Applications of Capacitive Imaging in Human Skin Texture and Hair Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Measurement Apparatus
2.2. Measurement Depth Simulation
= the electric potential |
= the surface charge density and |
= the dielectric of the insulating material under examination |
= the outer electrode radius |
= the inner electrode radius |
z = the perpendicular point distance from the center of the sensor surface |
2.3. Analysis of Capacitive Image
2.3.1. Skin Polygons Detection
2.3.2. Feature Length Estimation
= Greyscale level |
= Kronecker delta |
= I(x,y) |
= I(x + dcos, y + dsin) |
2.3.3. Hair Water Content
3. Results
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Johnsen, G.K. Skin Electrical Properties and Physical Aspects of Hydration of Keratinized Tissues. Ph.D. Thesis, University of Oslo, Oslo, Norway, 2010. [Google Scholar]
- Isik, B.; Gurel, M.S.; Erdemir, A.T.; Kesmezacar, O. Development of skin aging scale by using dermoscopy. Skin Res. Technol. 2013, 19, 69–74. [Google Scholar] [CrossRef] [PubMed]
- Bontozoglou, C.; Zhang, X.; Patel, A.; Lane, M.E.; Xiao, P. In Vivo Human Hair Hydration Measurements by Using Opto-Thermal Radiometry. Int. J. Thermophys. 2019, 40, 22. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.J.; Dhond, R.P.; Sorin, W.V.; Nelson, J.S.; Newton, S.A.; Milner, T.E. Characterization of human scalp hairs by optical low-coherence reflectometry. Opt. Lett. 1995, 20, 524. [Google Scholar] [CrossRef] [PubMed]
- iStock.com/Paladjai. Vol.2 Structure of the Skin Info Graphics Illustration Vector on White Background. Beauty Concept. Stock Illustration. Available online: https://www.istockphoto.com/ (accessed on 17 December 2019).
- iStock.com/Iv__design. Science of Hair. Anatomical Training Poster. Hair Structure. Detailed Medical Vector Illustration Stock Illustration. Available online: https://www.istockphoto.com/ (accessed on 17 December 2019).
- Zhang, X.; Bontozoglou, C.; Chirikhina, E.; Lane, M.E.; Xiao, P. Capacitive Imaging for Skin Characterizations and Solvent Penetration Measurements. Cosmetics 2018, 5, 52. [Google Scholar] [CrossRef]
- Corcuff, P.; de Lacharrière, O.; Lévêque, J.L. Extension-induced changes in the microrelief of the human volar forearm: Variations with age. J. Gerontol. 1991, 46, M223–M227. [Google Scholar] [CrossRef] [PubMed]
- Zahouani, H.; Djaghloul, M.; Vargiolu, R.; Mezghani, S.; Mansori, M.E.L. Contribution of human skin topography to the characterization of dynamic skin tension during senescence: Morpho-mechanical approach. J. Phys. Conf. Ser. 2014, 483, 012012. [Google Scholar] [CrossRef]
- Gao, Q.; Yu, J.; Wang, F.; Ge, T.; Hu, L.; Liu, Y. Automatic measurement of skin textures of the dorsal hand in evaluating skin aging. Skin Res. Technol. 2013, 19, 145–151. [Google Scholar] [CrossRef]
- Trojahn, C.; Dobos, G.; Schario, M.; Ludriksone, L.; Blume-Peytavi, U.; Kottner, J. Relation between skin micro-topography, roughness, and skin age. Skin Res. Technol. 2015, 21, 69–75. [Google Scholar] [CrossRef]
- Wosu, A.C.; Valdimarsdóttir, U.; Shields, A.E.; Williams, D.R.; Williams, M.A. Correlates of cortisol in human hair: Implications for epidemiologic studies on health effects of chronic stress. Ann. Epidemiol. 2013, 23, 797–811.e2. [Google Scholar] [CrossRef] [Green Version]
