Zeolite Synthesis Using Imidazolium Cations as Organic Structure-Directing Agents
Abstract
:Featured Application
Abstract
1. Introduction
2. LABPEMOL Case Study: First Synthesis Method Using Imidazolium Derivatives
3. LABPEMOL Case Study: New OSDAs Based on the Imidazolium Cation
4. LABPEMOL Case Study: Al Insertion into the Zeolitic Framework
5. LABPEMOL Case Study: SAPO Synthesis Using Imidazolium Derivatives
6. Conclusions and Prospects
7. Patents
Funding
Acknowledgments
Conflicts of Interest
References
- Mintova, S.; Barrier, N. Verified Synthesis of Zeolitic Materials, 3rd ed.; Elsevier (on behalf of the Synthesis Commission of the International Zeolite Association): Amsterdam, The Netherlands, 2016; ISBN 978-0-692-68539-6. [Google Scholar]
- Pace, G.G. Zeolitas: Características, Propriedades e Aplicaciones Industriales, 2nd ed.; Editorial Innovación Tecnológica, Facultad de Ingeniería, UCV: Caracas, Venezuela, 2000. [Google Scholar]
- Cundy, C.S.; Cox, P.A. The Hydrothermal Synthesis of Zeolites: History and Development from the Earliest Days to the Present Time. Chem. Rev. 2003, 103, 663–702. [Google Scholar] [CrossRef]
- Davis, M.E. Zeolites from a Materials Chemistry Perspective. Chem. Mater. 2014, 26, 239–245. [Google Scholar] [CrossRef]
- Bieseki, L.; Simancas, R.; Jordá, J.L.; Bereciartua, P.J.; Cantín, Á.; Simancas, J.; Pergher, S.B.; Valencia, S.; Rey, F.; Corma, A. Synthesis and structure determination via ultra-fast electron diffraction of the new microporous zeolitic germanosilicate ITQ-62. Chem. Commun. 2018, 54, 2122–2125. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.H.; Xie, D.; Zones, S.I.; Smeets, S.; McCusker, L.B.; Davis, M.E. Synthesis and Characterization of CIT-13, a Germanosilicate Molecular Sieve with Extra-Large Pore Openings. Chem. Mater. 2016, 28, 6250–6259. [Google Scholar] [CrossRef] [Green Version]
- Rojas, A.; Arteaga, O.; Kahr, B.; Camblor, M.A. Synthesis, Structure, and Optical Activity of HPM-1, a Pure Silica Chiral Zeolite. J. Am. Chem. Soc. 2013, 135, 11975–11984. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baerlocher, C.; McCusker, L.B.; Olson, D.H. Atlas of Zeolite Framework Types, 6th ed.; Atlas of Zeolite Framework Types; Elsevier: Amsterdam, The Netherlands, 2007; ISBN 978-0-08-055434-1. [Google Scholar]
- Lobo, R.F.; Zones, S.I.; Davis, M.E. Structure-direction in zeolite synthesis. J. Incl. Phenom. Mol. Recognit. Chem. 1995, 21, 47–78. [Google Scholar]
- Moliner, M. Design of Zeolites with Specific Architectures Using Self-Assembled Aromatic Organic Structure Directing Agents. Top. Catal. 2015, 58, 502–512. [Google Scholar] [CrossRef]
- Moliner, M.; Rey, F.; Corma, A. Towards the Rational Design of Efficient Organic Structure-Directing Agents for Zeolite Synthesis. Angew. Chem. Int. Ed. 2013, 52, 13880–13889. [Google Scholar] [CrossRef]
- Bibby, D.M.; Dale, M.P. Synthesis of silica-sodalite from non-aqueous systems. Nature 1985, 317, 157–158. [Google Scholar] [CrossRef]
- Kokotailo, G.T.; Lawton, S.L.; Olson, D.H.; Meier, W.M. Structure of synthetic zeolite ZSM-5. Nature 1978, 272, 437–438. [Google Scholar] [CrossRef]
- Flanigen, E.M.; Bennett, J.M.; Grose, R.W.; Cohen, J.P.; Patton, R.L.; Kirchner, R.M.; Smith, J.V. Silicalite, a new hydrophobic crystalline silica molecular sieve. Nature 1978, 271, 512–516. [Google Scholar] [CrossRef]
