storm et al. [53] Gait
Stride time
Step time

Stance times
10 healthy IMU

Lumbar
Ankles Low
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Table 3. Cont.

Reference Analysis Parameters
Extracted Population Sensor(s)

Used
Sensor(s)
Location

Obtrusiveness
Level

Wang et al. [54] Gait Autocorrelation
10 healthy

1 hemipheris EMG Legs muscle High

Andó et al. [55] Balance
Sway range

Sway mean velocity
Sway mean frequency

22 healthy IMU
Waist

Sternum High

Iijima et al. [56] Gait
Gait cycle
Cadence

Acceleration magnitude
14 PD IMU Waist Low

Lebel et al. [57]
Gait

ROM Multiple ROM angles 20 asymptomatic IMU

Left feet
Pelvis
Back
Head

Left Calf
Left Thigh

High

Robert-Lachaine et al. [58] ROM Multiple ROM angles 12 healthy IMU

Feet
Shanks
Arms

Thighs
Pelvis

Sternum
Head

High

Schlachetzki et al. [59] Gait

Stride length
Stride time

Velocity
Gait phases times

Foot clearance
Heel-strike

Toe-off angles

63 PD IMU Ankle Low
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Table 3. Cont.

Reference Analysis Parameters
Extracted Population Sensor(s)

Used
Sensor(s)
Location

Obtrusiveness
Level

Shazad et al. [60]
Gait

Balance

Step count
Step frequency

Avg. step length
Walking speed

23 elderly IMU Waist Low

Aich et al. [61] Gait

Step time
Stride time
Step length

Stride length
Walking speed

51 PD IMU Ankles Low

Diaz et al. [62] Gait
Step length
Step width 4 healthy IMU

Lumbar
Thighs
Shanks

Medium

Stack et al. [63]
Gait

Balance
TUG Times

Turns’ Step Count 4 healthy IMU
Wrists
Ankle
Waist

Medium

Zhang et al. [64] Gait Symmetry
16 Post-Stroke

9 healthy IMU
Feet

Lower Back Low

Chomiak et al. [65] Gait
Walking speed

Cadence
Step length

15 healthy
IMU

Smart Knee Low

Chomiak et al. [66] Gait
Rence quantification

analysis
9 healthy

21 PD Smart Thigh Low

Grinberg et al. [67] Gait

Velocity
Cadence

Double support
Swing phase

25 MS
25 healthy IMU

Feet
Lower Back Low

Hsied et al. [68] Balance
RMS

AP & ML movements 30 elderly Smart Hold on chest Low

Mazzeta et al. [69] Gait
Step time

Ratio: Max value/sEMG 7 PD
IMU
EMG

IMU-calf
EMG-lower leg High
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Table 3. Cont.

Reference Analysis Parameters
Extracted Population Sensor(s)

Used
Sensor(s)
Location

Obtrusiveness
Level

Mikos et al. [70] Gait

Frequency
RMS & STD

Range
Stride length
Stride time

63 PD IMU Ankles Low

Ngueleu et al. [71] Gait Step Count 20 healthy Pressure Insole Low

Phan et al. [72] Gait PCA generated features
29 cerebellar ataxia

22 healthy IMU Ankles Low

Reeves et al. [73] Gait Peroneus longus 10 healthy EMG
Right leg

(SENIAM guideline) Medium

Rivolta et al. [74]
Gait

Balance
ROM

Accelerometer features
Tilt angle 79 hospitalized IMU Chest Low

Tang et al. [75]
Gait

Balance

RMS & STD
Entropy

Mean absolute deviation
Lempel-ziv

Dominant frequency

33 elderly
IMU

Pressure
Waist pouch

Insole Low

Weiss et al. [76] Balance TUG times 96 PD IMU Lumbar Low

Zhao et al. [77] Gait Gait cycle phases 9 healthy IMU Feet Low
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3.1. Common Wearable Sensors Used in Gait, Balance, and RoM Analysis

Wearable sensors are devices that are mounted to a person’s body in order to gather information;
such as movement or heart rate. Wearable sensors typically are inexpensive and small in size.
Wearable sensors are playing an increasing role in balance and gait assessment in rehabilitation
research. Three important advantages of wearable sensors for assessment of gait and balance disorders
include [12]:

• obtain objective measures that characterize how and why functional performance of gait and
balance are impaired,

• increase the sensitivity of gait and balance measures,
• increase the opportunity for immediate biofeedback provided to patients.

3.1.1. Inertial Measurement Units and Magnetometers

Inertial measurement units (IMUs) are devices that typically contain an accelerometer, a gyroscope,
and sometimes, a non-inertial sensor called a magnetometer [78]. There are numerous types of IMUs
developed by different companies and the size and weight of these devices are similar. The primary
difference between sensors developed by different companies is in the software, in the algorithms used
to analyze the data and the housing in which they are mounted. The housing varies depending on the
battery and on-board storage. The information collected from these devices depends on the subject’s
movements performed while wearing the devices.

Accelerometers are the most common sensor used in gait, balance, and RoM research using IMU
devices. Accelerometers are embedded within wearable sensors and the data is often given in three
dimensions, acceleration forces in the X, Y, and Z axes. These forces may be caused by the constant force
of gravity pulling at the feet or caused by moving or vibrating the accelerometer. Some researchers
prefer a single signal of acceleration in order to be orientation invariant, thus, avoiding misalignment
issues [79]. To achieve this, the magnitude of the acceleration using three-dimensional data is calculated
using Equation (1), where ax, ay, and az are the accelerations in the X, Y, and Z axes, respectively.

am =
√

a2
x + a2

y + a2
z (1)

A gyroscope is a sensor that uses the Earth’s gravity to help determine the orientation and
angular velocity. Usually, the design consists of a freely-rotating disk mounted into a spinning axis
in the center of a larger and more stable wheel. When the axis turns, the disk remains stationary to
indicate central gravitational pull. The main difference between the accelerometer and gyroscope
is that one can sense rotation and the other cannot. In a stationary scenario, the accelerometer can
determine orientation with relation to Earth’s surface, but when acceleration is applied to the device,
the accelerometer is unable to differentiate between that movement and the acceleration provided
through gravitational pull.

Magnetometer is a non-inertial sensor that measures magnetic fields. A simple type of
magnetometer is a compass, which provides a simple orientation in relation to the Earth’s magnetic
field. Magnetometers, in ubiquitous computing applications, are often used to improve measurements
regarding orientation, especially heading. A challenge in the application of magnetometer is that
magnetic disturbances limits the accuracy of their measurements. Fortunately, there are ways to
compensate for these errors, which will be discussed in Section 4.11.

3.1.2. Smart Devices

Smart devices, such as smartphones and smart watches, are very popular because of
their low cost, high availability, and capability to behave as an IMU device. Smart devices
contain similar componentry as IMUs including accelerometers, gyroscopes, and magnetometers.
Researchers investigate the potential use of smart devices to assess gait, balance, and RoM to reduce
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the level of obtrusiveness that using multiple devices can introduce and to increase portability.
There are studies that implement smart devices to measure trunk movements and postural stability to
assess balance [23,29,32,33,52,68]. Other studies quantify gait parameters, including symmetry and
variability [35,36,65,66].

