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Abstract: A numerical study of the fire whirl formation under symmetrical and asymmetrical
entraining configuration is presented. This work aims to assess the effect of eddy-generation
configuration on the evolution of the intriguing phenomenon coupled with both flow dynamics and
combustion. The numerical framework implements large-eddy simulation, detailed chemistry to
capture the sophisticated turbulence-chemistry interaction under reasonable computational cost.
It also adopts liquid-based clean fuel with fixed injection rate and uniformed discretisation scheme to
eliminate potential interference introduced by various aspects of uncertainties. The result reveals that
the nascent fire whirl formulates significantly rapidly under the symmetrical two-slit configuration,
with extended flame height and constrained vortex structure, compared with the asymmetrical
baseline. However, its revolution orbit gradually diverges from domain centreline and eventually
stabilises with a large radius of rotation, whereas the revolution pattern of that from the baseline case
is relatively unchanged from the inception of nascent fire whirl. Through the analysis, the observed
difference in evaluation pathway could be explained using the concept of circular motion with
constant centripetal force. This methodology showcases its feasibility to reveal and visualise the
fundamental insight and facilitate profound understanding of the flaming behaviour to benefit both
research and industrial sectors.

Keywords: fire whirl; computational fluid dynamics; eddy-generation mechanism; combustion
modelling; detailed chemistry; large eddy simulation

1. Introduction

Fire whirl is a unique combustion behaviour with a twisting flame structure which significantly
intensifies combustion and fluid mechanics, that is often observed in urban and wildland fire
scenarios [1]. The swirling reacting flow limits the dispersion rate of the radial flame and stretches the
hot plume to progress up to an elevated vertical angular path. Compared with a free-standing diffusion
flame, the formulation of the fire whirl often results in a significant increase in rate of combustion,
visible flame height, peak flame temperature and the intensity of radiation emitted from flames
towards the surrounding Ref [2]. Owing to the unique features associated with this very combustion

Appl. Sci. 2020, 10, 318; doi:10.3390/app10010318 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0001-7653-3100
https://orcid.org/0000-0002-1433-447X
https://orcid.org/0000-0002-0311-3815
https://orcid.org/0000-0002-3056-3264
https://orcid.org/0000-0003-3483-3759
http://dx.doi.org/10.3390/app10010318
http://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/10/1/318?type=check_update&version=3


Appl. Sci. 2020, 10, 318 2 of 34

behaviour, the inception of the fire whirl in a fire scenario could lead to catastrophic effects. In particular,
the intensification of heat energy contained within the stretched flame plume and the enhancement
in radiation heat transfer to the neighbouring points resulted from a fire whirl could significantly
promote the fire spreading towards the surroundings in an accelerated rate. The spatial movement of
the swirling plume may also aid the mixing of the reacting gas mixture with the oxidiser to increase
the rate of combustion and impose more spatial uncertainties [3]. The presence of the fire whirl has
been reported in many notorious fire incidents and been identified as the root causes to aggravate the
fire scenario to an unmanageable and untenable manner [4,5]. The formation and evolution of fire
whirl, therefore, is a topic of great interest by both industrial communities and industrial sectors.

Previous investigations have identified the three essential criteria that are essential for the
formation of this particular swirling flame, namely a thermally driven fluid sink, a radial boundary
layer created by a surface drag force, and an eddy-generation source [6–8]. In a typical buoyant diffusion
flame, the flame structure is acting as the fluid sink which generates hot plumes that naturally drives
horizontal flow radically towards the vortex column, which fulfil the first two requirements [9,10].
The eddy-generation mechanism, as the only remaining criteria, therefore, is the most critical element
in the transition from free-standing flame towards fire whirl.

The generation of an eddy could naturally occur in a wildland fire scenario that is triggered
by topological obstacles, leeward slope, unpredicted weather conditions, etc. [11–13]. Such an
eddy-generation source could also be observed in compartment fire situation [14–16], particularly with
the current trend of urban development and the need to construct high-rise building with complex
geometry and interior design. A typical example of source of eddy-generation that may trigger the
formation of fire whirl in a high-rise building could be an enclosed structure with openings for flow
entrainment that induces the circulation, which includes atrium, lift pit, spiral staircase, etc. Those
features have been widely implanted as common features in modern building design, such as the
Macquarie’s global headquarters dispatched in Figure 1 [17]. Such building geometrical configuration
could potentially act as to induce the eddy generation and hence pose a risk to trigger the formulation
of fire whirl in a fire incident. For instance, despite the recently developed bio-based flame-retardant
materials that effectively restrain the fire from spreading [18–22], the occurrence of the swirling flame
has been observed in some recent high profile skyscraper fire incidents including the Beijing Television
Cultural Center, Plasco Building, Grenfell Tower, etc. [23]. Understanding the formation of fire whirl
and flaming behaviour in an enclosed configuration that resembles the high-rise buildings, is of great
benefits to ensure the safety of the resident and occupant as well as to prevent property lost [24–26],
and therefore is identified as the topic of this study.
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Fire whirl has been systematically investigated using experimental means during the past decades
to characterise the flame structure and gain the understanding of the transformation of fire whirl from
buoyancy-driven free-standing diffusion [7,27–33]. However, there are some inevitable limitations
associated with the experimental method. For instance, the parameters that could be quantified by an
experimental approach are limited to temperature, velocity and exhaust gas concentration, which may
not be sufficient to reveal the fundamental physical-chemical behaviour and probe the root causes of
the observed flaming behaviour. In addition, if the intrusive measuring technique is implemented,
e.g., thermocouple for temperature and bidirectional venturi tube for velocity, the experimental data
obtained from the literature are often limited to a few points of interest, due to the constraint of the set
locations of the measuring device and its associated spatial resolution. Nevertheless, as mentioned
previously, the fire whirl is swirling in an unpredictable manner and the flaming structure may not
reside in a fixed position. Furthermore, the existence of the measuring devices could inevitably be
perturbative, hence potentially alter the very flow dynamics and combustion behaviour [34]. On the
other hand, the optical-based diagnostic technique improves the data collection to planar scale without
disturbing the measured conditions. It is, however, widely agreed that the optical properties that are
critical for the reliability and accuracy of the optical-based measuring result, is often challenging to
acquire [35]. The numerical approach hence can serve as a great aid to provide a completed set of data
that is often difficult to assess by experimental means alone. The comprehensive data set generated by
numerical simulation could work concurrently with experimental measurement to shed light on the
fundamental understanding of this topic of interest.

Through the literature review, it has been revealed that the sophisticated flaming behaviour of the
fire whirl is governed by the entangled coupling between flow dynamics and combustion kinetics,
which could be inevitably affected by various aspects, such as the temperature, buoyancy, vortex,
the combustion reaction, etc. which are interrelated and interact during the formulation and evolution
of the fire whirl. Such intriguing interaction makes the understanding of the not-well-understood
fundamental of the swirling reaction flow more unfathomable. For example, the inception of fire
whirl within the enclosure intensifies the combustion process and subsequently varies the energy
transfer from the flame structure to the surroundings [36–39]. If a pool fire configuration is used, the
burning rate, which depends on the rate of the liquid fuel, convert into combustible gas mixture via
evaporation will be inevitably altered, compared with non-swirled flame counterpart. As a result,
ensuring combustion behaviour and heat release rate could also be affected. Similarly, the residence of
the swirling reacting flow promotes circulation within the enclosure and enhances the mixing of the
reactant with oxidiser and result in a more completed combustion event. The soot formation mainly due
to the incomplete combustion within such flame should theoretically be hinder [40–43]. Nevertheless,
the aggravation of the combustion due to the enhance in mixing increase the flame temperature to that
often excesses the threshold for soot nucleation, therefore facilitate the inception of in-flame generated
soot species [44,45]. The arguably intensified or suppressed generation of soot species is directly
correlated to the radiative heat transfer and varies the ensuing combustion process. In addition to
the intricate physical and chemical coupling involved, the uncertainties introduced via the numerical
modelling could also make the assessment of the fire whirl more cumbersome. For example, the region
where combustion occurs is expected to be unfixed, as the hot plume is spinning with the formation of
fire whirl as well as with the associated fire tilting, stretching, converging, etc. If the numerical domain
is discretised in a non-uniformed manner, the variation in the spatial resolution of each discretised
volume may significantly vary the prediction of the parameter of interest, particularly for the evaluation
of the sensitive flame temperature [46].

The abovementioned complex coupling and interaction between various aspects have nevertheless
not been carefully taken into consideration or restrained in may of the previous studies. It is often
noted that heavy sooty flame, pool-based configuration and unevenly distributed mesh strategy that
applies finer mesh at near fuel pan regions and coarse mesh at the fringes, has often been implemented
in the studies found in the literature. Such implementation makes the quantitative analysis of the fire
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whirl behaviour unattainable. It is therefore needed to formulate a numerical framework that considers
and constraints the preceding coupling processes, and enables the establishment of the correlation
between observed changes in flaming behaviour and the proposed parameter of interest.

It also needs to highlight that, the nature of the fire whirl evolution is highly irregular. A fire
whirl with typical vortex shape spinning structure could be observed located right above the fuel
source at one instant of time, and it could be transformed back to a randomly flickering flame at the
next monitoring time instant. The fire whirl rotation pattern and evolution pathway are also highly
unpredictable. Such an unpredictable nature of the evolvement and randomly spatial movement of the
fire structure and plume poses significant difficulties in fire control, fire prevention, and evacuation
planning, if the fire whirl occurs in a high rise building. The studies on fire whirl conducted in the past
decades, however, is mainly focused on the characterisation and quantification of the formulated fire
whirl from flow dynamic and combustion perspective, upon its formation, or at one very particular
time instant that is ideal for the analysis. The qualitative investigation of the evolution of the fire whirl
with a detailed description of its various stages, including the ignition, buoyant fire development,
formulation of the nascent fire whirl, and the ensuing developments and evolution, has not been
thoroughly investigated.