- Katritzky, A.R.; Ramsden, C.A.; Joule, J.A.; Zhdankin, V.V. Handbook of Heterocyclic Chemistry, 3rd ed.; Elsevier Science: Amsterdam, The Netherlands, 2010; ISBN 978-0-08-095844-6. [Google Scholar]
- Cooper, E.R.; Andrews, C.D.; Wheatley, P.S.; Webb, P.B.; Wormald, P.; Morris, R.E. Ionic liquids and eutectic mixtures as solvent and template in synthesis of zeolite analogues. Nature 2004, 430, 1012–1016. [Google Scholar] [CrossRef]
- Morris, R.E. Ionothermal synthesis—Ionic liquids as functional solvents in the preparation of crystalline materials. Chem. Commun. 2009, 2990–2998. [Google Scholar] [CrossRef] [PubMed]
- Parnham, E.R.; Morris, R.E. Ionothermal Synthesis of Zeolites, Metal–Organic Frameworks, and Inorganic–Organic Hybrids. Acc. Chem. Res. 2007, 40, 1005–1013. [Google Scholar] [CrossRef] [PubMed]
- Aidoudi, F.H.; Morris, R.E. CHAPTER 10 Ionothermal Synthesis. In Catalysis in Ionic Liquids: From Catalyst Synthesis to Application; The Royal Society of Chemistry: London, England, 2014; pp. 508–536. ISBN 978-1-84973-603-9. [Google Scholar]
- Dong, L.; Zheng, D.X.; Wei, Z.; Wu, X.H. Synthesis of 1,3-Dimethylimidazolium Chloride and Volumetric Property Investigations of Its Aqueous Solution. Int. J. Thermophys. 2009, 30, 1480. [Google Scholar] [CrossRef]
- Joule, J.A.; Mills, K. 1,2-Azoles and 1,3-Azoles. In Heterocyclic Chemistry at a Glance; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2012; pp. 107–121. ISBN 978-1-118-38020-8. [Google Scholar]
- Rojas, A.; Gómez-Hortigüela, L.; Camblor, M.A. Benzylimidazolium cations as zeolite structure-directing agents. Differences in performance brought about by a small change in size. Dalton Trans. 2013, 42, 2562–2571. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Variani, Y.M.; Rojas, A.; Gómez-Hortigüela, L.; Pergher, S.B.C. Study of the performance of imidazolium-derived cations as structure directing agents in the synthesis of zeolites in fluoride media. New J. Chem. 2016, 40, 7968–7977. [Google Scholar] [CrossRef] [Green Version]
- Gao, Z.-H.; Chen, F.-J.; Xu, L.; Sun, L.; Xu, Y.; Du, H.-B. A Stable Extra-Large-Pore Zeolite with Intersecting 14- and 10-Membered-Ring Channels. Chem. A Eur. J. 2016, 22, 14367–14372. [Google Scholar] [CrossRef]
- Yuan, D.; He, D.; Xu, S.; Song, Z.; Zhang, M.; Wei, Y.; He, Y.; Xu, S.; Liu, Z.; Xu, Y. Imidazolium-based ionic liquids as novel organic SDA to synthesize high-silica Y zeolite. Microporous Mesoporous Mater. 2015, 204, 1–7. [Google Scholar] [CrossRef]
- Lu, P.; Chen, L.; Zhang, Y.; Yuan, Y.; Xu, L.; Zhang, X.; Xu, L. Rapid synthesis of ZSM-22 zeolites using imidazolium-based ionic liquids as OSDAs in fluoride media. Microporous Mesoporous Mater. 2016, 236, 193–201. [Google Scholar] [CrossRef]
- Wheatley, P.S.; Allan, P.K.; Teat, S.J.; Ashbrook, S.E.; Morris, R.E. Task specific ionic liquids for the ionothermal synthesis of siliceous zeolites. Chem. Sci. 2010, 1, 483–487. [Google Scholar] [CrossRef]