3.1.3. Electromyography (EMG) Sensors

Electromyography (EMG) sensors use electrodes to record electrical activity from subject’s muscle
tissue. There are two types of EMG sensors; surface electrodes and needle electrodes. Needle electrode
exams are more specific and accurate. EMG sensors can detect whenever a muscle is at rest or active;
a negative electrical potential difference is maintained across the muscle when the muscle is resting,
while a positive potential travels along the length of the fiber when the nerve activates the muscle
fiber [80].

EMG is an essential tool in diagnostic evaluation of patients with peripheral neurologic disorders,
such as peripheral neuropathy, Guillain Barre or ALS [81]. EMG has contributed in multiple clinical
areas to enhance the management of patients with neuromuscular disorders. including neurology,
neurosurgery and orthopedics [82]. EMG is often used in combination with nerve conduction velocity
tests. EMG and nerve conduction velocity provide different information about the peripheral nervous
system, but when analyzed together, aid in accurate diagnosis [81]. Unfortunately, EMG has limitations
and considerations [81,83,84]:

• technical limitations may be present in cases of obesity or advanced age,
• EMG cannot be used for all muscles for all activities,
• EMG does not give RoM information,
• electrode placement is vital,
• traditional EMG cannot detect passive movements,
• for surface EMG (SEMG), skin must be cleaned and static charges on the skin can alter the signals.

EMG and SEMG have been used to identify certain gait characteristics, distinguish compensatory
balance responses, and develop and improve methods used to assess balance. Continuous EMG
analysis in patients with neurological disorders provide relevant diagnostic contributions in terms
of nosological classification, localization of focal impairments, detection of pathophysiological
mechanisms, and functional assessment to supplement the clinical evaluation of neuromuscular
disorders [31,52,69,73].

3.1.4. Insole Pressure and Force Sensors

Besides measuring body movement with IMUs and smart devices and measuring muscle electrical
activity with EMG, there are sensors that can measure ground reaction forces applied by the subject.
The pressure sensor is typically located in the insole of the subject’s shoes, and it can measure the plantar
foot surface in 3 dimensions. The most common insole sensors are capacitive, resistive piezoelectric,
and piezoresistive sensors, and which is selected depends on the range of pressure it can stand and
it’s sensitivity [8]. Insole pressure sensors are known for being unobtrusive and for their potential in
monitoring daily activities since people wear shoes for multiple hours a day. They are typically used
in gait analysis to count steps and extract time and distance based parameters. In balance analysis,
they are typically used to measure center of pressure to evaluate postural stability [19,26,42,43,71].

The most common wearable devices used by the studies included in this review are IMUs (71.43%
of studies). 21.43% of articles used smart devices in their studies, while 8.93% and 8.93% used EMGs
and pressure/insole sensors, respectively.

4. Design Issues in Gait, Balance and RoM Wearable Systems

The following outlines the most important challenges to consider in the design and implementation
of systems that use wearable sensor technology to assess and track gait, balance, and RoM.
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4.1. Obtrusiveness

The number of wearable sensors used in a system can be associated with the level of obtrusiveness
of the system. It is known that having more sources of data in a system will provide more information.
However, there is the disadvantage of decreased subject comfort as the number of sensors increases.
Additionally, not all sensors are completely wireless since there are sensors that require the use of wires
or electrodes, such as the EMG devices, to extract information, also affecting the level of obtrusiveness.
Researchers often encounter this problem: accuracy versus subject comfort. They have to decide
to either build a system with high accuracy using multiple sensors or build a system with lower
accuracy and less data using fewer sensors. Less sensors allows the subject to be more comfortable
and avoids interfering with trial performance or daily activities. Decreasing the number of sensors
can be beneficial in terms of complexity, cost, and the amount of data to process. From the studies
included in this review, 33 had a low level obtrusiveness. On the other hand, 10 were considered to
have a medium level obtrusiveness, and 13 high level obtrusiveness.

4.2. Sensor Location

Wearable sensors eliminate the location limitation set by external sensors, but they yield another
complication. Selecting locations on the subject’s body to mount the sensors is a difficult decision,
especially when the number of sensors available is limited. It is extremely important to decide optimal
locations since the performance of the system and the data obtained depends on it. Studies using
wearable sensors vary greatly in terms of body locations selected to mount sensors, however, the most
common areas are the sternum, waist, lumbar, lower back, and different upper or lower extremity
location such as wrists, thighs, ankle, heels, and feet. The selection of sensor locations will depend on
the gait, balance, and RoM parameters to be measured. For static balance assessment the most common
locations are lumbar, waist, and/or holding the device in the chest/sternum due to the capability of
measuring trunk sway at these locations (Table 3). The most reliable step count comes from insole
pressure sensor since it can detect the pressure applied to the sensor once a subject is performing a
step [26,42,43,71]. Studies that use IMUs for gait analysis tend to mount the devices on locations below
the knee joint, such as feet, ankles and shanks, due to the high movements involved in those areas
when a person is walking (Table 3).

4.3. Sensor-to-Segment Alignment

After sensor locations are selected, another problem is known as sensor-to-segment alignment.
Sensor-to-segment alignment is known as the orientation of each sensor relative to the assigned
segment previously selected. A study indicated that the position of the sensor relative to the segment
is usually far less important for obtaining valid segment orientations than the sensor-to-segment
alignment [85,86]. Calibration procedures to address this problem have been proposed, such as static
pose calibration, requiring the user to take on specific poses, functional calibration, requiring the user to
perform movements around defined axes, and technical calibration, requiring manual alignment with
respect to the bone structure [85,87–89]. These procedures still have potentially large human-induced
errors and researchers have started to study ways to integrate machine learning and deep learning
techniques to help improve inaccuracies [45,46,51,62,70].

4.4. Soft Tissue Artifact

A challenge in human motion analysis is posed by soft tissue artifact (STA). STA occurs from
unequal movement of soft tissue layers (muscle, tendon, and dermis) between the bone and the skin
surface [90]. Typically, relative translation and relative rotation are assumed to show the majority
of STA, in which yields to be the components targeted for mitigation [91]. Another way to mitigate
STA is by processing the translational acceleration and rotational velocity measured by an IMU [92].
Few studies included in this review handled soft tissue artifact in different ways. A common way
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is to place the devices over the bones and not over the muscles to reduce soft tissue artifact [58].
Additionally, using bundles and straps and having care in positioning the bundles can minimize soft
tissue artifact [57].

Additionally, STA also occurs in optoelectronic systems when placing markers to the subject’s
segments. This needs to be taken into consideration since optoelectronic systems are often used to
validate wearable sensor measurements [22,57,58,61,62]. Few ways to minimize this issue is by having
the marker within the field of view of at least two cameras, markers attached to the same segment
should be distributed to minimize position error propagation to bone orientation, and the movement
between underlying bones and the markers should be minimal [93–97].

