An Ultra-Wideband Microwave Photonic Channelized Receiver with Zero-IF Architecture
Abstract
:1. Introduction
2. Principle
3. Results and Discussion
3.1. Generation of Polarization Multiplexed Signals
3.2. Balanced Detection and IQ Demodulation
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sevenhans, J.; Verstraeten, B.; Taraborrelli, T. Trends in silicon radio large scale integration: Zero IF receiver! Zero I&Q transmitter! Zero discrete passives! IEEE Commun. Mag. 2000, 38, 142–147. [Google Scholar]
- Nakazawa, M.; Hirooka, T.; Ruan, P.; Guan, P. Ultrahigh-speed “orthogonal” TDM transmission with an optical Nyquist pulse train. Opt. Express 2012, 20, 1129–1140. [Google Scholar] [CrossRef] [PubMed]
- Hirooka, T.; Nakazawa, M. Linear and nonlinear propagation of optical Nyquist pulses in fibers. Opt. Express 2012, 20, 19836–19849. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Huo, L.; Xing, Y.; Zhou, B. Ultra-flat optical frequency comb generator using a single-driven dual-parallel Mach-Zehnder modulator. Opt. Lett. 2014, 39, 3050–3053. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.X.; Zhu, N.H.; Li, W.; Wang, H.; Zheng, J.Y.; Liu, J.G. Polarization division multiplexed photonic radio-frequency channelizer using an optical comb. Opt. Commun. 2013, 286, 282–287. [Google Scholar] [CrossRef]
- Wang, J.J.; Chen, M.H.; Liang, Y.H.; Chen, H.W.; Yang, S.G.; Xie, S.Z. Broadband RF front-end using microwave photonics filter. Opt. Express 2015, 23, 839–845. [Google Scholar] [CrossRef] [PubMed]
- Tang, Z.; Pan, S. Image-reject mixer with large suppression of mixing spurs based on a photonic microwave phase shifter. J. Lightwave Technol. 2016, 34, 4729–4735. [Google Scholar] [CrossRef]
- Yang, X.W.; Xu, K.; Yin, J.; Dai, Y.T.; Yin, F.F.; Li, J.Q.; Lu, H.; Liu, T. Optical frequency comb based multi-band microwave frequency conversion for satellite applications. Opt. Express 2014, 22, 869–877. [Google Scholar] [CrossRef] [PubMed]
- Tang, Z.Z.; Zhu, D.; Pan, S.L. Coherent optical RF channelizer with large instantaneous bandwidth and large in-band interference suppression. J. Lightwave Technol. 2018, 36, 4219–4226. [Google Scholar] [CrossRef]
- Gao, Y.S.; Wen, A.J.; Zhang, W.; Jiang, W.; Ge, J.H.; Fan, Y.Y. Ultra-wideband photonic microwave I/Q mixer for zero-IF receiver. IEEE Trans. Microw. Theory Tech. 2017, 65, 4513–4525. [Google Scholar] [CrossRef]
- Gao, Y.S.; Wen, A.J.; Jiang, W.; Fan, Y.Y. All-optical and broadband microwave fundamental/sub-harmonic I/Q down-converters. Opt. Express 2018, 26, 7336–7350. [Google Scholar] [CrossRef] [PubMed]
- Tang, Z.Z.; Pan, S.L. A reconfigurable photonic microwave mixer using a 90° optical hybrid. IEEE Trans. Microw. Theory Tech. 2016, 64, 3017–3025. [Google Scholar] [CrossRef]
- Tang, Z.; Zhang, F.; Pan, S.L. Photonic microwave downcon-verter based on an optoelectronic oscillator using a single dual-drive Mach–Zehnder modulator. Opt. Express 2014, 22, 305–310. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.S.; Wen, A.J.; Wu, X.; Wang, Y.; Zhang, H. Efficient photonic microwave mixer with compensation of the chromatic dispersion-induced power fading. J. Lightwave Technol. 2016, 34, 3440–3448. [Google Scholar] [CrossRef]