In light of the abovementioned gap in knowledge. This paper will present the first time, using
advanced numerical approaches to describe the evolution pathway of two fire whirls formulated under
different entrainment configurations from 0.00 s to 50.00 s. This numerical investigation is conducted
in a fully controlled numerical environment that isolates all possible variation introduced by intriguing
flow dynamic and combustion coupling as well as by variance in numerical modelling aspects, and
focuses to establishing the comparison of two fire whirl scenario solely attributed to the different
eddy-generation scheme. The enhanced understanding of the evolution pathway of the fire whirl may
largely benefit in various aspects including architecture design, fire evacuation planning, as well as fire
prevention [47] and extinguishing planning.

2. Numerical Details

A numerical domain of the baseline model replicating the test rig of one previous experimental
study of the fire whirl [48], as well as that with an additional flow channelling slit, was constructed
accordingly. The geometric features of the two domains are shown in Figure 2. The detailed
description of the numerical configuration of the model has been detailed in our previous work of
the characterisation of the fire whirl formulated in an enclosed chamber with different entrainment
schemes [49], for the sake of brevity, such information would not be repeated herein. In summary,
the geometrical features of the model include a fuel pan located in the domain centreline. The fuel
pan is converted from circular to square configuration with the same cross-section area to match
the experimental setup to achieve a fully structured mesh, as it significantly enhances the numerical
accuracy and computational efficiency.

The domain is discretised to about 800, 000 elements using a uniform division algorithm, to
eliminate the numerical uncertainty associated with the spatial resolution of the discretised control
volume. A doubling of the number of elements to 1, 600, 000 resulted in only a 5% difference in the
centreline temperature, thus achieving a mesh-independent solution.
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The fluid flow and heat transfer within the compartment is described through the conservation
equations of continuity, Navier–Stokes, and scalar quantities. A general form of transport equation can
be expressed as:

∂
∂t
(ρΦ) +

∂
∂xi

(
ρΦŨi

)
= (ΓΦ)

∂2ρΦ
∂xi∂xi

+ S̃(Φ) (1)

where Φ is the general field variable dependent on space and time, ρ is the mean density, Ũi is the

fluid velocity, ΓΦ is the diffusion term, and S̃(Φ) is the source term of the general variable. According
to the general formula, the transport equations are tabulated in Table 1 as:

Table 1. General transport equation variable, diffusion and source terms.

Φ ΓΦ S̃(Φ)

1 0 0

Ũ j µ+ µT
∂p
∂x j

+ ∂
∂x j

(
µ ∂Ũi
∂x j
−

2
3µ

∂Ũk
∂xk

)
−
∂τi j

∂x j
+

(
ρ− ρre f

)
g j + S̃(U)

cpT̃
µ
Pr +

µT
PrT ω̃T + S̃(rad)

Φ µ
Sc +

µT
ScT S̃(Φ)

Large eddy simulation (LES) and the wall-adapting local eddy-viscosity (WALE) function, is
adopted as the turbulence model to describe the turbulent reaction flow behaviour. This turbulence
model has been extensively validated and proved to be a valid approach for resolving various
wall-bounded turbulence flow applications with a reasonable computational course [8,43,50–54].

The chemical reaction source term in the transport equations of the involved reacting scalars is
determined by strained laminar flamelet approach, in which the chemistry is a pre-assumed probability
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density function (pre-PDF) of two quantities including mixture fraction (f) and the scalar dissipation
(χ). In essence, the mixture fraction governs the amount of the fuel mixture in each control volume
element in the simulation domain. The scalar dissipation is a term introduced to describe the strain
and extinction of the flame, in which the larger this quantity depicts its departure from its chemical
equilibrium [55]. It should be noted that, in the present work, the GRI-MECH 3.0 detailed chemical
reaction mechanisms, with includes 325 reaction steps and 53 chemical species [56], was implemented
to formulate the flamelet library for the strained laminar flamelet model, with ethylene (C2H4) selected
as parental fuel. The presented approach of the modelling turbulence–chemistry interaction has
been validated in previous studies to provide a reasonable result with moderate computational
burden [50,56,57]. This approach has been validated in previous numerical studies for modelling
turbulence chemistry interaction, and has been proved to provide a reasonable result with moderate
computational consumption [50,57,58]. It should be highlighted that alcohol-based fuel methanol
(CH3OH), is deliberately selected as the parent fuel to constrain the coupling between radiative energy
feedback and the combustion process, due to its feature of clean and soot-free burning behaviour [45].
For the same reason, the concentration of the key building structure unit of soot formation, acetylene
(C2H2), in the gas mixture produced by this very parent fuel, is proved to be negligible. The most
commonly adopted soot models formulated on C2H2 precursor-based inception and surface growth
mechanism are not applicable in this study [59–62]. As a result, a primitive and computational
lightweight two-step soot model is integrated, for concept verification purpose only.

With respect to the boundary conditions, a set flow rate of 0.0216 ms−1 in the direction normal to
the fuel surface is applied on the fuel pan. The applied injection velocity is determined on the basis
of the cross-sectional area of the fire pan, the density of the parent fuel at a reference temperature,
and the heat of combustion of the parent fuel in order to match the targeted heat release rate reported
in the experimental study. The constant injection rate ensures an evenly distributed burning profile,
regardless of the intensity of flow circulation and energy feedback. The fuel surface is set at an elevated
height according to the experimental setup. The top and the periphery of the domain is set as the
opening to allow naturally convected air entrainment in and out of the system. The base of the domain
is set as a non-slip adiabatic wall, across which no heat or matter is allowed to pass. The simulation is
initiated with standard temperature and pressure replicating the ambient conditions for the combustion
process to proceed. For convenience, the case with one side entrainment slit is referred to as the Slit 01
case, case 1, or the baseline case/model, and that with two side entrainment slits is referred as the Slit
02 case, case 2, or the comparison case/model, in the following sections.

It should be noted that the simulation result is validated against experimental data and achieve
good comparison in temperature profile as well as the incoming velocity at the entraining slits at
various HABs (height above burners), which is explained in detail in the co-published work [49].
For the sake of brevity, the validation process is not presented in this work.

3. Results

3.1. The Formation and Evolution of Fire Whirl

The flame temperature profile at the domain centreline of all monitoring HABs, from the start
of the simulation to 50.00 s for both Slit 01 case and Slit 02 case, are presented in Figures 3 and 4.
In general, the evolution of this very flaming phenomenon, based on its combustion behaviours, can
be categorised into three main stages. Those include Stage A: flame development; Stage B: fire whirl
development and formation; Stage C: fire whirl evolution (the cross symbol indicates the particular
time instant the core of the fire whirl is centre in the domain centerline). The characterisation of the
formation pathway and evolution of the fire whirl is discussed in detail in the following sections.
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Figure 4. Centerline temperature of Slit 02 case at all monitoring height above burners (HABs),
from 00.00 s to 50.00 s, consist of three main stages of the development and evolution of fire whirl,
namely Stage A: flame development, Stage B: fire whirl development and Stage C: fire whirl formation
and evolution.

3.1.1. Stage A: Flame Development

Stage A: flame development represents the period from starting the ignition until the full
development of the buoyancy-driven diffusion flame. The flame temperature in the domain centreline
of all HABs of both Slit 01 case and Slit 02 case during Stage A of the combustion process are presented
in Figure 5 and Figure 8. The temperature iso-surface at representative instants of time are illustrated
in Figures 6 and 7, and Figures 9 and 10.
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The flame temperature at domain centerline during Stage A of Slit 01 case is shown in Figure 5.
Combined with the temperature iso-surface presented in Figures 6 and 7, the time duration for the
stage of flame development can be approximately defined as from t = 0.00 s to t = 2.55 s. The stage
A could be further splitted into two periods, the period flame developing upwards from the time
of ignition, demonstrated in Figure 6, and the period flame fluctuation propagates from flame tip
downwards to near fuel pan surface, presented in Figure 7.Appl. Sci. 2020, 10, 318 9 of 34 
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Figure 7. Temperature iso-surface at representative instant of time during Stage A of the combustion
process: from fully developed flame to flame tilting and flickering in a random manner, of the Slit 01
case. The region highlighted in grey indicates that flame starts to flicker, whereas the region further
upstream persists a relatively straight profile.

Figure 6 demonstrates a typical development of a buoyant diffusion flame during the period
of t = 0.00 s to t = 0.60 s. The flame proporgates in the vertical direction, due to the dominant of
momentum at the initialisation stage of the combustion. The flame front reaches the three monitoring
HABs, 0.1 m, 0.3 m and 0.5 m, at approximately t = 0.25 s, t = 0.50 s and t = 0.60 s.

Upon the extension of the flame height to its maximum, the flame with the straight profile starts
to flicker, from flame tip and gradually propagated to the further upstream region, as demonstrated in
Figure 7. It can be seen from the figure that, the region where flame starts to fluctuate starting from the
flame tip at approximately t = 1.00 s, reaches the low-intermediate region at approximately t = 1.70 s
and finally proporgates to near fuel pan surface at approximately t = 2.55 s. The flucturation of the
flame is developing towards upstream along the domain centreline axis, as the figure demonstrated
that, the flame structure that beneath the flickering region remains straight and in a relatively regulated
shape. The transition of the flaming behaviour could be contributed to momentum-driven upward
motion is overwhelmed by the thermo-dynamic of the buoyant diffusion upon the completion of its
development. It should be highlighted that the fluctuation of the flame pattern at this particular stage
is highly randomised but relatively centred with respect to the location of fuel pan, i.e., differing from
the structure of a formulated fire whirl, no tendency of tilting, rotation can be observed explicitly at
this instant of time.

The flame temperature at domain centerline during Stage A of Slit 02 case is shown in Figure 8.
Alongside with the temperature iso-surface presented in Figures 9 and 10, the time duration for this
stage of flame development can be approximately defined as from t = 0.00 s to t = 2.55 s. Similar
to what observed in Slit 01 case, the Stage A of Slit 02 could be further split into the flame vertical
development period and flame flickering period.
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Figure 10. Temperature iso-surface at representative instant of time during Stage A of the combustion
process: from fully developed flame to flame tilting and flickering in a random manner, of Slit 02 case.
The region highlighted in grey indicates that flame starts to flicker, whereas the region further upstream
persists a relatively straight profile.