4.5. Processing

Once the data is collected, the researcher has to decide how to process the data and this largely
depends on the system used. If a wearable sensor system doesn’t have the capability of running the
algorithms locally, servers are preferred since they have a large amount of storage space, processing
power, and energy capabilities that allow complex data and algorithms. This approach is really
common when machine learning techniques are used because these techniques often require high
computational and processing power in order to train the models [45,46,61,62,70]. Systems connected
to smartphones can run the algorithms locally if the complexity of the data and algorithms allow it,
which depends on the device’s limitations of storage, battery, and processing power. Twelve studies
included in this review followed the smart device based approach (Table 3). Depending on the
processing approach, it may affect the waiting time of the subjects between each trial because the
computational cost and processing power influence how fast the users can get the results.

4.6. Energy Consumption

Communication is usually the most energy consuming operation, therefore researchers should
minimize the amount of data transmitted. Short range wireless networks, such as Bluetooth or Wi-Fi,
should be preferred over long range networks since they use less power. There are methods to reduce
the energy consumption, such as data aggregation and compression, but they may jeopardize the
system’s performance.

The number of sensors used have also an impact on the system’s energy consumption. It is
obvious that the more sensor used, the more energy the system consumes. This is another reason why
studies tend to use fewer sensors. Another direct and simple solution to this issue is; when the sensors
are not being used, they can be turned off.

4.7. Mobility

A common reason to use wearable sensors is to provide a high level of mobility and portability.
Systems that use servers to analyze the data often require access to the Internet. This makes the
system location dependent since they would not work in locations where Internet is not available
such as outdoors. This leads to a system that is not completely mobile. Studies that use smart devices
usually do not have this issue because of the high capability of connecting to the Internet and run
their own methods to evaluate the subject’s gait, balance, and RoM regardless of the location being
assessed (Table 3).

4.8. Cost

As previously mentioned, wearable sensors are cheaper than external sensors. However, this does
not mean that cost is not an issue with wearable sensors. Cost can increase for multiple reasons, such as
the number of sensors used, type, brand, and computer equipment and software needed to process the
data. Researchers and clinicians with low resources may not be able to afford costly wearable sensor
systems. That is why some researchers tend to evaluate the subjects using smart devices, such as
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smartphones, since nowadays millions of people already owns one (Table 3). Others prefer to build
their own device using their own specifications to reduce the cost [47].

4.9. Noise

Noise is irregular fluctuations within the signal monitored. If noise is not filtered out, the results
attained may be inaccurate. Wearable sensor noise is generated by the electrical and mechanical
components. Common considerations to reduce noise in a system using accelerometers are cables and
shield [47]. Most wearable sensors are wireless, eliminating cable noise. Modern wearable devices
shield the sensors embedded in the device to protect them from noises produced by external signals.
Sometimes these techniques are not sufficient and the measured signal contains measurement errors.
In this case, noise is known to be the high-frequency portion of the measurement errors and thresholds
and filtering techniques are used to clean the signals extracted from the sensors [34,44–46,54].

4.10. Thresholds

A threshold is a limit used to trigger an action when that limit is surpassed. Various systems use
thresholds to make decisions and conclusions about the data’s behavior. The most common solution
is to set thresholds that generalizes the data as much as possible. Additionally, there are studies that
investigated the use of thresholds with filtering techniques to extract useful gait, balance, and RoM
parameters from wearable sensors [32,33,44–46,54]. Another way to avoid setting thresholds is by
using machine learning techniques. By using these techniques, the algorithms are trained to learn the
most optimal threshold for a specific problem or measurement [51,60–62,66,70,85].

Systems should provide the option to adjust thresholds since they should be optimized to the
movements to give the most reliable and accurate measurements. Otherwise, the data yields misleading
results, which may affect decisions made by researchers of professionals making rehabilitation
decisions.

4.11. Magnetic Disturbances

A challenge in the application of IMUs is that magnetic field is known to be inhomogeneous
in indoor environments and near ferromagnetic materials. These disturbances limit the accuracy
of measured parameters in two ways: sensor orientation estimates are deteriorated, and magnetic
disturbances may limit the accuracy of the sensor-to-segment calibration [98]. To avoid magnetic
disturbances, there are researchers that consider to use non-magnetic equipment to perform
the assessment, such as a couch with wooden frames [22]. There are others that use Kalman
filters and sensor fusion techniques to minimize the disturbance applied to the signals being
evaluated [23,58,98,99].

4.12. Sensor Fusion

Wearable sensor systems relying on single or multiple sensors present limitations such as sensor
deprivation, limited spatial coverage, and imprecision [100,101]. Sensor fusion is an effective solution
to address these problems. Sensor fusion can be competitive, complementary, and cooperative [102].
Competitive fusion uses multiple equivalent sources of information to obtain redundancy and
self-calibration. In complementary fusion each sensor captures different aspects of what is being
monitored to improve system accuracy and reliability. Cooperative fusion is when multiple sensor
signals are needed to obtain information that wasn’t obtained by any of the signals independently [103].
When it comes to data processing level, sensor fusion is divided into three categories:

• data-level fusion: implements de-nosing, feature extraction, data classification, and data compression,
• feature-level fusion: creates a new high-dimension feature set that represents the input for

classification or pattern recognition, and
• decision-level fusion: utilizes the abstracted information from either data-level or feature-level

fusion to make a decision [103].



Appl. Sci. 2020, 10, 234 19 of 39

The fusion level used in a wearable sensor system will affect other issues such as processing,
information loss, and performance. There are instances when sensor fusion is necessary to provide
more accurate measurements. For example, when researchers want to know the orientation of an IMU,
it may not be sufficient to just use an accelerometer because this may yield inaccurate results. It is not
possible to extract heading of the sensor with just an accelerometer but fusing an accelerometer and
magnetometer provides this additional information critical to examine postural control and ROM [98].
Fusing the accelerometer, gyroscope, and magnetometer data helps to improve the accuracy of these
measurements.

From the studies included in this review, 87.50% used data-level fusion, 33.93% used feature level
fusion, and 33.93% used decision-level fusion.

5. A Taxonomy for Gait, Balance, RoM Analysis

A new taxonomy for wearable sensor technology that allows comparison of different systems
that share similar characteristics and capabilities is presented in Figure 2. In this survey, the systems
are categorized into two levels. The first level specifies the analysis to be performed, which can be
either gait analysis, balance assessment, or Range of Motion (RoM) analysis. The second level specifies
the categories of parameters extracted from the analysis, which can include rhythm and phase, pace,
variability, postural control, or asymmetry. Rhythm and phase parameters are variables that reflect
gait rhythm, timing, and duration; pace parameters give information about speed and/or length
measurements; postural control is an integrative process used to maintain body’s position relative
to gravity and of its segments relative to each other; asymmetry parameters are those that look
for differences between limbs; and variability is the fluctuation of parameters, which can offer a
complementary way of quantifying and indicating mobility deficits [104].

Figure 2. Taxonomy of Wearable Sensor Technology for Gait, Balance, and ROM Research.

5.1. Gait Analysis

One of the main goals of physical therapy and rehabilitation is that ambulatory patients achieve
independent walking. Physical therapists use gait analysis to determine what causes patients to walk the
way that they do. The goal of clinical gait analysis is to assist in plan of care decision-making for patients to
help ameliorate the gait deviations so that the patient may walk more efficiently and independently [105].
Additionally, gait analysis in research studies the natural history of change in walking over time in
neurodegenerative diseases or changes in gait after implementing interventions [12,13].