- Kristensen, S.K.; Larsen, S.C.; Olsen, N.J.; Fahrenkrug, J.; Heitmann, B.L. Hair dyeing, hair washing and hair cortisol concentrations among women from the healthy start study. Psychoneuroendocrinology 2017, 77, 182–185. [Google Scholar] [CrossRef]
- Boll, M.S.; Doty, K.C.; Wickenheiser, R.; Lednev, I.K. Differentiation of hair using ATR FT-IR spectroscopy: A statistical classification of dyed and non-dyed hairs. Forensic Chem. 2017, 6, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Barba, C.; Méndez, S.; Martí, M.; Parra, J.L.; Coderch, L. Water content of hair and nails. Thermochim. Acta 2009, 494, 136–140. [Google Scholar] [CrossRef]
- Leveque, J.L.; Querleux, B. SkinChipR, a new tool for investigating the skin surface in vivo. Skin Res. Technol. 2003, 9, 343–347. [Google Scholar] [CrossRef] [PubMed]
- Batisse, D.; Giron, F.; Lévêque, J.L. Capacitance imaging of the skin surface. Skin Res. Technol. 2006, 12, 99–104. [Google Scholar] [CrossRef] [PubMed]
- Bevilacqua, A.; Gherardi, A. Age-related skin analysis by capacitance images. In Proceedings of the 17th International Conference on Pattern Recognition, ICPR 2004, Cambridge, UK, 26–26 August 2004. [Google Scholar]
- Xhauflaire-Uhoda, E.; Piérard, G.E. Skin capacitance imaging of acne lesions. Skin Res. Technol. 2007, 13, 9–12. [Google Scholar] [CrossRef]
- Bazin, R.; Laquieze, S.; Rosillo, A.; Lévêque, J.L. Photoaging of the chest analyzed by capacitance imaging. Skin Res. Technol. 2010, 16, 23–29. [Google Scholar] [CrossRef]
- Xhauflaire-Uhoda, E.; Mayeux, G.; Quatresooz, P.; Scheen, A.; Piérard, G.E. Facing up to the imperceptible perspiration. Modulatory influences by diabetic neuropathy, physical exercise and antiperspirant. Skin Res. Technol. 2011, 17, 487–493. [Google Scholar] [CrossRef]
- Pan, W.; Zhang, X.; Lane, M.; Xiao, P. The occlusion effects in capacitive contact imaging for in vivo skin damage assessments. Int. J. Cosmet. Sci. 2015, 37, 395–400. [Google Scholar] [CrossRef] [Green Version]
- Bevilacqua, A.; Gherardi, A. Characterization of a capacitive imaging system for skin surface analysis. In Proceedings of the 2008 First Workshops on Image Processing Theory, Tools and Applications, Sousse, Tunisia, 23–26 November 2008; IEEE: Piscataway, NJ, USA, 2008; pp. 1–7. [Google Scholar] [CrossRef]
- Huang, X.; Cheng, H.; Chen, K.; Zhang, Y.; Zhang, Y.; Liu, Y.; Zhu, C.; Chi Ouyang, S.; Kong, G.W.; Yu, C.; et al. Epidermal Impedance Sensing Sheets for Precision Hydration Assessment and Spatial Mapping. IEEE Trans. Biomed. Eng. 2013, 60, 2848–2857. [Google Scholar] [CrossRef]
- Bauer, H. Courage + Khazaka Electronic, Köln-Corneometer® CM 825 (E). Available online: https://www.courage-khazaka.de/en/scientific-products/all-products/16-wissenschaftliche-produkte/alle-produkte/183-corneometer-e (accessed on 1 July 2019).
- Barel, A.O.; Clarys, P. Skin Capacitance. In Non Invasive Diagnostic Techniques in Clinical Dermatology; Springer-Verlag: Berlin/Heidelberg, Germany, 2014; pp. 357–366. [Google Scholar]
- Biox Epsilon Model E100 Specifications. Available online: https://www.biox.biz/Products/Epsilon/E100PSpecs.php (accessed on 1 July 2019).
- Agros2D. Available online: http://www.agros2d.org/ (accessed on 18 December 2019).