As demonstrated in Figure 9, the flame develops upwards in the vertical direction during the
period of t = 0.00 s to t = 0.60 s, due to the dominant of momentum at the initialisation stage of
the combustion. The flame front approaches the three monitoring HABs, 0.1 m, 0.3 m and 0.5 m, at
approximately t = 0.25 s, t = 0.50 s and t = 0.60 s.

Nearly identical to the process observed in the Slit 01 case, as the flame puffs up to its maximum
height, a region at the downstream starts to flicker and such region gradually develops downwards
towards the fuel source. As illustrated in Figure 10, the region where flame starts to fluctuate starting
from the flame tip at approximately t = 1.00 s, expands to the low-intermediate region at approximately
t = 2.20 s and finally proporgates to near fuel pan surface at approximately t = 2.55 s. A noticeable
difference of the flickering pattern observed, compared with that of the Slit 01 case, is the flame
structure is relatively more symmetric. For example, by comparing the flame structure of both cases at
t = 2.55 s where the region of the fluctuation reaches near fuel source surface, the flame generated
from Slit 02 case is symmetrically split into two streams, with each of the streams slightly expands
towards the air entrainment slit. Such well-formed symmetrical flame structure could be potentially
attributed to the symmetrical air entrainment due to the two slits configuration.

In general, during the stage of flame development, the flame developing pattern of both Slit
01 case and Slit 02 case are nearly identical and resembles what expected for a typical free-standing
diffusion flame in an enclosed configuration. At this stage, the entrainment air introduced from the
slit(s) has not started to influence and alter the general flame propagation process.

3.1.2. Stage B: Fire Whirl Development and Formation

The transition period from the flame flickering in a randomised manner to the formation of nascent
fire whirl is categorised as Stage B: fire whirl development and formation. The flame temperature in
the domain centreline of all HABs of both Slit 01 case and Slit 02 case during Stage B of the combustion
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process are presented in Figure 11 and Figure 15. The temperature iso-surface at representative instant
of time are illustrated in from Figures 12–14 and from Figures 16–18.

Appl. Sci. 2020, 10, 318 13 of 34 

towards one side in a relatively straight line form, i.e., at 𝑡 ൌ 3.08 s. It follows by the transformation 
into that flame tilting towards one direction in the low-intermediate region and bending toward the 
opposite direction in the downstream region, i.e., at 𝑡 ൌ 3.66 s. It should be noted that, up to this 
instant of time, the profile of the lower-intermediate flame core structure as well the downstream 
plume tilting in the reverse direction all resembles a straight line in an L-shape, with no rational or 
twisting motion observed. It finally developed into the flame that tilting in one direction in the region 
close to fuel source, and bending towards the opposite direction in the intermediate region and 
rotating back to vertically straight in the down streaming plume region, i.e., at 𝑡 ൌ 4.57 s. At this 
time instant, the profile presented in a Z-shape format and indicates the formation of incipient fire 
whirl. 

 
Figure 11. Centerline temperature of Slit 01 case at all monitoring HABs, from 02.50 s to 07.50 s 
(example of Stage B: fire whirl development and formation). 

 
Figure 12. Temperature iso-surface at representative instant of time during Stage B of the combustion 
process: from randomly flickering flame to the emerging of rotating reacting flow, of the Slit 01 case. 
The red solid line approximately illustrates the shape of the flame core region structure. 

Nevertheless, it should be noted that such transition from tilting flame towards emerging of 
rotating reacting flow as demonstrated in Error! Reference source not found., is not perpetual, and 
could be revolved back to the previous stage at any instant of time during this period. For example, 

Figure 11. Centerline temperature of Slit 01 case at all monitoring HABs, from 02.50 s to 07.50 s
(example of Stage B: fire whirl development and formation).

The flame temperature at domain centerline during Stage B of Slit 01 case is shown in Figure 11.
Combined with the temperature iso-surface presented in from Figures 12–14, the time duration for
the stage of fire whirl development and formation can be approximately defined as from t = 2.55 s to
t = 8.50 s. Stage B could be further splitted into two periods, the period of transition from randomly
flickering flame to the emerging of rotating reacting flow, presented in Figures 12 and 13, and the
period of formation of nascent fire whirl, shown in Figure 14.
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The first transition period of Stage B from a flickering flame to the emerging of rotating reacting
flow is can be approximately defined from t = 2.55 s to t = 6.00 s. As demonstrated in Figure 12, during
the transition period, the flame started from flame tilting towards one side in a relatively straight line
form, i.e., at t = 3.08 s. It follows by the transformation into that flame tilting towards one direction in
the low-intermediate region and bending toward the opposite direction in the downstream region, i.e.,
at t = 3.66 s. It should be noted that, up to this instant of time, the profile of the lower-intermediate
flame core structure as well the downstream plume tilting in the reverse direction all resembles a
straight line in an L-shape, with no rational or twisting motion observed. It finally developed into the
flame that tilting in one direction in the region close to fuel source, and bending towards the opposite
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direction in the intermediate region and rotating back to vertically straight in the down streaming
plume region, i.e., at t = 4.57 s. At this time instant, the profile presented in a Z-shape format and
indicates the formation of incipient fire whirl.

Nevertheless, it should be noted that such transition from tilting flame towards emerging of
rotating reacting flow as demonstrated in Figure 12, is not perpetual, and could be revolved back to the
previous stage at any instant of time during this period. For example, as presented in Figure 13, after
the emerging of rotating reacting flow at t = 4.57 s, the flame shape becomes irregular and flucturate
randomly, as a typical flame observed in Stage A during the second period of flame flickering.

The emerging of the incipient rotating reacting flow indicates the starting of the second period
of Stage B, the formation of nascent fire whirl, defined from t = 6.00 s to t = 8.50 s. During this
period, the flame structure rapidly transformed from whirling flow rotating in a relatively large radius,
i.e., at t = 6.06 s, into the nascent fire whirl that is shifting towards domain centreline with reduces
rotating radius and increased flame height, i.e., at t = 7.45 s, and eventually developed into a fire whirl
that is centred with respect to fuel source and confined with a relatively small rotating radius, i.e.,
at t = 8.15 s. Unlike of that observed in the first period of Stage B, during this period, the evolution of
the fire whirl will not be revolved back to the previous stage, and the formulated fire whirl remains in
a quasi-steady state.

It should be highlighted that the domain centreline temperature of all monitoring HABs during the
first period, is relatively low, i.e., near-ambient condition, compared with that of Stage A. This agrees
well with the abovementioned description made based on temperature iso-surface, as the flame
at this stage are likely to be tilting away from the domain centreline, thus resulting the observed
low-temperature profile at all HABs. The raise in centreline temperature starts as the transition moves
to the second period, which is again consistent with the tendency that the core structure of the flame is
shifting towards domain centreline with reduced rotating radius and extended flame height.

The flame temperature at domain centerline during Stage B of the Slit 02 case is shown in Figure 15.
Alongside with the temperature iso-surface presented in from Figures 16–18, the time duration for
this stage of flame development can be approximately defined as from t = 2.50 s to t = 5.50 s. Similar
to what observed in Slit 01 case, the Stage B of the Slit 02 could also split into two period, the period
of transition from randomly flickering flame to the emerging of rotating reacting flow, presented in
Figures 16 and 17, and the period of formation of nascent fire whirl, shown in Figure 18.
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As the flame evolves into the second period of Stage B, the formation of nascent fire whirl, 
defined from 𝑡 ൌ 4.55 s to 𝑡 ൌ 6.00 s, the flame structure swiftly transformed from a swilling flow 
with relatively large rotating radius into a semi-stabilised fire whirl that spinning with the respect of 
the centre of fuel source within a confined cylindrical region with extended flame height. Likewise, 
the duration of the second period is calculated as 1.45 𝑠, reduced by 42.00% compared with that of 
the Slit 01 case. 
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process: from randomly flickering flame to the emerging of rotating reacting flow, of the Slit 02 case.
The red solid line approximately illustrates the shape of the flame core region structure.
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of Slit 02 case.
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As illustrated in Figure 16, the three-phase transition pattern previously demonstrated in the
Slit 01 case, is observed in Slit 02 case. The three-phase transition pattern can be identified as: flame
tilting towards one side with relatively straight line format, i.e., at t = 2.72 s; flame tilting towards one
direction in the low-intermediate height and bending towards the opposite direction in the downstream,
i.e., at t = 3.94 s; and the emerging of the rotating reacting flow with zigzag flame structure in the
low-intermediate region and straight in vertical direction in the plume region, i.e., at t = 4.31 s.

Despite the general agreement with that observed in the Slit 01 case during this transition period,
there are some noticeable difference need to be highlighted. Firstly is the difference regarding the flame
tilting in a straight line yield at t = 2.72s compared with that of Slit 01 case. It can be seen that the
flame is split into two streaming and tilting towards the respective air entrainment slit, compared with
that tilting towards one side demonstrated in Slit 01 case. This symmetrical tilting pattern again could
be potentially attributed to the symmetric geometrical configuration of the Slit 02 case. The second
noticeable difference is the reduction in the first transition period in Stage B, which has a duration of
approximately 2.00 s, which is reduced by 46.67% compared with that of Slit 01 case.

Similarly, during the first transition period, the transition has not been settled. In other words,
the evolvement towards the regulated swirling motion could revolve back to the previous stage at
any time instant. As demonstrated in Figure 17, the flame transformed from that resemble the initial
inception of the reacting flow back to the flickering flame as typically observed in Stage A.

As the flame evolves into the second period of Stage B, the formation of nascent fire whirl, defined
from t = 4.55 s to t = 6.00 s, the flame structure swiftly transformed from a swilling flow with relatively
large rotating radius into a semi-stabilised fire whirl that spinning with the respect of the centre of fuel
source within a confined cylindrical region with extended flame height. Likewise, the duration of the
second period is calculated as 1.45 s, reduced by 42.00% compared with that of the Slit 01 case.