- Tian, Y.; McPherson, M.J.; Wheatley, P.S.; Morris, R.E. Ionic Liquid assisted Synthesis of Zeolite-TON. Z. Anorg. Allg. Chem. 2014, 640, 1177–1181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boal, B.W.; Deem, M.W.; Xie, D.; Kang, J.H.; Davis, M.E.; Zones, S.I. Synthesis of Germanosilicate Molecular Sieves from Mono- and Di-Quaternary Ammonium OSDAs Constructed from Benzyl Imidazolium Derivatives: Stabilization of Large Micropore Volumes Including New Molecular Sieve CIT-13. Chem. Mater. 2016, 28, 2158–2164. [Google Scholar] [CrossRef]
- Blasco, T.; Corma, A.; Díaz-Cabañas, M.J.; Rey, F.; Vidal-Moya, J.A.; Zicovich-Wilson, C.M. Preferential Location of Ge in the Double Four-Membered Ring Units of ITQ-7 Zeolite. J. Phys. Chem. B 2002, 106, 2634–2642. [Google Scholar] [CrossRef]
- Henkelis, S.E.; Mazur, M.; Rice, C.M.; Bignami, G.P.M.; Wheatley, P.S.; Ashbrook, S.E.; Čejka, J.; Morris, R.E. A procedure for identifying possible products in the assembly–disassembly–organization–reassembly (ADOR) synthesis of zeolites. Nat. Protoc. 2019, 14, 781–794. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shamzhy, M.; Opanasenko, M.; Tian, Y.; Konysheva, K.; Shvets, O.; Morris, R.E.; Čejka, J. Germanosilicate Precursors of ADORable Zeolites Obtained by Disassembly of ITH, ITR, and IWR Zeolites. Chem. Mater. 2014, 26, 5789–5798. [Google Scholar] [CrossRef]
- Mazur, M.; Wheatley, P.S.; Navarro, M.; Roth, W.J.; Položij, M.; Mayoral, A.; Eliášová, P.; Nachtigall, P.; Čejka, J.; Morris, R.E. Synthesis of ‘unfeasible’ zeolites. Nat. Chem. 2015, 8, 58–62. [Google Scholar] [CrossRef] [Green Version]
- Vinaches, P.; Rojas, A.; de Alencar, A.E.V.; Rodríguez-Castellón, E.; Braga, T.; Pergher, S.B.C. Introduction of Al into the HPM-1 Framework by In Situ Generated Seeds as an Alternative Methodology. Appl. Sci. 2018, 8, 1634. [Google Scholar] [CrossRef] [Green Version]
- Lu, P.; Gómez-Hortigüela, L.; Xu, L.; Camblor, M.A. Synthesis of STW zeolites using imidazolium-based dications of varying length. J. Mater. Chem. A 2018, 6, 1485–1495. [Google Scholar] [CrossRef]
- Lu, P.; Mayoral, A.; Gómez-Hortigüela, L.; Zhang, Y.; Camblor, M.A. Synthesis of 3D Large-Pore Germanosilicate Zeolites Using Imidazolium-Based Long Dications. Chem. Mater. 2019, 31, 5484–5493. [Google Scholar] [CrossRef]
- Brand, S.K.; Schmidt, J.E.; Deem, M.W.; Daeyaert, F.; Ma, Y.; Terasaki, O.; Orazov, M.; Davis, M.E. Enantiomerically enriched, polycrystalline molecular sieves. Proc. Natl. Acad. Sci. USA 2017, 114, 5101–5106. [Google Scholar] [CrossRef] [Green Version]
- Bernardo-Maestro, B.; López-Arbeloa, F.; Pérez-Pariente, J.; Gómez-Hortigüela, L. Supramolecular Chemistry Controlled by Conformational Space during Structure Direction of Nanoporous Materials: Self-Assembly of Ephedrine and Pseudoephedrine. J. Phys. Chem. C 2015, 119, 28214–28225. [Google Scholar] [CrossRef] [Green Version]
- Gómez-Hortigüela, L.; Hamad, S.; López-Arbeloa, F.; Pinar, A.B.; Pérez-Pariente, J.; Corà, F. Molecular Insights into the Self-Aggregation of Aromatic Molecules in the Synthesis of Nanoporous Aluminophosphates: A Multilevel Approach. J. Am. Chem. Soc. 2009, 131, 16509–16524. [Google Scholar] [CrossRef] [PubMed]
- Martínez, C.; Pariente, J.P. Zeolites and Ordered Porous Solids: Fundamentals and Applications; Universitat Politècnica de València: Valencia, Spain, 2011; ISBN 978-84-8363-707-4. [Google Scholar]