- Cheng, H.; Zhang, Y.; Huang, X.; Rogers, J.A.; Huang, Y. Analysis of a concentric coplanar capacitor for epidermal hydration sensing. Sens. Actuators A Phys. 2013, 203, 149–153. [Google Scholar] [CrossRef]
- Achanta, R.; Shaji, A.; Smith, K.; Lucchi, A.; Fua, P.; Süsstrunk, S. SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 34, 2274–2282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Felzenszwalb, P.F.; Huttenlocher, D.P. Efficient Graph-Based Image Segmentation. Int. J. Comput. Vis. 2004, 59, 167–181. [Google Scholar] [CrossRef]
- Vincent, L.; Soille, P. Watersheds in digital spaces: An efficient algorithm based on immersion simulations. IEEE Trans. Pattern Anal. Mach. Intell. 1991, 13, 583–598. [Google Scholar] [CrossRef] [Green Version]
- Bontozoglou, C.; Zhang, X.; Xiao, P. Micro-relief analysis with skin capacitive imaging. Skin Res. Technol. 2019, 25, 165–170. [Google Scholar] [CrossRef]
- Bianconi, F.; Chirikhina, E.; Smeraldi, F.; Bontozoglou, C.; Xiao, P. Personal identification based on skin texture features from the forearm and multi-modal imaging. Skin Res. Technol. 2017, 23, 392–398. [Google Scholar] [CrossRef]
- Clausi, D.A. An analysis of co-occurrence texture statistics as a function of grey level quantization. Can. J. Remote Sens. 2002, 28, 45–62. [Google Scholar] [CrossRef]
- Pan, W.; Zhang, X.; Chirikhina, E.; Bontozoglou, C.; Xiao, P. Measurement of Skin Hydration with a Permittivity Contact Imaging System. In Proceedings of the IFSCC Conference Zurich 2015, Zurich, Switzerland, 21–23 September 2015. [Google Scholar]
- Pixience. The C-Cube: The New Standard for Digital Dermoscopy. Available online: https://www.pixience.com/products/presentation-2/?lang=en (accessed on 28 July 2019).
- SHT3x (RH/T)—Digital Humidity Sensor | Sensirion. Available online: https://www.sensirion.com/en/environmental-sensors/humidity-sensors/digital-humidity-sensors-for-various-applications/ (accessed on 31 May 2019).
- Xiao, P.; Bontozoglou, C. Capacitive contact imaging for in-vivo hair and nail water content measurements. H & PC 2015, 10, 62–65. [Google Scholar]
- Xiao, P.; Ciortea, LI.; Bontozoglou, C.; Imhof, R.E. Hair Water Content & Water Holding Capacity Measurements. In Proceedings of the 7th International Conference on Applied Hair Science, Red Bank, NJ, USA, 8–9 June 2016. [Google Scholar]
Age | 12 | 16 | 26 | 28 | 31 | 48 | 48 | 50 | 60 | 60 | 64 | 74 | p-Value | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Polygons/mm2 | 12.1 | 10.7 | 11.6 | 10.9 | 10.3 | 10.4 | 8.8 | 7.9 | 8.0 | 7.7 | 6.0 | 8.8 | −0.71 | <0.0006 |
Apparatus | R2 | R3 | R4 | R2 |
---|---|---|---|---|
C-Cube [mm] | 0.6 | 0.9 | 1.1 | - |
Epsilon E100 [mm] | 0.7 | 0.8 | 1.0 | 0.9 |
Water Content [%] | 75% Water Loss [s] | |||||
---|---|---|---|---|---|---|
%RH | Age 30 | Age 33 | Age 50 | Age 30 | Age 33 | Age 50 |
85 | 6.0 | 3.9 | 4.1 | 2625 | 2810 | 2377 |
75 | 4.7 | 3.3 | 3.7 | 1728 | 2135 | 1100 |
67 | 3.8 | 3.0 | 3.4 | 1490 | 1604 | 914 |
0.99 | 0.97 | 0.99 | - | - | - |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bontozoglou, C.; Xiao, P. Applications of Capacitive Imaging in Human Skin Texture and Hair Analysis. Appl. Sci. 2020, 10, 256. https://doi.org/10.3390/app10010256
Bontozoglou C, Xiao P. Applications of Capacitive Imaging in Human Skin Texture and Hair Analysis. Applied Sciences. 2020; 10(1):256. https://doi.org/10.3390/app10010256
Chicago/Turabian StyleBontozoglou, Christos, and Perry Xiao. 2020. "Applications of Capacitive Imaging in Human Skin Texture and Hair Analysis" Applied Sciences 10, no. 1: 256. https://doi.org/10.3390/app10010256
APA StyleBontozoglou, C., & Xiao, P. (2020). Applications of Capacitive Imaging in Human Skin Texture and Hair Analysis. Applied Sciences, 10(1), 256. https://doi.org/10.3390/app10010256