In regard to the characterisation of the domain centreline profile, it presents a significant difference
compared with that of the Slit 01 case. Unlike the flat temperature profile reported in the baseline case,
the rise of temperature in domain centreline appears at a much earlier instant of time. The temperature
profile agrees well with the aforementioned reduction of duration for the first and second period.
This indicates that with the introduction of the additional air-entraining slit and the resulted symmetrical
side co-flow profile, the transition from a free-standing flame into a nascent fire is accelerated. The flame
structures during the transition period are more likely to be positioned around domain centerline, due
to the symmetrical geometrical configuration.



Appl. Sci. 2020, 10, 318 17 of 34

Generally speaking, during the stage of fire whirl development and formation, both cases share
the same transmission patterns. The most significant differences observed in Slit 02 case can be
summarised as the 49.58% reduction in the overall duration of Stage B, and the relatively symmetrical
flame shape compared with that of the Slit 01 case.

3.1.3. Stage C: Fire Whirl Evolution

The instant of time that post-formation of the nascent fire whirl is herein defined as Stage C: fire
whirl evolution. Prior to the detailed analysis of the evolution of the fire whirl, the characterisation of
the formulated nascent fire whirl formulated in both Slit 01 case and Slit 02 case is firstly presented
and discussed.

Characterisation of the Formulated Fire Whirl

With the formulation of the nascent fire whirl after Stage B, assorted key parameters have been
generated to assessed to compare the characteristic of the swirling reacting flow generated by the two
cases. A quantitative assessment of key parameters of both flow dynamic and combustion perspectives
of the formulated fire whirl has been described in detail in the co-published work [49], and hence for
the sake of brevity, would not repeat herein. In summary, it could be concluded that, the nascent fire
whirl formulated under stronger eddy-generation mechanisms, i.e., domain with two slit configuration,
has elongated, constrained swirling combustion region, compared with that generated in the single slit
baseline model. As illustrated in Figure 19, the visible flame height with cut off flame tip temperature
of 600 ◦K, as well as the peak flame temperature of the core structure of the swirling reacting flame
formulated in Slit 02 case increased from 0.32 m to 0.59 m by 84.38% and from 1380 K to 1510 K by
9.42%, respectively, when compared with the baseline. Meanwhile, the axial velocity, axial velocity
dominant region of the fire whirl core structure of the Slit 02 case increased by 6.81% and by 46.14%
when compared with the single slit counterpart. In addition, the vortex core structure, determined by
flame temperature as well as evaluated based on velocity field, of the fire whirl generated in Slit 02
case remains relatively unchanged through all monitoring HABs, compared with that increased by
153.33% and 136.91% observed in the Slit 01 case.
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Evolution of Fire Whirl

The flame temperature at domain centerline during Stage C: evolution of fire whirl of Slit 01
case, can be defined as from the inception of nascent fire whirl till the end of the simulation, i.e., from
t = 8.50 s to t = 50.00 s. It can be seen from Figure 3 that, the flame temperature at the domain
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centreline appears to fluctuate and repeat in a periodic manner, indicating a quasi-steady state of the
status of the formulated fire whirl. Such status could be confirmed by inspecting the temperature
iso-surface of the four representative instant of time during Stage C, as illustrated in Figure 21.

A selective section of the period of Stage C, i.e., from t = 10.00 s to t = 20.00 s is presented
in Figure 20. Unlike the flat temperature profile reported in Stage B due to the flame tilting, the
centreline flame temperature in Stage C appears to fluctuate periodically. To be more specific, there are
approximately four peaks in every five seconds can be observed to occur repeatedly. The pattern of
the peak in centreline flame temperature could be correlated to the frequency of the revolution of the
spinning motion associated with the fire whirl.Appl. Sci. 2020, 10, 318 19 of 34 
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Figure 20. Centerline temperature of the Slit 01 case at all monitoring HABs, from 10.00 s to 20.00 s
(example of Stage C: fire whirl evolution).

The characterisation of the fire whirls formulated presented in Figure 21 are almost identical in
terms of visible flame height, flame temperature, core radius, and the frequency of the revolution, etc.
Such similarity in the characterisation of fire whirls persists during the entire Stage C till the end of the
simulation. It could be, therefore, conclude that, the fire whirl formulated by Slit 01 case has reached
semi-steady state during Stage C.
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Figure 21. Temperature iso-surface at representative instant of time during Stage C of the combustion
process: the evolution of fire whirl, of the Slit 01 case. The red solid line approximately illustrates the
shape of the flame core region structure.

Differ from the flame centreline appears in a repeated pattern of the baseline case, the centerline
flame temperature of Slit 02 case varies significantly during Stage C. As demonstrated in Figure 4,
the occurrence pattern of relative high flame temperature at the domain centerline transformed from
appearing intensively to occasionally and the temperature profile eventually becomes flat. It is,
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therefore, reasonable to subdivide the Stage C of Slit 02 case into separate periods and investigate the
characterisation of each period individually.

The first period of the fire whirl evolution, Stage C1, of the Slit 02 case is characterised as the period
when the raise of domain centerline occurs frequently. From the observation of Figure 4, such period
can be identified as from t = 6.00 s to t = 12.00 s, and the centerline temperature profile at all monitoring
HABs is plotted in Figure 22. It is apparent that, by compared with that of Stage C of the Slit 01
case report previously, the occurrence of peak temperature at the domain centerline is observed to be
more recurrent. For example, compared with peaks three or four times in every five seconds in the
baseline case, the pattern of temperature rise at centerline demonstrated a two to three peak occurs
in every second. This trend is more predominant during the period between t = 7.50 s to t = 9.00 s,
where the centerline flame temperature at HAB 0.1 m remains roughly constant at a maximum value.
This observation agrees well with the previous analysis in comparing the nascent fire whirl formulated
in both cases. Due to the intensified eddy-generation mechanism from the second entrainment slit,
the nascent fire whirl generated in the Slit 02 case is more spatially centralised in a confined space in
the vicinity of domain centerline as well as with a more extended flame height, and thus persists with
a relatively smaller radius and leads to higher centerline flame temperature, when compared with that
of the baseline case.
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Figure 22. Centerline temperature of the Slit 02 case at all monitoring HABs, from 06.00 s to 12.00 s
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At this stage, the fire whirl in a fairly stable status, as the temperature iso-surface at representative
instant of time during Stage C1 is presented in Figure 23 is nearly identical in terms of all primary
parameters of interest during this period.
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As the fire whirls revolving under the symmetrical and intensified entrainment configuration,
it gradually moves to the second stage of fire whirl evolution, Stage C2: the fire whirl gradually deviates
from the previously observed confined region and departs from domain centerline in an outbound
direction. With a close inspection of the centerline flame temperature profile as well as the temperature
iso-surface at representative instant of time, presented in Figures 24 and 25 respectively, the time
duration of the Stage C2 can be defined as from t = 12.00 s to t = 20.00 s. From the observation of
flame centerline temperature, it can be concluded that the occurrence of a temperature peak at domain
centerline are tending to become scatted during this period, compared with that reported in the Stage
C1, i.e., the frequency of the flame temperature peak at the domain centerline reduced from two to
three appearances every second into approximately three appearances in every five seconds, which
resembles the nascent fire whirl formulated in the baseline case.
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Figure 25. Temperature iso-surface at representative instant of time during Stage C2 of the combustion
process: the second phase of the evolution of fire whirl, of the Slit 02 case. The red solid line
approximately illustrates the shape of the flame core region structure.

The reduction in the frequency that high flame temperature arises at the domain centerline could
be explained by assessing the iso-surface of representative instant of time during this very period.
It can be seen from Figure 25 that, over time, the lower-intermediate region, as well as the downstream
plume region of the fire whirl, starts to deviate from the confined space that observed in previous
period and departs from domain centerline towards the enclosure. The flame core region where high
temperature persists is less likely to sweep across the domain centerline and result in the temperature
rise compared with that of Stage C1. It should be noted that there are two unique features of the flame
structure of the fire whirl generated in this very period. Firstly, despite deviating from the domain
centerline, it increases in cone radius, and the tilting or bending occurs limited at the elevated height
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close to the fuel source, i.e., near the bottom boundary, with the downstream region of the flame
remains relatively straight. Secondly, despite the fact that the flame core structure is tilting towards
the domain enclosure, the entire region of combustion, including the flame core as well as the plume
is observed to be spinning and remains a fairly regulated cylindrical shape, which is fundamentally
different from that observed in Stage B, i.e., tilting file during fire whirl development and formation.

The flame core region keeps departing from the domain centerline as the fire evolution progresses
into the final period, Stage C3: the core structure fire whirl continued to deviate from domain centerline
and eventually settles as it swilling in a relatively large radius at regions closed the domain enclosure.
The duration of this period can be defined as from the completion of Stage C2 till the completion of the
simulation, i.e., from t = 20.00 s to t = 50.00 s.

The flame centerline temperature profile, as well as the temperature iso-surface at representative
instant of time, is plotted in Figures 26 and 27. From the observation of the figures, there is evidence
that the flame core region continues to deviate from the domain centerline and rotates with respect to
the fuel source in a relatively large radius. The departing from the domain centerline of the fire whirl
core structure leads to a flat centerline temperature profile at all monitoring HABs, resembles what
was observed in Stage B as the flame is tilting. Similar to that noticed in Stage C2, the intermediate and
plume region of the fire whirl remains relatively upright straight, and the tilting and bending region
are limited to low HAB where close to the bottom boundary. The flame structure is also different from
tilting flame as strong rotational motion at any part of the flame can be observed.
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It should be highlighted that the departure from the domain centerline or increases in core radius
will ease as the core structure of the fire whirl approaches the domain boundary and is constrained
by the enclosure. Up to this stage, the fire whirl is reaching a quasi-steady state and such revolution
behaviour is observed to remain till the end of the simulation.

