A Novel Dual-Rotor Ultrasonic Motor for Underwater Propulsion
Abstract
:1. Introduction
2. Structure Design
2.1. Configuration of the Motor
2.2. Pre-Pressure Modulation Method
3. Operating Principle Analysis
4. Experimental Results and Discussions
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bogue, R. Underwater robots: A review of technologies and applications. Ind. Robot 2015, 42, 186–191. [Google Scholar] [CrossRef]
- Shi, L.; Guo, S.; Asaka, K. Development of a novel underwater microrobot with proximity sensors. In Proceedings of the 2011 IEEEIICME International Conference on Complex Medical Engineering, Harbin, China, 22–25 May 2011; pp. 69–73. [Google Scholar]
- Ambar, R.B.; Sagara, S.; Yamaguchi, T. Development of a dual-shaft propeller thruster equipped with rotational speed sensor for UVMS control. In Proceedings of the Eighteenth International Symposium on Artificial Life and Robotics 2013, Daejeon, Korea, 30 January–1 February 2013; pp. 241–247. [Google Scholar]
- Li, X.; Chen, D.; Jin, J.; Wang, L. A novel underwater piezoelectric thruster with one single resonance mode. Rev. Sci. Instrum. 2019, 90, 045007. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, Q.S.; Heo, S.; Park, H.C.; Byun, D. Performance evaluation of an improved fish robot actuated by piezoceramic actuators. Smart Mater. Struct. 2010, 19, 035030. [Google Scholar] [CrossRef]
- Nguyen, Q.S.; Heo, S.; Park, H.C.; Goo, N.S.; Kang, T.; Yoon, K.J.; Lee, S.S. A fish robot driven by piezoceramic actuators and a miniaturized power supply. Int. J. Control Autom. 2009, 7, 267–272. [Google Scholar] [CrossRef]
- Ku, K.; Bradbeer, R.S.; Lam, K.; Yeung, L.F.; Li, R. A Novel Actuator for Underwater Robots. IEEE J. Ocean. Eng. 2009, 34, 331–342. [Google Scholar] [CrossRef]
- Wiguna, T.; Park, H.C.; Heo, S.; Goo, N.S. Experimental parametric study of a biomimetic fish robot actuated by piezoelectric actuators. In Proceedings of the Active and Passive Smart Structures and Integrated Systems, San Diego, CA, USA, 27 April 2007; p. 65250R. [Google Scholar]
- Hu, Z.; Yang, Y.; Lin, Y. Failure analysis for the mechanical system of Autonomous Underwater Vehicles. In Proceedings of the 2013 International Conference on Quality, Reliability, Risk, Maintenance, and Safety Engineering, Sichuan, China, 15–18 July 2013; pp. 943–948. [Google Scholar]
- Showalter, S. The Legal Status of Autonomous Underwater Vehicles. Mar. Technol. Soc. J. 2004, 38, 80–83. [Google Scholar] [CrossRef]
- Watson, S.A.; Green, P.N. Design considerations for Micro-Autonomous Underwater Vehicles (μAUVs). In Proceedings of the 2010 IEEE Conference on Robotics, Automation and Mechatronics, Singapore, 28–30 June 2010; pp. 429–434. [Google Scholar]
- Meng, L.; Lin, Y.; Gu, H.; Xu, H.; Geng, L. A new type of small underwater robot for small scale ocean observation. In Proceedings of the 6th Annual IEEE International Conference on Cyber Technology in Automation, Control and Intelligent Systems, Chengdu, China, 19–22 June 2016; pp. 152–156. [Google Scholar]
- Uchino, K. Piezoelectric ultrasonic motors: Overview. Smart Mater. Struct. 1998, 7, 273–285. [Google Scholar] [CrossRef]
- Wen, J.; Wan, N.; Wang, R.; Chen, S.; Zheng, J.; Li, J. A Novel Linear Walking Type Piezoelectric Actuator Based on the Parasitic Motion of Flexure Mechanisms. IEEE Access 2019, 7, 25908–25914. [Google Scholar] [CrossRef]
- Wan, N.; Wen, J.; Hu, Y.; Kan, J.; Li, J. A parasitic type piezoelectric actuator with an asymmetrical flexure hinge mechanism. Microsyst. Technol. 2019, 1–8. [Google Scholar] [CrossRef]
- Zhao, C. Ultrasonic Motors: Technologies and Applications; Springer Science & Business Media: Berlin, Germany, 2011. [Google Scholar]