Walking is the result of a cyclic series of movements that can be characterized by a description
of its fundamental unit, the gait cycle. A gait cycle is the time period of events during locomotion in
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which one heel makes contact with the ground and that same foot makes contact with the ground
again; a single gait cycle is also known as stride. A step is the sequence of events that occurs within
successive heel contacts of opposite feet. Step and/or stride detection is the first task that researchers
try to accomplish when using wearable sensors to conduct gait analysis. The most common method
to perform step and/or stride detection using IMU and smart devices is by using peak detection
algorithms on accelerometer data [28,35,36,48]. Step and/or stride detection is easier when using
insole pressure sensors since the pressure applied to the sensor when the foot is in contact with
the ground is higher than when it is not in contact with the ground [31,46,52,54,69,73]. However,
people that are affected by neurological disorders tend to shuffle and/or drag their feet when walking,
performing short and dragged steps, which makes it harder to detect heel strikes or foot contact [106].

5.1.1. Gait Analysis: Rhythm and Phases

The most common gait parameters associated with rhythm and phases of gait are gait cycles phases,
stance time, swing time, step time, stride time, cadence, and walking ratio [80,104].

In the gait cycle, there are two main phases called stance phase and swing phase. In the stance
phase, the foot is in contact with the floor, while in the swing phase, the foot is moving through the
air without making contact with the floor. However, researchers continue to expand the gait phases
involved in a gait cycle to have a deeper and more detailed understanding of the gait cycle. Taborri et al.
standardized the name of the different gait phases, going from the two main phases, stance phase and
swing phase, to a granularity of phases in which the one that has the most phases contains eight phases:
initial contact, loading response, mid stance, terminal stance, pre swing, initial swing, mid swing,
and terminal swing [107].

Researchers measure the time it takes subjects to complete each phase of gait. Swing time is the
time that passes during swing phase, starting as soon as the foot gets off the floor until it makes contact
with the floor again. Stance time is the time that passes during the stance phase, starting once the foot
makes contact with the floor until it moves off the floor again. Researchers have found that stance
phase is longer when the subject has a balance problem [104]. Stride time is the duration of a stride and
the same procedure used to measure swing time and stance time can be used to calculate stride time.
It can also be measured by adding up the swing time plus the stance time. Step time is the duration of
a step. When data is recorded from wearable sensors, the data includes a timestamp. A timestamp is
the time registered to a file or log that records when an event or data is added, removed, or modified.
It is possible to calculate time based parameters by subtracting the timestamp of when the previous
event occurred minus the timestamp of when the current event occurred [26,28,35,36,48,51,53,61,70].

Cadence is the rate at which a subject walks, expressed in steps per minute. Researchers have
found that cadence is usually between 98–138 steps per minute for healthy women and 91–135 steps
per minute for healthy men, between the ages of 18–49 [108]. Researchers often approximate cadence
by using a mean step time. As an example, if a subject’s mean step time is around 0.5 s, the subject
will execute approximately 120 steps in a minute. Using mean step time may not be ideal when the
subject’s walking pattern is asymmetrical. Cadence has been used to give quantitative data that serve
as early indicators of neurological disorders, assess the daily living walking activities, and provide
immediate bio-feedbacks [25,26,28,43,56,65].

Walking ratio represents the relationship between frequency and amplitude of movements of the
legs. It can be calculated by dividing the mean step length by the cadence. Researchers have found
that the mean walking ratio is 0.58 and it decreases when the person walks with fast, shorter steps
such as in person with Parkinson’s disease or Alzheimers Disease [104].

5.1.2. Gait Analysis: Pace

The parameters that represents pace include step length, stride length, and walking speed (or
gait velocity).
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Step length is the distance between one foot’s heel-strike to the opposite foot’s heel strike when
walking. Stride length is the distance travelled by a person when they perform a stride; i.e., the distance
from one foot’s heel-strike to the next heel-strike of the same foot. Step and stride length can be
calculated once the steps are detected. Knowing the step and stride lengths helps to determine how
symmetric the subject is walking. Researchers have discovered that step length is affected linearly by
walking frequency and acceleration variance [109]. Walking frequency (WF) can be calculated using
Equation (2), where WFk is the walking frequency for step k and tk − tk−1 is the step time for step k.
Acceleration variance (AV) can be calculated using Equation (3), where AVk is the acceleration variance
for step k, nk is the number of samples during the sequence of step k, ak,i is the acceleration at time i-th
on step k, and āk is the acceleration mean during the same sequence of step k.

WFk =
1

tk − tk−1
(2)

AVk =
1

nk − 1

nk

∑
i=1

(ak,i − āk)
2 (3)

After walking frequency and acceleration variance are calculated, then step length (SL) can be
determined using a linear approximation (Equation (4)), where α, β and γ are the step length estimation
constant parameters for the linear equation [109].

SLk = α ∗WFk + β ∗ AVk + γ (4)

Other researchers have calculated step length using the change of height of the center of mass
h (vertical position) and the length of a pendulum l (sensor height from the ground), as shown in
Equation (5) [48,110]. Once step lengths are calculated, stride length can be determined by adding the
left step length to the right step length.

SL = 2 ∗
√

2lh− h2 (5)

Step length and stride length has been used in the literature to compare the variability
pre- and post-training as well as the variability between healthy subjects and subjects with a particular
neurological disorder [25,35–37,43,44,50,60,62,65,70].

Gait velocity, also known as walking speed, is the distance travelled in a given period of time
and is thought to be indicative of a person’s functional capacity [111,112]. Gait speed represents the
overall performance of the walking pattern. According to Baker, it can be calculated using Equation (6),
where gait velocity (GV) is expressed in meters per second, cadence is in steps per minute, and stride
length (SL) is in meters [80]. Researchers have found that while cadence increases linearly, step length
increases logarithmically, and it tends to stabilize at high speeds but changes at low speeds [104].
Gait velocity is correlated with functional ability and balance confidence and can be used to determine
outcomes such as functional status, discharge location, and the need of rehabilitation [111].

GV =
Cadence× SL

120
(6)

Gait velocity estimation algorithms can be divided into three categories: abstraction model,
human gait model, and direct integration [113]. Abstraction model takes advantage of machine
learning techniques to approximate the speed and decide to ignore the details of the human gait
biomechanics; human gait models estimate the gait velocity by using the stride length of the subject;
and lastly, direct integration method is when the acceleration of the sensor is integrated in the global
coordinate system from the starting point to obtain instantaneous sensor velocity and the associated
stride length. Direct integration is the most common approach used in gait and balance studies [113].
Direct integration seems like a straight-forward approach, but the accuracy of the integration can be
inaccurate since the gravitational force is difficult to separate from the inertial force.
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Walking speed is considered the "sixth vital sign" for its capabilities, reliability, and sensitivity
that it can measure to assess and monitor overall health [111,112]. These led researchers to use walking
speed to provide bio-feedback training, assess fall-risk and server as an indicator of a neurological
disorder [28,43,49,60,61,65].