- Catlow, C.R.A.; Coombes, D.S.; Lewis, D.W.; Pereira, J.C.G. Computer Modeling of Nucleation, Growth, and Templating in Hydrothermal Synthesis. Chem. Mater. 1998, 10, 3249–3265. [Google Scholar] [CrossRef]
- Lewis, D.W.; Freeman, C.M.; Catlow, C.R.A. Predicting the Templating Ability of Organic Additives for the Synthesis of Microporous Materials. J. Phys. Chem. 1995, 99, 11194–11202. [Google Scholar] [CrossRef]
- Chen, H.; Wang, W.; Ding, J.; Wei, X.; Lu, J. CO2 Adsorption Capacity of FAU Zeolites in Presence of H2O: A Monte Carlo Simulation Study. Energy Procedia 2017, 105, 4370–4376. [Google Scholar] [CrossRef]
- Earl, D.J.; Deem, M.W. Toward a Database of Hypothetical Zeolite Structures. Ind. Eng. Chem. Res. 2006, 45, 5449–5454. [Google Scholar] [CrossRef]
- Schwalbe-Koda, D.; Jensen, Z.; Olivetti, E.; Gómez-Bombarelli, R. Graph similarity drives zeolite diffusionless transformations and intergrowth. Nat. Mater. 2019, 18, 1177–1181. [Google Scholar] [CrossRef] [Green Version]
- Lorgouilloux, Y.; Dodin, M.; Paillaud, J.-L.; Caullet, P.; Michelin, L.; Josien, L.; Ersen, O.; Bats, N. IM-16: A new microporous germanosilicate with a novel framework topology containing d4r and mtw composite building units. J. Solid State Chem. 2009, 182, 622–629. [Google Scholar] [CrossRef]
- Khoo, D.Y.; Awala, H.; Mintova, S.; Ng, E.-P. Synthesis of AlPO-5 with diol-substituted imidazolium-based organic template. Microporous Mesoporous Mater. 2014, 194, 200–207. [Google Scholar] [CrossRef]
- Martínez Blanes, J.M.; Szyja, B.M.; Romero-Sarria, F.; Centeno, M.Á.; Hensen, E.J.M.; Odriozola, J.A.; Ivanova, S. Multiple Zeolite Structures from One Ionic Liquid Template. Chem. Eur. J. 2013, 19, 2122–2130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jo, D.; Park, G.T.; Shin, J.; Hong, S.B. A Zeolite Family Nonjointly Built from the 1,3-Stellated Cubic Building Unit. Angew. Chem. 2018, 130, 2221–2225. [Google Scholar] [CrossRef]
- Simancas, R.; Dari, D.; Velamazán, N.; Navarro, M.T.; Cantín, A.; Jordá, J.L.; Sastre, G.; Corma, A.; Rey, F. Modular Organic Structure-Directing Agents for the Synthesis of Zeolites. Science 2010, 330, 1219–1222. [Google Scholar] [CrossRef] [PubMed]
- Simancas, R.; Jordá, J.L.; Rey, F.; Corma, A.; Cantín, A.; Peral, I.; Popescu, C. A New Microporous Zeolitic Silicoborate (ITQ-52) with Interconnected Small and Medium Pores. J. Am. Chem. Soc. 2014, 136, 3342–3345. [Google Scholar] [CrossRef]
- Simancas, J.; Simancas, R.; Bereciartua, P.J.; Jorda, J.L.; Rey, F.; Corma, A.; Nicolopoulos, S.; Pratim Das, P.; Gemmi, M.; Mugnaioli, E. Ultrafast Electron Diffraction Tomography for Structure Determination of the New Zeolite ITQ-58. J. Am. Chem. Soc. 2016, 138, 10116–10119. [Google Scholar] [CrossRef] [Green Version]
- Sáez-Ferre, S.; Lopes, C.W.; Simancas, J.; Vidal-Moya, A.; Blasco, T.; Agostini, G.; Espallargas, G.M.; Jordá, J.L.; Rey, F.; Oña-Burgos, P. Use of alkylarsonium directing agents for the synthesis and study of zeolites. Chem. Eur. J. 2019. [Google Scholar] [CrossRef]
- Vinaches, P.; Bernardo-Gusmão, K.; Pergher, S.B.C. An Introduction to Zeolite Synthesis Using Imidazolium-Based Cations as Organic Structure-Directing Agents. Molecules 2017, 22, 1307. [Google Scholar] [CrossRef]