- Wang, L.; Lu, X.; Zhao, C.; Xue, C. A novel high-speed rotary ultrasonic motor applied to micro air vehicles. In Proceedings of the 2016 Symposium on Piezoelectricity, Acoustic Waves, and Device Applications (SPAWDA), Xi’an, China, 21–24 October 2016; pp. 186–188. [Google Scholar]
- Wang, L.; Wang, Y.; Lu, X.; Zhao, C. A new type of rotary ultrasonic motor applied to micro air vehicles. J. Vib. Meas. Diagn. 2018, 38, 170–175. [Google Scholar]
- Wang, L.; Wang, Y.; Lu, X.; Zhao, C. Note: A disk-shaft shaped high-speed rotary ultrasonic motor. Rev. Sci. Instrum. 2018, 89, 126106. [Google Scholar] [CrossRef] [PubMed]
- Hunstig, M. Piezoelectric Inertia Motors—A Critical Review of History, Concepts, Design, Applications, and Perspectives. Actuators 2017, 6, 7. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Wang, Y.; Liu, J.; Xu, D.; Li, K.; Shan, X.; Deng, J. A Four-Feet Walking-Type Rotary Piezoelectric Actuator with Minute Step Motion. Sensors 2018, 18, 1471. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Chen, W.; Shi, D.; Tian, X.; Shi, S.; Xu, D. Development of a Four-Feet Driving Type Linear Piezoelectric Actuator Using Bolt-Clamped Transducers. IEEE Access 2017, 5, 27162–27171. [Google Scholar] [CrossRef]
- Liu, J.; Liu, Y.; Zhao, L.; Xu, D.; Chen, W.; Deng, J. Design and Experiments of a Single-Foot Linear Piezoelectric Actuator Operated in a Stepping Mode. IEEE Trans. Ind. Electron. 2018, 65, 8063–8071. [Google Scholar] [CrossRef]
- Wang, L.; Hou, Y.; Zhao, K.; Shen, H.; Wang, Z.; Zhao, C.; Lu, X. A novel piezoelectric inertial rotary motor for actuating micro underwater vehicles. Sens. Actuat. A Phys. 2019, 295, 428–438. [Google Scholar] [CrossRef]
- Čeponis, A.; Mažeika, D. An inertial piezoelectric plate type rotary motor. Sens. Actuat. A Phys. 2017, 263, 131–139. [Google Scholar] [CrossRef]
- Luo, X.; Xu, J.; Luo, Q.; Wang, R. Design and research on support plate torsion spring of special electromechanical device. In Proceedings of the IEEE 2011 Second International Conference on Mechanic Automation and Control Engineering, Inner Mongolia, China, 15–17 July 2011; pp. 1162–1164. [Google Scholar]
- Aoyagi, M.; Suzuki, F.; Tomikawa, Y.; Kano, I. High-Speed Thin Ultrasonic Spindle Motor and Its Application. Jpn. J. Appl. Phys. 2004, 43, 2873–2878. [Google Scholar] [CrossRef]
- Chen, W.; Liu, Y.; Liu, J.; Shi, S. A Linear Ultrasonic Motor Using Bending Vibration Transducer with Double Driving Feet. Ferroelectrics 2010, 400, 221–230. [Google Scholar] [CrossRef]
- Lu, X.; Hu, J.; Yang, L.; Zhao, C. A novel in-plane mode rotary ultrasonic motor. Chin. J. Aeronaut. 2014, 27, 420–424. [Google Scholar] [CrossRef]
- Lu, X.; Hu, J.; Yang, L.; Zhao, C. A novel dual stator-ring rotary ultrasonic motor. Sens. Actuat. A Phys. 2013, 189, 504–511. [Google Scholar] [CrossRef]
- Shi, S.; Xiong, H.; Liu, Y.; Chen, W.; Liu, J. A ring-type multi-DOF ultrasonic motor with four feet driving consistently. Ultrasonics 2017, 76, 234–244. [Google Scholar] [CrossRef] [PubMed]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, X.; Wang, Z.; Shen, H.; Zhao, K.; Pan, T.; Kong, D.; Twiefel, J. A Novel Dual-Rotor Ultrasonic Motor for Underwater Propulsion. Appl. Sci. 2020, 10, 31. https://doi.org/10.3390/app10010031
Lu X, Wang Z, Shen H, Zhao K, Pan T, Kong D, Twiefel J. A Novel Dual-Rotor Ultrasonic Motor for Underwater Propulsion. Applied Sciences. 2020; 10(1):31. https://doi.org/10.3390/app10010031
Chicago/Turabian StyleLu, Xiaolong, Zhiwen Wang, Hui Shen, Kangdong Zhao, Tianyue Pan, Dexu Kong, and Jens Twiefel. 2020. "A Novel Dual-Rotor Ultrasonic Motor for Underwater Propulsion" Applied Sciences 10, no. 1: 31. https://doi.org/10.3390/app10010031
APA StyleLu, X., Wang, Z., Shen, H., Zhao, K., Pan, T., Kong, D., & Twiefel, J. (2020). A Novel Dual-Rotor Ultrasonic Motor for Underwater Propulsion. Applied Sciences, 10(1), 31. https://doi.org/10.3390/app10010031