It should also be noted that the results presented herein are limited to describing the characterisation
of the formulated fire whirl at various time instances based on their development stage. The potential
causes for such behaviour, including that such a flame remained relatively steady in Slit 01 case but
departed away from the centerline and eventually rotated in a relatively large radius in Slit 02 case, is
discussed in detail in the following section.

3.2. The Potential Causes of the Observations

It is also commonly agreed upon that the pressure deficit between the environment and cyclone eye
is expected in a typical air spinning scenario. Similarly, the velocity vector field gives an indication of
the magnitude as well as the approximate size of the vortex region, i.e., that with strong rational motion.
Pressure contour and velocity vector field of both cases are therefore generated and presented to
further assess flaming behaviour and transition during fire whirl evolution and as a probe for potential
causes. Based on the observation from the previous section, it appears that the region where fire whirl
tilting and deviating from the domain centerline occurred was in the low HABs region, i.e., near the
bottom boundary, whereas the downstream of the fire structure remained relatively upright straight.
The pressure contour and velocity vector field at the selected instant of time, therefore, is limited to
the lower monitoring HAB, i.e., HAB 0.1 m, for both the Slit 01 case and Slit 02 case. It should also
be noted that the representative time instant is selected based on when the incoming velocity of the
air-entraining slit, at its maximum, minimum and at one time instant in between. The location of
the vortex core of the fire whirl, determined collectively from assessing the pressure and velocity, is
subsequently recorded and transferred to generate the revolution orbit during the revolution.

In addition, for this particular geometrical configuration of both cases, it is generally known that
the fire whirl is induced by the air entrainment introduced from the slit(s). For this reason, the incoming
velocity profile at HAB 0.1 m, is also presented to establish the correlation with the observed flaming
behaviour and key parameters of interest.

The information of pressure, velocity at the boundary layer as well at the slit, and the pathway
of orbiting, of the two cases, are collectively assessed to probe the potential causes of the observed
evolving flaming behaviour.

3.2.1. The Potential Causes of Observations of Case 01

The pressure contour and velocity vector field of the Slit 01 case at HAB 0.1 m at the selected
instant of time, are presented in Figures 28 and 29.

The figures show that the air at the monitoring HAB is flowing from high pressure to low pressure
region, i.e., drawn from surrounding to the enclosed space via entraining slit. This observation
generally agrees well with the commonly agreed flaming behaviour in the fire scenario. To be more
specific, a fire in the compartment is expected to grow in direct proportion to available oxygen. In
a typical compartment fire, air carrying oxygen is often observed to be drawn from outside into
the base of the fire through openings in the building, e.g., doors, windows, roof. The opening of
the slit in the current case acting as the source of entraining air promotes the combustion process,
and at the same time facilitates the movement of combustible gas mixture, and the subsequently
involved flame structure, heat and smoke, from higher pressure areas towards lower pressure areas
accessible openings.

The pressure contour combined with velocity vector field also indicates the relative vortex core
location and the approximate size of the spinning reacting flow. It can be seen from the figures that,
the size of the swirling reacting flow, as well as the rotating radius, of the fire whirl of the Slit 01 case
is relatively small when compared with that of the Slit 02 case shown in from Figures 32–35. It is
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suggested that the core structure of the formulated fire whirl is constrained in a confined space, and is
rotating in a relatively small radius with respect to the fuel pan.Appl. Sci. 2020, 10, 318 24 of 34 
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indicated by the  in various colour, in both figures. 

From Error! Reference source not found., it can be seen the anti-clockwise revolution orbit of 
the fire whirl of the Slit 01 case, starting from , and ending with , is not in a shape of a regular 
circle. It appears the vortex core location deviates from domain centerline as it approaches the 
entrainment slit, and restores to the near fuel source location as it moves away from entrainment slit. 
To be more specific, for the fire whirl originated from the fuel pan centre, the rotating radius can be 
defined as the distance between the vortex core and the fuel pan centre. It can be observed that, from 
time instant of 𝑡 ൌ 47.25 𝑠 ( ) to 𝑡 ൌ 47.45 𝑠 ( ), the fire whirl is rotating anti-clockwise from 
northern wall region to western wall region and moves away from the air entrainment slit. The 
rotating radius decreases significantly. While from time instant of 𝑡 ൌ 47.66 𝑠 ( ) followed by 𝑡 ൌ

Figure 28. Pressure contour of the domain at 0.1 m HAB, at five timesteps of the Slit 01 case selected
based on representative time instants associated with Slit 01 (anti-clockwise from top-right with increase
in time). The contours indicate the fire whirl core location and collectively illustrate a full circle of
orbital revolution of the whirling reacting flow with respect to fuel source.
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Figure 29. Vector field plot of the domain at 0.1 m HAB, at five timesteps of the Slit 01 case selected
based on representative time instants associated with Slit 01 (anti-clockwise from top-right with increase
in time). The plots indicate the fire whirl core location and collectively illustrate a full circle of orbital
revolution of the whirling reacting flow with respect to fuel source.

The revolution orbit of the fire whirl with respect to the fuel source is obtained by transferring
the location of the vortex of all time instant of interest and plotting into Figure 30. In addition, the
incoming velocity of the slit of the monitoring HAB, at the corresponding time instant, is presented in
Figure 31. The location of the fire whirl core is indicated by the
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Appl. Sci. 2020, 10, 318 25 of 34 47.73 𝑠 ( ) and to 𝑡 ൌ 47.81 𝑠 ( ), the fire while sweep from near eastern wall region towards near 
northern wall region and moves towards the air entrainment slit, the rotating radius increases 
significantly. 

This observation could potentially be explained using the concept of the circular motion with a 
constant centripetal force, which can be expressed as: 𝐹ሬ⃗ 𝐶 ൌ 𝑚𝑣2𝑟  (2) 

where �⃗� is the centripetal force towards the centre of the circle, 𝑚 is the mass, 𝑣 is the velocity and 𝑟 is the radius of the rotation. 
For a circular motion with a constant centripetal force, the radius is proportional to the square 

of the velocity. For the current fire whirl scenario spinning around the fuel pan in a single slit, the 
centripetal resembles the surface drag force to create the radial boundary layer, which can be 
considered as a constant, due to the fixed burning rate introduced to the domain, i.e., constant 
injection velocity of the parent fuel. Such a centripetal force is acting to ensure the reacting flow 
originated from the domain centre is spinning around the fire source. 

Due to the pressure gradient, the air is entrained from the surrounding to the chamber. As the 
fire whirl core structure approaching the slit, the air entrainment acted as a supply source to intensify 
the velocity field of the flame core structure. As a result, the increase in the velocity field of the 
rotation reaction flow may increase its rotation radius to achieve the balance with the relatively fixed 
centripetal force acting perpendicular to the circle, for example, for time instant of 47.80 s ( ). On the 
other hand, as the flame structure departing from near slit region towards where away from 
entrainment sources, i.e., region between northern and eastern walls such as indicated in 47.66 s ( ), 
the intensification of the velocity field of the fire whirl eases, therefore the location of the fire whirl 
core structure restores back to the original near fuel pan region.  

 
Figure 30. Orbit of fire whirl core centre of the Slit 01 case, indicating the fire whirl’s revolution around 
the fuel source, starring from , and end with  (with approximately one complete circle of 
revolution in anti-clockwise direction). The blue arrow indicates the tendency of changing of slit 
incoming velocity. 

The incoming velocity of the air entrainment source, the slit, against the time, is also plotted in 
Error! Reference source not found., with the representative time instant denoted as . 

It is obvious that the amount/rate of the air drawn into the chamber via the slit is proportional 
to the pressure gradient between the two sides of the slit, which is as expected. For example, with the 
region of the vortex with larger pressure gradient approaching the slit, the rate of air drawn into the 
domain is increasing, i.e., from time instant 47.66 s ( ) to that in 47.80 ( ), whereas the rate of air 
entraining rate decreases as the core of the fire moves away from the slit, such as from time instant 
47.25 s ( ) to that in 47.66 s ( ). 

Figure 30. Orbit of fire whirl core centre of the Slit 01 case, indicating the fire whirl’s revolution around
the fuel source, starring from
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, is not in a shape of a regular circle. It appears the vortex
core location deviates from domain centerline as it approaches the entrainment slit, and restores to
the near fuel source location as it moves away from entrainment slit. To be more specific, for the fire
whirl originated from the fuel pan centre, the rotating radius can be defined as the distance between
the vortex core and the fuel pan centre. It can be observed that, from time instant of t = 47.25 s (
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northern wall region and moves towards the air entrainment slit, the rotating radius increases 
significantly. 

This observation could potentially be explained using the concept of the circular motion with a 
constant centripetal force, which can be expressed as: 𝐹ሬ⃗ 𝐶 ൌ 𝑚𝑣2𝑟  (2) 

where �⃗� is the centripetal force towards the centre of the circle, 𝑚 is the mass, 𝑣 is the velocity and 𝑟 is the radius of the rotation. 
For a circular motion with a constant centripetal force, the radius is proportional to the square 

of the velocity. For the current fire whirl scenario spinning around the fuel pan in a single slit, the 
centripetal resembles the surface drag force to create the radial boundary layer, which can be 
considered as a constant, due to the fixed burning rate introduced to the domain, i.e., constant 
injection velocity of the parent fuel. Such a centripetal force is acting to ensure the reacting flow 
originated from the domain centre is spinning around the fire source. 

Due to the pressure gradient, the air is entrained from the surrounding to the chamber. As the 
fire whirl core structure approaching the slit, the air entrainment acted as a supply source to intensify 
the velocity field of the flame core structure. As a result, the increase in the velocity field of the 
rotation reaction flow may increase its rotation radius to achieve the balance with the relatively fixed 
centripetal force acting perpendicular to the circle, for example, for time instant of 47.80 s ( ). On the 
other hand, as the flame structure departing from near slit region towards where away from 
entrainment sources, i.e., region between northern and eastern walls such as indicated in 47.66 s ( ), 
the intensification of the velocity field of the fire whirl eases, therefore the location of the fire whirl 
core structure restores back to the original near fuel pan region.  