- Mignoni, M.L.; de Souza, M.O.; Pergher, S.B.C.; de Souza, R.F.; Bernardo-Gusmão, K. Nickel oligomerization catalysts heterogenized on zeolites obtained using ionic liquids as templates. Appl. Catal. A Gen. 2010, 374, 26–30. [Google Scholar] [CrossRef]
- Maldonado, M.; Oleksiak, M.D.; Chinta, S.; Rimer, J.D. Controlling Crystal Polymorphism in Organic-Free Synthesis of Na-Zeolites. J. Am. Chem. Soc. 2013, 135, 2641–2652. [Google Scholar] [CrossRef]
- Dempsey, E.; Kuehl, G.H.; Olson, D.H. Variation of the lattice parameter with aluminum content in synthetic sodium faujasites. Evidence for ordering of the framework ions. J. Phys. Chem. 1969, 73, 387–390. [Google Scholar] [CrossRef]
- Macrae, C.F.; Edgington, P.R.; McCabe, P.; Pidcock, E.; Shields, G.P.; Taylor, R.; Towler, M.; van de Streek, J. Mercury: Visualization and analysis of crystal structures. J. Appl. Crystallogr. 2006, 39, 453–457. [Google Scholar] [CrossRef] [Green Version]
- Lopes, C.W.; Finger, P.H.; Mignoni, M.L.; Emmerich, D.J.; Mendes, F.M.T.; Amorim, S.; Pergher, S.B.C. TiO2-TON zeolite synthesis using an ionic liquid as a structure-directing agent. Microporous Mesoporous Mater. 2015, 213, 78–84. [Google Scholar] [CrossRef]
- Lopes, C.W.; Gómez-Hortigüela, L.; Rojas, A.; Pergher, S.B.C. Fluoride-mediated synthesis of TON and MFI zeolites using 1-butyl-3-methylimidazolium as structure-directing agent. Microporous Mesoporous Mater. 2017, 252, 29–36. [Google Scholar] [CrossRef]
- Camblor, M.A.; Villaescusa, L.A.; Díaz-Cabañas, M.J. Synthesis of all-silica and high-silica molecular sieves in fluoride media. Top. Catal. 1999, 9, 59–76. [Google Scholar] [CrossRef] [Green Version]
- Variani, Y.M.; Rojas, A.; Pergher, S.B.C. Synthesis and characterization of Ti-STF zeolite using 1,2,3-triethyl-4-methylimidazolium as structure-directing agent. Microporous Mesoporous Mater. 2018, 262, 106–111. [Google Scholar] [CrossRef]
- Vinaches, P.; Gonçalves, E.C.; Variani, Y.; Rojas, A.; Rodríguez-Castellón, E.; Pergher, S.B.C. Aluminium introduction on the STF zeolite synthesized with the organic structure-directing agent 123TE4MI. Catal. Today 2019. [Google Scholar] [CrossRef]
- Vinaches, P.; Pergher, S.B.C. Organic Structure-Directing Agents in SAPO Synthesis: The Case of 2-Ethyl-1,3,4-trimethylimidazolium. Eur. J. Inorg. Chem. 2018, 2018, 123–130. [Google Scholar] [CrossRef]
Sample | SARNMR | SARXPS |
---|---|---|
SA12T11 | 52.7 | 15.6 |
SA12T11C | 56.5 | 19.0 |
SA23T11 | 45.9 | 25.3 |
SA23T11C | 49.6 | 33.3 |
SA45T11 | 79.8 | 32.3 |
SA45T11C | 83.8 | 40.3 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vinaches, P.; Pergher, S. Zeolite Synthesis Using Imidazolium Cations as Organic Structure-Directing Agents. Appl. Sci. 2020, 10, 303. https://doi.org/10.3390/app10010303
Vinaches P, Pergher S. Zeolite Synthesis Using Imidazolium Cations as Organic Structure-Directing Agents. Applied Sciences. 2020; 10(1):303. https://doi.org/10.3390/app10010303
Chicago/Turabian StyleVinaches, Paloma, and Sibele Pergher. 2020. "Zeolite Synthesis Using Imidazolium Cations as Organic Structure-Directing Agents" Applied Sciences 10, no. 1: 303. https://doi.org/10.3390/app10010303
APA StyleVinaches, P., & Pergher, S. (2020). Zeolite Synthesis Using Imidazolium Cations as Organic Structure-Directing Agents. Applied Sciences, 10(1), 303. https://doi.org/10.3390/app10010303