5.1.3. Gait Analysis: Variability

Variability can be expressed in terms of measures of dispersion, such as standard deviation
and/or coefficient of variation [114]. Variability can be detected temporally or spatially, similar to
asymmetry. Research informs that variability in spatiotemporal parameters predicts mobility deficits
and future falls better than other gait parameters [104]. On the other hand, researchers have concerns
about the best way to measure variability. This leads to questions about how many parameters to use
to measure variability; for example, whether to measure it temporally or spatially, and whether to
measure variability for each lower limb separately or combined.

Gouelle et al. proposed a new way to quantify fluctuation magnitude using the Gait Deviation
Index as reference and developed a Gait Variability Index (GVI) [115,116]. The GVI is based on nine
weighted (using Principal Component Analysis) gait parameters: step length, stride length, step time,
stride time, swing time, stance time, single support time, double support time, and velocity. It uses
the difference between the variability of an individual compared with a reference group. The value
obtained is transformed into a score with 100 and 10 representing the mean and standard deviation,
respectively, of the reference.

Non-linear variability is also gaining acceptance within the gait analysis community, such as
Lyapunov exponent (LyE). Huisinga et al. quantified the temporal structure of the trunk acceleration
time series from both direction using LyE and approximate entropy [117]. The largest LyE is a
measure of the rate at which nearby trajectories in state space diverge s lack of divergence in the
acceleration pattern will produce small values for the LyE and vice versa [117]. They demonstrated that
in people with multiple sclerosis the acceleration time series increased LyE in both medio-lateral and
antero-posterior directions, which indicates excessive divergence and reduced behavioral complexity
as compared to healthy subjects [117].

Another way to measure variability using wearable devices is to extract statistical parameters.
Two of the most common statistical parameters used to represent variability are standard deviation
and coefficient of variation [35,36,48,116]. These are calculated by using spatiotemporal parameters
such as step length, step time, single support time, and others, since they have shown in the literature
to being able to assess fall risk. However, these are sometimes not recommended since these measures
of dispersion can present bias and alter the results: standard deviation is sensitive to the scale,
and coefficient of variation tends to infinity when the mean is close to 0 [116].

5.1.4. Gait Analysis: Postural Control

The main parameters in this category are step width and foot angle. Step width measures the
separation of the feet while walking. Step width is usually 8-12 centimeters in children and adults [104].
Changes in step width can be seen when people have balance problems and when patients walk faster.
People with a balance disorder usually expand their step width; while people that walk faster tend to
decrease their step width. The foot angle can be defined as the angle of rotation during stance. Usually,
the angle ranges from 0-15 degrees in normal, healthy adults. Excessive foot angle or toe out can be an
indication of walking abnormalities and is often seen in children with cerebral palsy or adults with
stroke [104]. Unfortunately, these parameters are complex to measure using wearable sensors and
accurate methods to extract these parameters using wearable sensors are limited [62].

Another common criterion studied by researchers and related to postural control is the walk
deviation. Walk deviation is when a person attempts to walk in a straight line but is unable to achieve
it and strays off the line. Perez and Labrador calculated walk deviation from a walking path using
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the rotation vector sensor of a smartphone [118]. They incorporated used of the Functional Gait
Assessment (FGA) walking path level markers (Figure 3).

Figure 3. FGA Walking Path with 4-Level Deviation Scale.

The FGA determines the risk of falling by assessing postural stability during gait. To perform
the FGA, they used a 6.096 meter long walkway with a 30.48 centimeters (cm) lateral path. To assess
walk deviation, markers are placed on both sides of the walkway, each one corresponding to a specific
deviation level. The level range is from 0 to 3, level 0 meaning no or small deviation and level 3
meaning high deviation.

Perez and Labrador detected the deviation Di for stepi by using the step length and the angle of
rotation for that specific step (Equation (7), Figure 4) [118,119]. The angle of rotation is extracted from
the rotation vector samples.

Di = SL ∗ sin(θi) (7)

Figure 4. Step Deviation Calculation Visualization.

Additionally, the cumulative deviation can be calculated (Equation (8)) to check the total deviation
from the starting to end point [118], where D0

sum is equal to 0.

Di
sum = Di + Di−1

sum (8)

5.1.5. Gait Analysis: Asymmetry

Gait asymmetry can be expressed in two different ways: temporal asymmetry and spatial
asymmetry [104]. In spatial asymmetry, the step length values are unequal, while in temporal
asymmetry there is a difference in time spent in swing and/or stance phase between the two feet.
In a temporal symmetric walking pattern, the steps and strides are equal. In the case of a temporal
asymmetric walking pattern, step lengths are different between the two legs but stride lengths are
equal. Two common ways to represent symmetry are by differences or ratios [37,48]. In differences,
the values are subtracted (i.e., left-right) from each other, in which 0 represents perfect symmetry.
Using ratios, the values are divided (e.g., left/right), in which 1 represents perfect symmetry.

Another two approaches have been used to represent symmetry: Dynamic Time Warping (DTW)
algorithm and Autocorrelation. DTW is popular because it is extremely efficient in measuring
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time-series similarities, thus minimizing the effects of shifting and distortion in time, and allowing
transformation of time series in order to detect similar shapes with different phases [120]. The algorithm
can be applied by comparing two acceleration signals of different steps to see if there are any differences
between one step and the other.

Autocorrelation is the correlation between a signal with a delay copy of itself and has been widely
used to find repeated patterns in a signal [118,119]. Accelerometer signals from wearable sensors
provide information to be used in the algorithm. Researchers have demonstrated that low values
in the coefficient of the first and second dominant period represent a low regularity between steps
and cycles and the ratio of both coefficients represents symmetry between left and right steps [121].
Researchers used these techniques to check similarities between different steps and to capture a
walking pattern problem if an impediment was present [54,118,119].

Gait asymmetry has shown to be an important marker of mobility impairment [64]. Recently,
a Gait Symmetry Index (GSI) that uses one accelerometer placed at the lower back was proposed [64].
GSI uses autocorrelation coefficients of vertical (ARv), frontal (AR f ), and lateral (ARl) accerelerations
at the location in which the device is attached as the function of time lag t. The sum of positive
autocorrelation coefficients of the three axes represent the coefficient of stride cycle repetition
(Equation (9)) [64]. When Cstride has the maximum value, the stride time is equal to t. The norm
of the autocorrelation coefficients represents the coefficient of step repetition (Equation (10)). For a
perfect symmetric walking pattern, is assumed that two consecutive steps have the same step time,
half of the stride time [64]. GSI is represented as the normalized Cstep(0.5 ∗ Timestride), where the
normalized coefficient is

√
3 since is the maximum value that Cstep can obtain at zero-lag (t = 0)

(Equation (11)) [64].

Cstride(t) = ARv(t) + AR f (t) + ARl(t); i f AR(t) < 0, AR(t) = 0 (9)

Cstep(t) =
√

ARv(t) + AR f (t) + ARl(t) (10)

GSI =
Cstep(0.5 ∗ Timestride)√

3
(11)

5.2. Analysis of Postural Control and Balance

Patients may have balance problems due to neurologic or musculoskeletal disorders. Balance
exercises performed as part of a rehabilitation program can help address these problems and can
help prevent falls. Physical therapists teach patients static and dynamic balance exercises in both
sitting and standing; activities increase in difficulty as balance improves over time. If the patient keeps
improving, more complex balance activities can be introduced; such as during walking or standing on
compliant surfaces.