 
Figure 30. Orbit of fire whirl core centre of the Slit 01 case, indicating the fire whirl’s revolution around 
the fuel source, starring from , and end with  (with approximately one complete circle of 
revolution in anti-clockwise direction). The blue arrow indicates the tendency of changing of slit 
incoming velocity. 

The incoming velocity of the air entrainment source, the slit, against the time, is also plotted in 
Error! Reference source not found., with the representative time instant denoted as . 

It is obvious that the amount/rate of the air drawn into the chamber via the slit is proportional 
to the pressure gradient between the two sides of the slit, which is as expected. For example, with the 
region of the vortex with larger pressure gradient approaching the slit, the rate of air drawn into the 
domain is increasing, i.e., from time instant 47.66 s ( ) to that in 47.80 ( ), whereas the rate of air 
entraining rate decreases as the core of the fire moves away from the slit, such as from time instant 
47.25 s ( ) to that in 47.66 s ( ). 
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), the fire while
sweep from near eastern wall region towards near northern wall region and moves towards the air
entrainment slit, the rotating radius increases significantly.

This observation could potentially be explained using the concept of the circular motion with a
constant centripetal force, which can be expressed as:

→

FC =
mv2

r
(2)
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where
→

FC is the centripetal force towards the centre of the circle, m is the mass, v is the velocity and r is
the radius of the rotation.

For a circular motion with a constant centripetal force, the radius is proportional to the square
of the velocity. For the current fire whirl scenario spinning around the fuel pan in a single slit, the
centripetal resembles the surface drag force to create the radial boundary layer, which can be considered
as a constant, due to the fixed burning rate introduced to the domain, i.e., constant injection velocity
of the parent fuel. Such a centripetal force is acting to ensure the reacting flow originated from the
domain centre is spinning around the fire source.

Due to the pressure gradient, the air is entrained from the surrounding to the chamber. As the fire
whirl core structure approaching the slit, the air entrainment acted as a supply source to intensify the
velocity field of the flame core structure. As a result, the increase in the velocity field of the rotation
reaction flow may increase its rotation radius to achieve the balance with the relatively fixed centripetal
force acting perpendicular to the circle, for example, for time instant of 47.80 s (
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as the flame structure departing from near slit region towards where away from entrainment sources,
i.e., region between northern and eastern walls such as indicated in 47.66 s (
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the velocity field of the fire whirl eases, therefore the location of the fire whirl core structure restores
back to the original near fuel pan region.

The incoming velocity of the air entrainment source, the slit, against the time, is also plotted in
Figure 31, with the representative time instant denoted as
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It is obvious that the amount/rate of the air drawn into the chamber via the slit is proportional

to the pressure gradient between the two sides of the slit, which is as expected. For example, with
the region of the vortex with larger pressure gradient approaching the slit, the rate of air drawn into
the domain is increasing, i.e., from time instant 47.66 s (
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), whereas the rate of air
entraining rate decreases as the core of the fire moves away from the slit, such as from time instant
47.25 s (
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3.2.2. The Potential Causes of Observations of Case 02

Similarly, the pressure contour and velocity vector field at HAB 0.1 m at the selected instant of
time, is presented in from Figures 32–35, to reveal the information of the size and radius of rotation
of the fire whirl of the Slit 02 case. Herein, the time instant denoted in
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defined as the distance between the vortex core and the fuel pan centre. It can be observed that, from 
time instant of 𝑡 ൌ 47.25 𝑠 ( ) to 𝑡 ൌ 47.45 𝑠 ( ), the fire whirl is rotating anti-clockwise from 
northern wall region to western wall region and moves away from the air entrainment slit. The 
rotating radius decreases significantly. While from time instant of 𝑡 ൌ 47.66 𝑠 ( ) followed by 𝑡 ൌ
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those generated by the Slit 01 case, some similar trends that have been seen in the baseline model 
can be again observed in here. For example, the air is again drawn from the surrounding to the 
enclosure through the slits, and the reacting flow is swirling around, with respect to the fire source 
in an anti-clockwise direction. 

However, there is some distinct difference that can be noticed. The size of the core structure is 
significantly larger, and the flame structure is rotating with a large radius, with respect to the 
geometry domain centerline, when compared with that of the baseline case. To be more specific, the 
core structure of the baseline case, are in a narrow form and its circulation movement is constrained 
in the vicinity of fuel pan regions. On the other hand, the structure of the fire whirl formulated in Slit 02 case are circulating around the fuel source in a significantly large radius, and the size of the 
structure is significantly larger, i.e., it can be even observed that the shape of the swirling reacting 
flow is constrained and limited by the enclosed wall boundaries. 
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Figure 32. Pressure contour of the domain at 0.1 m HAB, at five timesteps of Slit 02 case selected based
on representative time instants associated with Slit 1 (anti-clockwise from top-right with increase in
time). The contours indicate the fire whirl core location and collectively illustrate a full circle of orbital
revolution of the whirling reacting flow with respect to fuel source.
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on representative time instants associated with Slit 1 (anti-clockwise from top-right with increase in
time). The plots indicate the fire whirl core location and collectively illustrate a full circle of orbital
revolution of the whirling reacting flow with respect to fuel source.
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Figure 35. Vector field plot of the domain at 0.1 m HAB, at five timesteps of Slit 02 case selected based 
on representative time instants associated with Slit 2 (anti-clockwise from top-right with increase in 
time). The plots indicate the fire whirl core location and collectively illustrate a full circle of orbital 
revolution of the whirling reacting flow with respect to fuel source. 

This speculation can be further justified when transferring the location of the vortex core and 
plotting the orbit of revolution of the reacting flow, as showing in Error! Reference source not found.. 
The radius is further away from the fuel pan when compared with the baseline, especially when the 
core structure is approaching to the slits. Please noted that the representative time instant associated 
with Slit 1 and Slit 2 denoted as  and  respectively. 

The revolution orbit demonstrated in Error! Reference source not found. also agrees well with 
pseudo-centripetal and associated circulation motion concept proposed previously. With the vortex 
approaching the air entrainment supplier source, i.e., slit and the resulted intensification of the 
velocity field of the structure of the swirling reacting flow, the radius of the revolution increases, 
based on a near-constant centripetal force resembled surface drag force that creates the radial 
boundary layer, and vice versa. For example, when the fire whirl sweep from enclosed corner 
towards slits, i.e., from time instant 45.36 s ( ) to 45.71 s ( ), from 46.05 s ( ) to 46.60 s ( ), from 45.37 
s ( ) to 45.86 s ( ), and from 46.34 s ( ) to 46.68 s ( ), a significant increase in rotation radius is 
observed. On the other hand, the centripetal force restores the orbit of the revolution by dragging the 
vortex structure back to the near fuel pan regions, when the fire whirl spinning from near slit region 
towards enclosed corner, i.e., from time instant 45.71 s ( ) to 46.05 s ( ), from 46.60 s ( ) to 47.15 s (

), from 45.86 s ( ) to 46.34 s ( ), and from 46.68 s ( ) to 47.02 s ( ). 

 
Figure 36. Orbit of fire whirl core centre of the Slit 02 case, indicating the fire whirl’s revolution around 
the fuel source, with time instant associated with Slit 1  and Slit 2  denoted as  and  
respectively. The blue arrow indicates the tendency of changing of slit incoming velocity. 

Figure 35. Vector field plot of the domain at 0.1 m HAB, at five timesteps of Slit 02 case selected based
on representative time instants associated with Slit 2 (anti-clockwise from top-right with increase in
time). The plots indicate the fire whirl core location and collectively illustrate a full circle of orbital
revolution of the whirling reacting flow with respect to fuel source.

This speculation can be further justified when transferring the location of the vortex core and
plotting the orbit of revolution of the reacting flow, as showing in Figure 36. The radius is further away
from the fuel pan when compared with the baseline, especially when the core structure is approaching
to the slits. Please note that the representative time instant associated with Slit 1 and Slit 2 denoted as
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Figure 31. Plot of incoming velocity of the Slit 01 for Slit 01 case, with the marks indicating the 
representative time instant corresponding to Error! Reference source not found.. 

3.2.2. The Potential Causes of Observations of Case 02 

Similarly, the pressure contour and velocity vector field at HAB 0.1 𝑚 at the selected instant of 
time, is presented in from Error! Reference source not found. and Error! Reference source not 
found., to reveal the information of the size and radius of rotation of the fire whirl of the Slit 02 case. 
Herein, the time instant denoted in  are corresponding to those the peak, bottom and median 
velocity instant associated with slit 01, and those denoted as  are representative for the same time 
instant set associated with Slit 02. 

Through the close review of the pressure contours and velocity vector field, and compared with 
those generated by the Slit 01 case, some similar trends that have been seen in the baseline model 
can be again observed in here. For example, the air is again drawn from the surrounding to the 
enclosure through the slits, and the reacting flow is swirling around, with respect to the fire source 
in an anti-clockwise direction. 

However, there is some distinct difference that can be noticed. The size of the core structure is 
significantly larger, and the flame structure is rotating with a large radius, with respect to the 
geometry domain centerline, when compared with that of the baseline case. To be more specific, the 
core structure of the baseline case, are in a narrow form and its circulation movement is constrained 
in the vicinity of fuel pan regions. On the other hand, the structure of the fire whirl formulated in Slit 02 case are circulating around the fuel source in a significantly large radius, and the size of the 
structure is significantly larger, i.e., it can be even observed that the shape of the swirling reacting 
flow is constrained and limited by the enclosed wall boundaries. 
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Figure 35. Vector field plot of the domain at 0.1 m HAB, at five timesteps of Slit 02 case selected based 
on representative time instants associated with Slit 2 (anti-clockwise from top-right with increase in 
time). The plots indicate the fire whirl core location and collectively illustrate a full circle of orbital 
revolution of the whirling reacting flow with respect to fuel source. 
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approaching the air entrainment supplier source, i.e., slit and the resulted intensification of the 
velocity field of the structure of the swirling reacting flow, the radius of the revolution increases, 
based on a near-constant centripetal force resembled surface drag force that creates the radial 
boundary layer, and vice versa. For example, when the fire whirl sweep from enclosed corner 
towards slits, i.e., from time instant 45.36 s ( ) to 45.71 s ( ), from 46.05 s ( ) to 46.60 s ( ), from 45.37 
s ( ) to 45.86 s ( ), and from 46.34 s ( ) to 46.68 s ( ), a significant increase in rotation radius is 
observed. On the other hand, the centripetal force restores the orbit of the revolution by dragging the 
vortex structure back to the near fuel pan regions, when the fire whirl spinning from near slit region 
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Figure 28. Pressure contour of the domain at 0.1 m HAB, at five timesteps of the Slit 01 case selected 
based on representative time instants associated with Slit 01 (anti-clockwise from top-right with 
increase in time). The contours indicate the fire whirl core location and collectively illustrate a full 
circle of orbital revolution of the whirling reacting flow with respect to fuel source. 