- Pagán, V.R.; Murphy, T.E. Electro-optic millimeter-wave harmonic downconversion and vector demodulation using cascaded phase modulation and optical filtering. Opt. Lett. 2015, 40, 2481–2484. [Google Scholar] [CrossRef] [PubMed]
- Zou, X.; Lu, B.; Pan, W.; Yan, L.; Stöhr, A.; Yao, J. Photonics for microwave measurements. Laser Photonics Rev. 2016, 10, 711–734. [Google Scholar] [CrossRef] [Green Version]
- Jiang, W.; Zhao, S.H.; Tan, Q.G.; Liang, D.; Li, X.J.; Gao, Y.S. Wideband photonic microwave channelization and image-reject down-conversion. Opt. Commun. 2019, 445, 41–49. [Google Scholar] [CrossRef]
- Li, Y.; Wu, J.; Yu, J.; Kong, D.M.; Li, W. Generation and performance Investigation of 40GHz phase stable and pulse width-tunable optical time window based on a DPMZM. Opt. Express 2012, 20, 24754–24760. [Google Scholar]
- Wu, J.; Zang, J.Z.; Li, Y.; Kong, D.M.; Qiu, J.F. Investigation on Nyquist pulse generation using a single dual-parallel Mach-Zehnder modulator. Opt. Express 2014, 22, 20463–20472. [Google Scholar] [CrossRef] [PubMed]
- Vagionas, C.; Papaioannou, S.; Kalfas, G.; Pleros, N. A six-channel mmWave/IFoF link with 24Gb/s capacity for 5G fronthaul networks. In Proceedings of the 2018 International Topical Meeting on Microwave Photonics (MWP), Toulouse, France, 22–25 October 2018. [Google Scholar]
- Kalfas, G.; Vagionas, C.; Antonopoulos, A.; Kartsakli, E. Next generation Fiber-Wireless fronthaul for 5G mmWave networks. IEEE Commun. Mag. 2019, 57, 138–144. [Google Scholar] [CrossRef]
Component | Parameters |
---|---|
LD | power of 10 dBm; linewidth 1 kHz; relative intensity noise (RIN) of −160 dB |
LO1 | amplitude of 10 dBm; frequency 0.6 G |
DPMZM1 | insertion loss of 6 dB; Vπ = 3.5 V; V1a = 3.15 V; V1b = −6.23 V; V1c = 0 V |
LO2 | amplitude of 8 dBm; frequency 10 G |
DPMZM2 | insertion loss of 6 dB; Vπ = 3.5 V; V2a = 0 V; V2b = 0.83 V; V2c = 0 V |
OBPF | center frequency of 20 G; bandwidth of 30 G |
MZM | insertion loss of 6 dB; Vπ = 3.5 V; Vdc = 1.75 V; |
narrowband OBPFs | center frequencies of 18.8 GHz, 19.4 GHz, 20 GHz, 20.6 GHz, and 21.2 GHz, respectively; bandwidth of 600 M |
Sub-Channel | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|
1 | 0 | 25.5 dB | 26.5 dB | 27.5 dB | 28.5 dB |
2 | 25.5 dB | 0 | 25.5 dB | 26.5 dB | 27.5 dB |
3 | 26.5 dB | 25.5 dB | 0 | 25.5 dB | 26.5 dB |
4 | 27.5 dB | 26.5 dB | 25.5 dB | 0 | 25.5 dB |
5 | 28.5 dB | 27.5 dB | 26.5 dB | 25.5 dB | 0 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, B.; Fan, Y.; Tian, Z.; Wang, W.; Kang, B.; Jiang, W.; Gao, Y. An Ultra-Wideband Microwave Photonic Channelized Receiver with Zero-IF Architecture. Appl. Sci. 2020, 10, 30. https://doi.org/10.3390/app10010030
Chen B, Fan Y, Tian Z, Wang W, Kang B, Jiang W, Gao Y. An Ultra-Wideband Microwave Photonic Channelized Receiver with Zero-IF Architecture. Applied Sciences. 2020; 10(1):30. https://doi.org/10.3390/app10010030
Chicago/Turabian StyleChen, Bo, Yangyu Fan, Zhou Tian, Wuying Wang, Bochao Kang, Wei Jiang, and Yongsheng Gao. 2020. "An Ultra-Wideband Microwave Photonic Channelized Receiver with Zero-IF Architecture" Applied Sciences 10, no. 1: 30. https://doi.org/10.3390/app10010030
APA StyleChen, B., Fan, Y., Tian, Z., Wang, W., Kang, B., Jiang, W., & Gao, Y. (2020). An Ultra-Wideband Microwave Photonic Channelized Receiver with Zero-IF Architecture. Applied Sciences, 10(1), 30. https://doi.org/10.3390/app10010030