Physical therapists use tests to assess patients’ balance. Some common non-instrumented tests
used by physical therapists include [52,122–130]:

• Romberg Test,
• Limits of Stability Test,
• Single Leg Stance Test (SLST),
• 5 Times Sit to Stand (STS) Test,
• Functional Reach Test (FRT),
• Clinical Test of Sensory Interaction and Balance (CTSIB),
• Timed Up and Go (TUG) Test,
• Tinetti Test,
• Berg Balance Scale (BBS), and
• BESTest.

These tests have semi-objective components; by using rating scales, scores and timed performance,
however, they lack objective data. This yield to the use of instruments that can objectively measure
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the subject’s locomotion quantitatively. By combining both techniques, researchers can conduct these
tests by using instruments, such as the Romberg Test or Limits of Stability Test with force platforms,
in order to have a complete assessment with both components: rating scales/scores and quantitative
data about the subject’s locomotion. Force platforms are the most common sensor for instrumented
balance assessment. They quantitatively measure center of pressure and center of mass displacement
of a subject while the subject is standing on the force platform performing static and/or dynamic
tasks, such as Romberg Test. The problem with force platforms is that they are often expensive and are
not portable.

Researchers have begun to integrate the use of wearable sensors for balance assessment because
they are more portable and less expensive. Non-wearable instrumented tests, such as dynamic
posturography, and non-instrumented tests are still the gold standard methodologies to assess
balance. They are often used to evaluate performance of the wearable sensors systems. For example,
researchers used wearable sensors to measure subject’s balance as they were performing the BBS [60].
Another study determined a smartphone could measure static postural stability and distinguish elderly
at risk to fall, and they validated the performance of the smart device using a force platform [68].
Additionally, other balance studies have used wearable sensors during gait activities to provide
information about subject’s dynamic balance [24,49,50].

5.2.1. Postural Sway

A common parameter used by researchers and clinicians in static balance assessment is postural
sway. Postural sway is the horizontal movement of the person’s center of mass (CoM) in all directions.
Postural sway during quiet stance has helped differentiate age-matched healthy controls from those
with early untreated Parkinson’s Disease and helped determine changes with disease progression
in early PD [131]. Studies that use IMUs and smart devices vary in terms of where to place the
sensor to measure postural sway. The studies in this review vary in terms of the sensor’s location
used to measure postural sway. There are some that attach the device to the lower back or lumbar
spine [23,32,33,47,49,50,52,55] while others have the subject hold the device on their chest/sternum
with their dominant hand [29,68]. The most common measures that describes postural sway are sway
area, sway range, sway velocity, and sway jerk.

Sway area approximates the area enclosed by the acceleration path in each axis of movement [132].
Studies vary between enclosing the path with a circle or enclosing the path with an ellipse. In both
approaches, the acceleration in both the mediolateral (ML) and anteroposterior (AP) direction can be
extracted using the acceleration signal at the X-axis and the acceleration signal at the Z-axis, respectively.
Figure 5 shows the typical ‘Spaghetti’ plot that represents the acceleration sway path using ML and
AP planes.

Figure 5. Postural Sway Acceleration in ML and AP Planes (‘Spaghetti’ Plot).
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The acceleration path can be enclosed using an ellipse fitting or ellipse enclosing algorithms [133].
These algorithms can be difficult to implement with datasets that have a lot of data points. To reduce
the size of the problem, researchers often use an approach called convex hull. A convex hull is a subset
of points that defines a convex polygon that encloses all the points in the set [133]. The minimum
enclosing ellipse for the convex hull is the same as the minimum enclosing ellipse for the set of
points (Figure 6).

Figure 6. Convex Hull Example.

Sway range is the maximum distance between any two points in the accelerometer data [132].
Sway range estimates how wide the acceleration was at a particular assessment time point. It can be
calculated in all the different axes using Equation (12), where Paxis is the set of points in a particular
axis [132].

Rangeaxis = |max(Paxis)−min(Paxis)| (12)

Sway velocity is the velocity at which the trunk sways. Similar to gait velocity, sway velocity can
be estimated using abstraction models or by direct integration.

Sway jerk is the smoothness of the trunk sway. One of the first reviews on jerk defined the term as
the “rate of change of acceleration” [134]. Flash and Hogan (1985) formulated a mathematical model
to predict features of coordination of voluntary human arm movements. More recently, jerk is used
in many varied applications including postural sway analysis using sway jerk. Sway jerk is typically
calculated for the ML-AP plane using Equation (13), where t is the time that the trial lasted and N the
size of the set of points of the acceleration signal [132]. Since Equation (13) involves integration of time
derivatives of acceleration components, it is important to make sure that the signal is clean and does
not contain much noise since dealing with noisy differentiation signal may amplify the noises on the
signal to be estimated.

JerkML−AP =
1
t

N−1

∑
i=1

√
(APi+1 − APi)2 + (MLi+1 −MLi)2 (13)

5.2.2. Postural Sway: Asymmetry and Variability

Physical therapists often use Modified Clinical Test of Sensory Interaction and Balance (mCTSIB)
when evaluating postural sway [135]. In the mCTSIB, subjects have to complete four trials in four
different conditions: eyes open-firm surface, eyes closed-firm surface, eyes open-foam surface, and eyes
closed-foam surface. After completing the trials, the physical therapists calculate the asymmetry
and variability between the measurements extracted in the different conditions. The asymmetry
and variability extracted from the trials between eyes open vs eyes closed are known as the visual
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dependence, while the asymmetry and variability extracted from the trials between hard surface vs
foam surface are known as the surface dependence.

5.3. Analysis of Joint Range of Motion

Range of motion (RoM) is the distance a subject’s joints can be moved in a certain direction and is
measured in degrees. The goniometer is an instrument used widely by physical therapists to measure
RoM angles [136]. RoM testing is an integral part of any physical therapy examination, and generally
RoM is examined before physical therapy treatment begins. RoM testing can be performed on specific
joints, and if limited motion is found, the physical therapist determines if the cause is muscle tightness,
pain, or tightness of ligaments or tendons [137]. Common RoM angles measured by physical therapists
are at the shoulder, elbow, hip, knee, and ankle joints and spine angle/inclication (Figure 7).

Figure 7. RoM Angles Measured While Squatting.

RoM is divided into three main types [137]:

• passive RoM: physical therapist is moving the subject’s joint and no active movement is performed
by the subject,

• active assistive RoM: the subject can perform movements but cannot complete it because of pain
or muscle weakness; assistance of the physical therapist is needed, and

• active RoM: the subject can perform the movement without manual assistance from the therapist.

One common way to get RoM measurements is to calculated pitch, roll, and yaw angles. Pitch and
roll angles can be computed using an accelerometer. A simple way to compute pitch and roll angles is
using Equations (14) and (15), where Accx, Accy, and Accz are the normalized accelerometer values in
the X, Y, and Z axis respectively and 180

π is used to convert the angles from radians to degrees [138].