 
Figure 29. Vector field plot of the domain at 0.1 m HAB, at five timesteps of the Slit 01 case selected 
based on representative time instants associated with Slit 01 (anti-clockwise from top-right with 
increase in time). The plots indicate the fire whirl core location and collectively illustrate a full circle 
of orbital revolution of the whirling reacting flow with respect to fuel source. 

The revolution orbit of the fire whirl with respect to the fuel source is obtained by transferring 
the location of the vortex of all time instant of interest and plotting into Error! Reference source not 
found.. In addition, the incoming velocity of the slit of the monitoring HAB, at the corresponding 
time instant, is presented in Error! Reference source not found.. The location of the fire whirl core is 
indicated by the  in various colour, in both figures. 

From Error! Reference source not found., it can be seen the anti-clockwise revolution orbit of 
the fire whirl of the Slit 01 case, starting from , and ending with , is not in a shape of a regular 
circle. It appears the vortex core location deviates from domain centerline as it approaches the 
entrainment slit, and restores to the near fuel source location as it moves away from entrainment slit. 
To be more specific, for the fire whirl originated from the fuel pan centre, the rotating radius can be 
defined as the distance between the vortex core and the fuel pan centre. It can be observed that, from 
time instant of 𝑡 ൌ 47.25 𝑠 ( ) to 𝑡 ൌ 47.45 𝑠 ( ), the fire whirl is rotating anti-clockwise from 
northern wall region to western wall region and moves away from the air entrainment slit. The 
rotating radius decreases significantly. While from time instant of 𝑡 ൌ 47.66 𝑠 ( ) followed by 𝑡 ൌ
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representative time instant corresponding to Error! Reference source not found.. 
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enclosure through the slits, and the reacting flow is swirling around, with respect to the fire source 
in an anti-clockwise direction. 

However, there is some distinct difference that can be noticed. The size of the core structure is 
significantly larger, and the flame structure is rotating with a large radius, with respect to the 
geometry domain centerline, when compared with that of the baseline case. To be more specific, the 
core structure of the baseline case, are in a narrow form and its circulation movement is constrained 
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The revolution orbit demonstrated in Figure 36 also agrees well with pseudo-centripetal and
associated circulation motion concept proposed previously. With the vortex approaching the air
entrainment supplier source, i.e., slit and the resulted intensification of the velocity field of the structure
of the swirling reacting flow, the radius of the revolution increases, based on a near-constant centripetal
force resembled surface drag force that creates the radial boundary layer, and vice versa. For example,
when the fire whirl sweep from enclosed corner towards slits, i.e., from time instant 45.36 s (
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based on representative time instants associated with Slit 01 (anti-clockwise from top-right with 
increase in time). The contours indicate the fire whirl core location and collectively illustrate a full 
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based on representative time instants associated with Slit 01 (anti-clockwise from top-right with 
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the location of the vortex of all time instant of interest and plotting into Error! Reference source not 
found.. In addition, the incoming velocity of the slit of the monitoring HAB, at the corresponding 
time instant, is presented in Error! Reference source not found.. The location of the fire whirl core is 
indicated by the  in various colour, in both figures. 

From Error! Reference source not found., it can be seen the anti-clockwise revolution orbit of 
the fire whirl of the Slit 01 case, starting from , and ending with , is not in a shape of a regular 
circle. It appears the vortex core location deviates from domain centerline as it approaches the 
entrainment slit, and restores to the near fuel source location as it moves away from entrainment slit. 
To be more specific, for the fire whirl originated from the fuel pan centre, the rotating radius can be 
defined as the distance between the vortex core and the fuel pan centre. It can be observed that, from 
time instant of 𝑡 ൌ 47.25 𝑠 ( ) to 𝑡 ൌ 47.45 𝑠 ( ), the fire whirl is rotating anti-clockwise from 
northern wall region to western wall region and moves away from the air entrainment slit. The 
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Figure 28. Pressure contour of the domain at 0.1 m HAB, at five timesteps of the Slit 01 case selected 
based on representative time instants associated with Slit 01 (anti-clockwise from top-right with 
increase in time). The contours indicate the fire whirl core location and collectively illustrate a full 
circle of orbital revolution of the whirling reacting flow with respect to fuel source. 

 
Figure 29. Vector field plot of the domain at 0.1 m HAB, at five timesteps of the Slit 01 case selected 
based on representative time instants associated with Slit 01 (anti-clockwise from top-right with 
increase in time). The plots indicate the fire whirl core location and collectively illustrate a full circle 
of orbital revolution of the whirling reacting flow with respect to fuel source. 

The revolution orbit of the fire whirl with respect to the fuel source is obtained by transferring 
the location of the vortex of all time instant of interest and plotting into Error! Reference source not 
found.. In addition, the incoming velocity of the slit of the monitoring HAB, at the corresponding 
time instant, is presented in Error! Reference source not found.. The location of the fire whirl core is 
indicated by the  in various colour, in both figures. 

From Error! Reference source not found., it can be seen the anti-clockwise revolution orbit of 
the fire whirl of the Slit 01 case, starting from , and ending with , is not in a shape of a regular 
circle. It appears the vortex core location deviates from domain centerline as it approaches the 
entrainment slit, and restores to the near fuel source location as it moves away from entrainment slit. 
To be more specific, for the fire whirl originated from the fuel pan centre, the rotating radius can be 
defined as the distance between the vortex core and the fuel pan centre. It can be observed that, from 
time instant of 𝑡 ൌ 47.25 𝑠 ( ) to 𝑡 ൌ 47.45 𝑠 ( ), the fire whirl is rotating anti-clockwise from 
northern wall region to western wall region and moves away from the air entrainment slit. The 
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Appl. Sci. 2020, 10, 318 25 of 34 47.73 𝑠 ( ) and to 𝑡 ൌ 47.81 𝑠 ( ), the fire while sweep from near eastern wall region towards near 
northern wall region and moves towards the air entrainment slit, the rotating radius increases 
significantly. 

This observation could potentially be explained using the concept of the circular motion with a 
constant centripetal force, which can be expressed as: 𝐹ሬ⃗ 𝐶 ൌ 𝑚𝑣2𝑟  (2) 

where �⃗� is the centripetal force towards the centre of the circle, 𝑚 is the mass, 𝑣 is the velocity and 𝑟 is the radius of the rotation. 
For a circular motion with a constant centripetal force, the radius is proportional to the square 

of the velocity. For the current fire whirl scenario spinning around the fuel pan in a single slit, the 
centripetal resembles the surface drag force to create the radial boundary layer, which can be 
considered as a constant, due to the fixed burning rate introduced to the domain, i.e., constant 
injection velocity of the parent fuel. Such a centripetal force is acting to ensure the reacting flow 
originated from the domain centre is spinning around the fire source. 

Due to the pressure gradient, the air is entrained from the surrounding to the chamber. As the 
fire whirl core structure approaching the slit, the air entrainment acted as a supply source to intensify 
the velocity field of the flame core structure. As a result, the increase in the velocity field of the 
rotation reaction flow may increase its rotation radius to achieve the balance with the relatively fixed 
centripetal force acting perpendicular to the circle, for example, for time instant of 47.80 s ( ). On the 
other hand, as the flame structure departing from near slit region towards where away from 
entrainment sources, i.e., region between northern and eastern walls such as indicated in 47.66 s ( ), 
the intensification of the velocity field of the fire whirl eases, therefore the location of the fire whirl 
core structure restores back to the original near fuel pan region.  

 
Figure 30. Orbit of fire whirl core centre of the Slit 01 case, indicating the fire whirl’s revolution around 
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Figure 28. Pressure contour of the domain at 0.1 m HAB, at five timesteps of the Slit 01 case selected 
based on representative time instants associated with Slit 01 (anti-clockwise from top-right with 
increase in time). The contours indicate the fire whirl core location and collectively illustrate a full 
circle of orbital revolution of the whirling reacting flow with respect to fuel source. 
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based on representative time instants associated with Slit 01 (anti-clockwise from top-right with 
increase in time). The plots indicate the fire whirl core location and collectively illustrate a full circle 
of orbital revolution of the whirling reacting flow with respect to fuel source. 

The revolution orbit of the fire whirl with respect to the fuel source is obtained by transferring 
the location of the vortex of all time instant of interest and plotting into Error! Reference source not 
found.. In addition, the incoming velocity of the slit of the monitoring HAB, at the corresponding 
time instant, is presented in Error! Reference source not found.. The location of the fire whirl core is 
indicated by the  in various colour, in both figures. 

From Error! Reference source not found., it can be seen the anti-clockwise revolution orbit of 
the fire whirl of the Slit 01 case, starting from , and ending with , is not in a shape of a regular 
circle. It appears the vortex core location deviates from domain centerline as it approaches the 
entrainment slit, and restores to the near fuel source location as it moves away from entrainment slit. 
To be more specific, for the fire whirl originated from the fuel pan centre, the rotating radius can be 
defined as the distance between the vortex core and the fuel pan centre. It can be observed that, from 
time instant of 𝑡 ൌ 47.25 𝑠 ( ) to 𝑡 ൌ 47.45 𝑠 ( ), the fire whirl is rotating anti-clockwise from 
northern wall region to western wall region and moves away from the air entrainment slit. The 
rotating radius decreases significantly. While from time instant of 𝑡 ൌ 47.66 𝑠 ( ) followed by 𝑡 ൌ) to 46.05
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Appl. Sci. 2020, 10, 318 25 of 34 47.73 𝑠 ( ) and to 𝑡 ൌ 47.81 𝑠 ( ), the fire while sweep from near eastern wall region towards near 
northern wall region and moves towards the air entrainment slit, the rotating radius increases 
significantly. 

This observation could potentially be explained using the concept of the circular motion with a 
constant centripetal force, which can be expressed as: 𝐹ሬ⃗ 𝐶 ൌ 𝑚𝑣2𝑟  (2) 

where �⃗� is the centripetal force towards the centre of the circle, 𝑚 is the mass, 𝑣 is the velocity and 𝑟 is the radius of the rotation. 
For a circular motion with a constant centripetal force, the radius is proportional to the square 
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Figure 35. Vector field plot of the domain at 0.1 m HAB, at five timesteps of Slit 02 case selected based 
on representative time instants associated with Slit 2 (anti-clockwise from top-right with increase in 
time). The plots indicate the fire whirl core location and collectively illustrate a full circle of orbital 
revolution of the whirling reacting flow with respect to fuel source. 

This speculation can be further justified when transferring the location of the vortex core and 
plotting the orbit of revolution of the reacting flow, as showing in Error! Reference source not found.. 
The radius is further away from the fuel pan when compared with the baseline, especially when the 
core structure is approaching to the slits. Please noted that the representative time instant associated 
with Slit 1 and Slit 2 denoted as  and  respectively. 

The revolution orbit demonstrated in Error! Reference source not found. also agrees well with 
pseudo-centripetal and associated circulation motion concept proposed previously. With the vortex 
approaching the air entrainment supplier source, i.e., slit and the resulted intensification of the 
velocity field of the structure of the swirling reacting flow, the radius of the revolution increases, 
based on a near-constant centripetal force resembled surface drag force that creates the radial 
boundary layer, and vice versa. For example, when the fire whirl sweep from enclosed corner 
towards slits, i.e., from time instant 45.36 s ( ) to 45.71 s ( ), from 46.05 s ( ) to 46.60 s ( ), from 45.37 
s ( ) to 45.86 s ( ), and from 46.34 s ( ) to 46.68 s ( ), a significant increase in rotation radius is 
observed. On the other hand, the centripetal force restores the orbit of the revolution by dragging the 
vortex structure back to the near fuel pan regions, when the fire whirl spinning from near slit region 
towards enclosed corner, i.e., from time instant 45.71 s ( ) to 46.05 s ( ), from 46.60 s ( ) to 47.15 s (
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).
The incoming velocity of the air entrainment source, both Slit 1 and Slit 2, against the time, is also

plotted in Figure 37. It is surprisingly that the correlation of the distance between the fire whirl core to
the slit and the incoming velocity of the slit demonstrated in the Slit 01 case can not be observed in the
Slit 02 case. In contrary, the minimum incoming velocity is observed when the fire whirl core is at the
closest location with respect to the slit. For example, for incoming velocity associated with Slit 01, it can
be seen that the incoming velocity decreases as the fire whirl approaches and sweep through the Slit 01,
i.e., from time instant of 45.36 s (
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It is reasonable to expect that the increased amount of air is drawn from the surrounding to the
enclosures through the slit due to the intensified pressure gradient between the two side of the slit as
the fire whirl approaching, as demonstrated in the Slit 01 case. However, it is also true that the pattern
of the incoming flow via the opening could be inevitably intrusive by the presence and the interaction
of the large plume of swirling structure at near slit regions as observed in the Slit 02 case, and as a
result, disturb the pattern of incoming flow via the slit and lead to a reduced incoming velocity.

Prior to the conduction of the simulation and comparing the fire whirl evolution of the Slit 01
case and Slit 02 case. It is generally agreed and expected that the model with a symmetrical geometry
configuration, i.e., Slit 02 case, should formulate a relatively centralised and stabilised fire whirl, when
compared with the baseline model that has an asymmetrical eddy generation mechanism. However,
the results of the assessment demonstrated a contradictory observation with the previous speculation.

It appears that the for the current burning configuration, i.e., constant fuel injection rate hence
fixed burning rate, the effect of the surface drag force to create a radial boundary layer and act as the
pseudo-centripetal force is limited. For single slit configuration, the vortex structure diverges from the
domain centreline when it is approaching the opening can be restored and regulated to the semi-stable
status once it is spinning through the enclosed wall regions, within the one circle of the revolution.
On the contrary, the vortex core structure is drifted towards slit two times in one circle of revolution,
and the restoration period of the vortex to drag back to near-source pan region is significantly shorten
compared with baseline case. The orbit of the revolution of the Slit 02 case is regulated and balanced
due to the constraint of the enclosure wall that stops the vortex from further drifting away from the
fuel centreline, and this explains the observed development of the fire whirl rotation behaviour from
Stage C1, that centralised around fuel pan region towards Stage C3 that circulation around with a
relatively large radius of rotation.

4. Conclusions

A numerical modelling of the fire whirl formulated and evolved in an enclosed configuration
with different entrainment schemes was performed to evaluate the effect of additional eddy generation
to the fire whirl formation and development pathway. The model adopted detailed chemistry, WALES
large eddy simulation turbulence and combustion coupling approach to capture the intricate whirling
flame flow behaviour.

The modelling is conducted in a controlled numerical environment, for example, soot-free
alcohol-based fuel injected with fixed inlet velocity and resolved numerically based on a uniformed
fully structured discretisation scheme. This approach isolates and constrains the complicated coupling
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effect between the combustion process and the flow dynamics due to theoretically and numerically
introduced uncertainties such as radiation feedback from soot particulates, variance in burning rate
due to pool-based fuel configuration and numerical variation in spatial resolution due to locally refined
mesh that typically implemented in previous studies in the literature.

The present numerical simulation of the baseline case consists of a single side flow channelling
slit, replicate the experimental setup from the literature. The result yielded from the baseline model
compares well with the experimental data, and hence the same numerical methodologies are applied
to construct the comparison group with two identical symmetrical entrainment slits, and the results of
the two models, from the time of ignition to 50.00 s is presented and compared to reveal the effect of the
two eddy generation scheme on the fire whirl formation and development. In conclusion, the following
observations can be made:

• With the existence of the eddy generation sources, i.e., slit(s) on the side of the enclosure, both Slit 01
and Slit 02 case observed the formulation and evolvement of the fire whirl from a buoyancy-driven
diffusion flame that flickering randomly into a swirling reacting flow that spanning around the
chamber with respect to domain centreline;

• Three-stage of the fire whirl formulation and development pathway can be observed in both
cases, namely Stage A as the flame development, Stage B as the fire whirl development and the
formation and Stage C as the fire whirl evolution;

• Compared with the baseline model, the Slit 02 case formulated the fire whirl much faster, i.e., 49.58%
reduction of the duration in Stage B which transforms from the free-standing buoyant flame into
nascent fire whirl;

• The nascent fire whirl formulated in Slit 02 is more intensified and spatially extended compared
with baseline case, with the visible height is increased by 84.38%, from 0.32 m to 0.59 m, peak
flame temperature increased 9.42%, from 1380 K to 1510 K and relatively consistent vortex core
radius compared with that increase of the monitoring flame height;

• Once the nascent fire whirl is formulated, the fire whirl for the baseline model is spinning around
the centreline with a relatively small radius of revolution in a semi-steady pattern, for the rest of
the simulation duration up to 50 s. On the other hand, the highly centralised fire whirl formulated
in the Slit 02 case may gradually diverge via swirling with an increasing radius of revolution.
It will eventually achieve an internal balanced semi-stable status that the revolution radius is
intensified by the introduction of the additional eddy via the slits and at the same time constrained
by the enclosures boundary walls;

• The revolution obit of the fire whirl could be potentially explained based on the theory of circular
motion with constant surface drag force to create a radial boundary layer, acting as the centripetal
force that balances the velocity field of the vortex and the radius of revolution. It has been
observed in both cases that increased radius of revolution is observed as the fire whirl core
structure approaches the slit and hence intensified its velocity field, and vice verse decreased as
it departs from the near slit region, to balance the constant burning rate that fixed the surface
drag force.

• The incoming velocity of the slit is observed to be proportional with the distance between the
vortex core centre and the slit in the baseline case, which agrees well with the flow dynamic
driven by pressure gradient. However, the incoming velocity is observed to decrease as the
swirling plume approaches the slit and increase as it departs, which may be attributable to the
disturbance of and potential interaction between of the swirling reacting flow and naturally
ventilated flow pattern.

In summary, the results collectively compare the complete formation and evolution pathway of the
fire whirl under both under symmetrical and asymmetrical entraining scheme. The result demonstrates
that the fire whirl formulated in the single asymmetrical configuration is relatively smaller in size, and it
swirling with respect to the fuel pan in a relatively smaller radius as the centripetal drag force corrected
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its obit as it rotates through the enclosed wall regions. Comparatively, the fire whirl generated by
symmetrical slits configuration is observed to have higher visible height and relatively more regulated
share once it has been formulated. Its revolution orbit gradually evolves as its radius of rotation
constantly increased by the intensification of the vortex core velocity field, and eventually reaches a
semi-stable status as its move pattern is constrained by the enclosed wall. The result presented in
the current work provides a visual of the entire development of the combustion event that aids the
understanding of the complexed phenomenon couples with flow dynamics and combustion. It also
demonstrates that the proposed numerical framework is feasible to reveal the fundamental information
and probe the possible correlation between the geometrical configuration and the development of the
combustion behaviour. The information delivered could be beneficial for both research and industrial
communities and could be further implemented to enhance in building design, hazard prevention and
control as well as evacuation planning.
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