Roll = atan(
Accy

Accz
) ∗ 180

π
(14)

Pitch = atan(
−Accx√

Acc2
y + Acc2

z

) ∗ 180
π

(15)

However, there is a constraint using this method to extract the angles. These equations, besides
being simple, are known to only work for the unrealistic assumption of zero or constant velocity.
Additionally, there is no way to calculate the yaw angle (heading). Yaw angle can be measured by rate
of gyroscope and magnetometer and not only with accelerometer values [138]. Additionally, roll, pitch,
and yaw angles are not widely used in joint analysis in the recent years.
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Some studies measure RoM by using unit quaternions and/or Euler angles [22,40,65].
A quaternion is a 4-tuple whose primary application is in a quaternion rotation operator that can offer
fundamental computational, operational, and/or implementation and data handling over conventional
rotation matrices [139]. The problem with unit quaternions is that the four quaternion parameters do
not have intuitive meaning, a quaternion must have a unity norm to be a pure rotation, and it is harder
to understand [140]. Euler angles are popular since they are easy to understand and use. Certain
important functions of Euler angles have singularities and they are less accurate than unit quaternions
when measuring incremental changes over time [140]. However, according to the International Society
of Biomechanics (ISB) recommendations, Euler angles are preferred for joint coordinate systems of
various upper body and lower body joints for the reporting of human joint motion [141,142].

Joint coordinate system has been established by the ISB in order to report joint motion. There
are two main reasons of why the joint coordinate system has been established: (1) lack of standard
reporting for joint motion in biomechanics for human movements, making comparisons among studies
more difficult, (2) and the advantage of reporting joint motion in clinically relevant terms, making
interpretations easier for clinicians and researchers [141]. The joint coordinate system recommend by
the ISB established a Cartesian coordinate system for each of the two adjacent body segments that are
defined based on bony landmarks [141]. The system is established for both two cases: fixed body and
"floating" or moving body and includes three rotational and three translational components. For joint
coordinate systems illustrations, refer to studies by Wu et al. [141,142].

The location of the sensors depends on which RoM angles are intended to be measured. One study
introduced the use of a smartphone mounted to subject’s back to measure back inclination while
subjects stood up and sat down [52]. Other researchers mounted IMUs to the thighs and shanks to
extract Euler angles and measure knee flexion [25]. Kanzler et al. mounted an IMU on a shoe while
subjects performed walking exercises to measure ankle joint angles using quaternions [39].

5.4. Validation against a Gold Standard

Gold standard methods in this review are categorized into two types: non-instrumented and
instrumented. The non-instrumented gold standard methods in gait, balance, and RoM analysis are
composed of subjective assessments, such as the assessments mentioned in Section 5.2, whereby expert
give a score to the subject based on subjective observation. On the other hand, instrumented gold
standard methods in gait, balance, and RoM analysis are the goniometer, optoelectronic systems,
and force platforms due to the capability of attaining objective data. Validation against gold standard
was presented by some of the articles selected in this review to validate the accuracy and application
of wearable sensors to quantify gait, balance, and RoM parameters. A total of 57.14% of the articles
included in this systematic review validated their results against a gold standard, 26.79% validated
against a non-instrumented gold standard method, and 47.86% validated against an instrumented
gold standard system.

6. Discussion

This systematic review discusses the evidence for the use of wearable sensors to enhance gait,
balance, and RoM analysis in both research and in clinic. An overview of the most common wearable
devices, their technical issues, and the parameters generated to define gait, balance, and RoM was
provided. Wearable sensor systems have made it possible to obtain locomotion measurements in
real time by placing devices on different parts of the body. Additionally, wearable sensors can be
used anywhere to provide less expensive and portable gait, balance, and RoM analysis measurements.
The literature on this topic is extensive and it is clearly the trend in developing and improving wearable
gait, balance, and RoM analysis systems.
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6.1. Revealing Features in Population

Researchers perform gait, balance, and RoM analysis using wearable sensors for several purposes
including: to reveal features that describe a population, to study changes in patient characteristics
over time, and to analyze the effect of interventions. This is possible due to the capability of wearable
sensors to provide quantitative and objective measurements of gait, balance, and RoM parameters.
People with neurological disorders and the elderly [24,27,28,48,49,72,76] and the elderly [50,63,68,75]
are common target populations. Often, the goal of studies that focus on these populations is to assess
the efficacy of rehabilitation or pharmacologic interventions or to evaluate falling behavior.

A study of individuals with Alzheimer’s Disease (AD) showed that the number of strides,
stride length, stride speed, and stride time extracted from wearable devices served as strong indicators
for early diagnosis of AD [28]. Another study showed that, for quiet stance with eyes closed,
people with Multiple Sclerosis (MS) have a greater sway acceleration amplitude than healthy controls
[24]. Moreover, multiple studies that investigated people with Parkinson’s disease (PD) have shown
that wearable sensor measurements serve as indicators to distinguish between people with PD
and healthy subjects and also serve as an assessment of the efficacy of rehabilitation and drug
interventions [27,48,49,56,59,76].

Research with elderly populations has shown that postural sway parameters, statistical features,
such as mean and coefficient of variation, and step length extracted from wearable devices can be used
to categorize falling behavior [50]. However, another study of the elderly demonstrated that smart
devices are not recommended for regular stance in conditions such as eyes open, eyes closed, and dual
task since they demonstrated weak to moderate correlations between the force plate center of pressure
and smart device measures. Although, they found that the correlations between the force plate center
of pressure and smart device measures were high for semi-tandem, tandem, and single leg stance
conditions, showing the possibilities of the use of smart devices to evaluate such conditions [68].

These studies show the ability to perform tele-health rehabilitation to monitor home exercise
programs, especially for targeted populations who may have difficulty going to a research laboratory
to perform the assessments. Additionally, wearable devices show a high possibility to assess the
quality of natural locomotion out in the community. It is important to note that these systems should
be validated against gold standard assessments and instruments to show more clinically relevant
parameters. Comparing wearable devices to gold standards methodologies proof the feasibility,
reliability, and validity of wearable devices for gait, balance, and ROM analysis.

6.2. Biofeedback

Researchers have used objective measurements extracted from wearable sensors to provide
biofeedback [23,26]. Biofeedback information can be provided visually, auditorily, and/or tactilely.
Visual biofeedback can be difficult when using wearable devices for assessment. However, using smart
devices this issue can be addressed since most of the smart devices provide small and portable screens.
Additionally, auditory biofeedback can be implemented in such devices by using earphones, adding
the capability of having both types of feedback occurring at the same time. This dual feedback can
be used with one portable device and can be very beneficial for patients who benefit from feedback,
such as those with Parkinson’s disease [23,65]. On the other hand, tactile biofeedback systems are
designed to provide stimulation to the surface of the skin with electrical signals or vibrations [26].
Tactile biofeedback is not recommended since applying such stimulations can be obtrusive and it can
affect subject performance during the assessment; particularly, if they are performing gait, balance or
other functional tasks.
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6.3. Wearable Sensor Technology Validation

It is important to highlight that in gait, balance, and ROM analysis there are gold standard
assessments and instruments. These gold standard methodologies are often used to evaluate the
performance of parameter quantification when using wearable devices. In balance analysis, a study
concluded that there is a strong inverse correlation between the Balance Error Scoring System (BESS)
and inertial sensor measurements [29]. However, another study used the BESS and a force platform
to validate the use of smart devices and track center of gravity movement of the subject [32,33].
They found a mean absolute error between 5.87% to 10.42% compared to the force platform measures.
On the other hand, a study used the Tinetti Test, BESTest, an optoelectronic system, and a force
platform to validate IMUs measurements [47]. They reported correlations between 0.5980 and 0.8658
for static exercises with eyes open or eyes closed when comparing the force platform measurements
and the center of mass displacement estimation from the IMUs [47].

In gait analysis, optoelectronic systems and pressure mats are the most common gold standard
instruments used to validate wearable sensor measurements. High correlations between pace, postural,
rhythm and phases parameters have been documented in the literature. On the other hand, that is
not always the case for variability and symmetry measurements. A study conducted a detailed
investigation to explain the poor agreement between parameters extracted from wearable devices
and a pressure mat [37]. The study determined that the poor agreement was due to inherent
differences between the two systems rather than an inability of the wearable sensor to measure
the gait characteristics [37].

In ROM analysis, a study concluded that although goniometry is a reasonably accurate method to
measure joint angles in static situations, it is not precise to measure the angle of catch in individual
patients [22]. However, there are studies that have evaluated the validity of IMUs and smart devices
to measure joint angles against an optoelectronic system. These studies demonstrate that wearable
devices are reliable to measure joint angles, where the error usually ranges between 1◦–6◦ [34,38–41,58].

Studies included in this review that validated their results with gold standard methodologies
show discrepancies related to assessment of gait, balance, and ROM. Some studies highly recommend
the use of wearable sensors to assess balance; others report variable and not as strong results. However,
they introduced the possibilities for future use of wearable devices and suggest potential improvements.
Additionally, these results highlight the importance of caution when selecting a reference system for
validation studies. Validity is important since it will help ensure that researchers truly measure gait,
balance, and ROM in an accurate and objective manner.

6.4. Machine Learning in Gait, Balance, and RoM

Machine learning has been playing an important role in gait, balance, and RoM analysis
in recent years. Machine learning techniques can be used to quantify gait, balance, and ROM
parameters [35,36,62,66,70], distinguish between populations and conditions [45,46,51,61], and estimate
assessments scores [74,75]. The techniques used in the literature showed the efficiency of machine
learning to reduce and create gait, balance, and RoM parameters. Machine learning has the capability
to converge to global optimum, even in non-linear datasets. Additionally, studies in this review
that used machine learning techniques showed the highest accuracy, 88–99%, for both parameter
quantification and population/condition classification. Moreover, recent studies showed that gait and
balance assessments scores, such as Berg Balance Score and Tinetti Test Scores, can be estimated by
using features extracted from wearable devices and machine learning models [74,75].

However, the amount of data from different subjects and the time needed to train the algorithms
in order to have a reliable and accurate model is immense. Additionally, most of the research builds
classification models focused on a binary classification, healthy versus non-healthy, limiting the
adaptability and reliability for different targeted population. Also, the selection of features might be
constrained by the number of subjects that participate in the study [74]. At last, when using models
based on activities from gold standard assessments, the person needs to perform all the activities in
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which the model was constructed. Therefore, the model may not be feasible in a free living environment
due to that some activities may be difficult to perform in such environment [75].

6.5. Limitations

Some of the studies included in this review had similar limitations: small sample size, lack of
description of inclusion/exclusion criteria, and data loss was not reported. Additionally, there were
studies that did not provide sufficient information about the protocols followed to perform assessments,
making it difficult to make comparisons among studies. A limitation of the studies is that the results
presented mostly represent the use of wearable sensors in controlled environments or laboratory
settings. Furthermore, most of the studies did not include a long-term follow-up assessment. Research
in work and home environments as well as long-term follow-up studies are needed in order to consider
the use of wearable sensor technologies to assess gait, balance, and RoM in daily life. By monitoring
activities of daily living, early detection of walking deviations and assessments of the ability of an
individual to live independently in their community will be more complete, reliable, and correlated
to individual’s usual behavior. Another limitation is that optimum sensor locations to extract gait,
balance, and RoM parameters are still inconclusive due to the variety of locations used in the literature.
This affected the level of obtrusiveness in some studies since they used multiple devices attempting to
get as much reliable data as possible. Knowledge of the most optimal sensor locations will help future
research to reduce processing power and energy consumption needed to extract gait, balance, and
RoM parameters. Furthermore, this will also decrease the level of obtrusiveness. If obtrusiveness is
minimized, it may not interfere with trial results as much since the subjects may feel more comfortable
participating in the trial.

7. Conclusions and Future Research

This paper is a systematic review of the literature in wearable sensor technology for analysis of
gait, balance, and RoM. There is a high demand for wearable sensor technology in these analyses
due to the high level of portability that they afford. Wearable sensor systems allow clinicians and
researchers to analyze gait, balance and RoM not only in the research lab, but also in the clinic and out
the community. But, before wearable sensors can be useful as clinical devices, methods must be valid
and reliable, and the data provided by these systems should be accurate, informative and practical.
At present, most body worn sensor systems are not affordable for most clinics and require experience
in data analysis to interpret the results.

The studies reviewed in this paper have contributed to information on the use of wearable sensors
in gait, balance and RoM analysis, however, further validation and improvements in these systems are
needed. Based on this review of the literature, future research should focus on the design of wearable
sensor systems that are affordable and more simple to use clinically or in the community. Calculations
for gait parameters such as step length, step width, and walk deviation using wearable sensors need
to be improved upon. Balance assessment using wearable sensors could be further developed with
parameters that are correlated with gait parameters. Lastly, the integration of values extracted from
time-series symmetry calculation, such as dynamic time warping and autocorrelation, to measure gait
variability using wearable sensors should be investigated.
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Abbreviations

The following abbreviations are used in this manuscript:

AD Alzheimer’s Disease
AP Anteroposterior
AV Acceleration Variance
BESS Balance Error Scoring System
BBS Berg Balance Score
CoM Center of Mass
CTSIB Clinical Test of Sensory Interaction and Balance
DTW Dynamic Time Warping
EMG Electromyography
FA Friedreich’s ataxia
FGA Functional Gait Assessment
FoG Freezing of Gait
FRT Functional Reach Test
GVI Gait Variability Index
IMU Inertial Measurement Unit
ISB International Society of Biomechanics
KNN K-Nearest Neighbors
LyE Lyapunov Exponent
MAE Mean Absolute Error
ML Mediolateral
MS Multiple Sclerosis
PCC Pearson Correlation Coefficient
PD Parkinson’s Disease
RMSE Root Mean Square Error
RoM Range of Motion
SEM Standard Error of Measurement
SEMG Surface Electromyography
SL Step length
SLST Single Leg Stance Test
STA Soft Tissue Artifact
STD Standard Deviation
STS Sit to Stand
SVM Support Vector Machine
TUG Time Up and Go
WF Walking Frequency
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