Augmented and Virtual Reality Evolution and Future Tendency
Abstract
:1. Introduction
2. Methodology
2.1. Extracted Information
- Title: Title of the manuscript or work analyzed.
- ISSN/ISBN (International Standard Book Number): Publication’s code for a journal manuscript or a book chapter, respectively.
- Keywords: Words used during the search process.
- Data search: Criteria used to perform the searching process.
- Publication year: Year of publication of the work reviewed.
- Magazine/book: Where the manuscript was published.
- Localization: Country where researchers worked during the research.
- Paper type: Type of paper between publication or application.
- Type of technology: Technology used for the research, Augmented Reality (AR) or Virtual Reality (VR).
- Technology analyzed: If the researchers used any commercial technology.
- Communication protocol: Name of the protocol used during the development of the work reviewed.
- Field of application: Field where the work presented is applied, like education, industry, health, etc.
- Specialization: Specialization of paper field.
- Software: Is the software available?
- Abstract: Paper summary.
- Utility: Extra annotations.
2.2. Searching Phase
- Virtual Reality
- Augmented Reality
- Virtual reality: 1,490,000 results, with 22 papers chosen.
- Augmented reality: 848,000 results, with 26 papers chosen.
- Virtual reality: 322,000 results, with 29 papers chosen.
- Augmented reality: 132,000 results, with 54 papers chosen.
- Collaborative virtual reality: 27,000 results, with 20 papers chosen.
- Collaborative augmented reality: 17,100 results, with 12 papers chosen.
3. Results
3.1. Manuscript Publication Evolution
- Technology trigger: technology is starting.
- Peak of inflated expectations: companies start to made publications with success and failures.
- Trough of disillusionment: most of the experiments and implementation fails.
- Slope of enlightenment: second or third generations of the technology appear.
- Plateau of productivity: technology is mainstream now.
3.2. General Data Analysis
3.2.1. Countries
3.2.2. Topics
- A.
- Research and DevelopmentThis topic is the most referenced. In this field, many specializations are covered but are not going to be represented because of the multiple fragmentations that can be obtained. For example, we can observe works about integrating VR on mobile devices [13], papers about issues in AR [14], works about pose estimation [15,16], works about how to use P2P (peer-to-peer) networks to make collaborative systems for AR [17], etc.From the database used in this work, those manuscripts in which the main topic is related to research and development are divided in countries, and the results are shown in Figure 10.Although several countries are represented in Figure 10, EU and USA cover 61.6% of the publications. The remaining 38.4% is very fragmented between Asiatic and Oceania countries.
- B.
- HealthcareAs we see in Figure 8, healthcare is the most popular field of application of AR and VR. First, we will analyze the topics studied.In Figure 11 (top left), it can be observed that the most relevant subtopic is surgery, followed closely by psychology and rehabilitation. In the surgery field, there are several works for helping surgeons before or during surgery [18], training for surgery in order to minimize risks [19], or even some systems to introduce students to this field. In psychology, we found papers focused, for example, on phobias [20]. In rehabilitation, most of the works are related to helping stroke patients [21,22].Focusing the attention in EU and USA regions (see Figure 11 (bottom)), the analyzed data shows that surgery and psychology are the most relevant topics: both cover almost 95% of the total publications in those regions. In the USA, psychology takes a bit more interest than surgery and rehabilitation is an important topic to be taken into account.This study is extended to all the regions around the world to compare the results (see Figure 11 (top right)). As expected, EU and USA are the regions with more contributions.
- C.
- EducationIn this section, the main attention is focused on the topic of education. The process made for the previous topic is done for this one too, analyzing the results after that. Those results are shown in Figure 12.The works related to these topics are divided in three categories: first, “Early” stage is related to works focused on the early stages of the education, up to 10 or 11 years old; “Middle” is used to denote works for high school until they are 18 years old; and finally, the category “High” is used for works applied to university studies. Figure 12 (top left) shows that the most present category is “Middle”: related to that, we can find works focused on helping students with maths [23] or science [24,25], among others. In the category “Early”, we can find works focused on teaching kids about science, too [26]. Finally, in the category “High”, works are focused on applying complex teaching techniques like collaborations [27,28]. We also found works which used AR/VR technologies to teach languages [29] in more than one category.The information obtained from Figure 12 shows that 50% percent of manuscripts found deal with working with students from middle school. Another important conclusion is that works with higher levels look more interesting than early levels (more citations).In Figure 12 (bottom), it can be observed that EU is focused mainly on the “Middle” and “High” levels but, in USA, the “Middle” education category covers 63.3% of the works while the “High” category covers less than 10%.Finally, observing Figure 12 (top right), the main regions focused on this topic are EU and USA, covering 60% of the contributions.
- D.
- IndustryFinally, the industry topic is analyzed in the same way as the previous topics. The summarized information can be seen in Figure 13.The information presented in Figure 13 is divided in three categories. The first and more popular one is “Maintenance”, covering 50% of the studied works: in this topic, we can find techniques to maintain factories [30,31] or aircraft [32]. The second category is “Productivity”, which is fundamental in modern industries in order to obtain better results and more efficiency in the daily industry; this can be done to help workers work with industrial robots or to even use some applications to make realistic 3D models and to share with colleagues [33,34,35]. Finally, the category “Training”, with 12.5% of the publications, covers works focused on helping workers to learn how to use their equipment [36].Figure 13 (bottom) presents the analyzed information from USA and EU. It can be observed that 71% of the EU’s works belong to the “Maintenance” category. Therefore, the “Training” and “Productivity” categories remain in second place in the EU. On the other side, USA’s works within this topic are focused on productivity and maintenance equally.Finally, Figure 13 (top right) presents the total distribution by countries. As can be seen, the EU and USA cover 60% of the publications.
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pucihar, K.Č.; Coulton, P. Exploring the evolution of mobile augmented reality for future entertainment systems. Comput. Entertain. CIE 2013, 11, 1. [Google Scholar] [CrossRef] [Green Version]
- Paavilainen, J.; Korhonen, H.; Alha, K.; Stenros, J.; Koskinen, E.; Mayra, F. The Pokémon GO experience: A location-based augmented reality mobile game goes mainstream. In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems, Denver, CO, USA, 6–11 May 2017; pp. 2493–2498. [Google Scholar]
- Lv, Z.; Halawani, A.; Feng, S.; Ur Réhman, S.; Li, H. Touch-less interactive augmented reality game on vision-based wearable device. Pers. Ubiquitous Comput. 2015. [Google Scholar] [CrossRef]
- Milgram, P.; Kishino, F. A taxonomy of mixed reality visual displays. IEICE Trans. Inf. Syst. 1994, 77, 1321–1329. [Google Scholar]
- Steuer, J. Defining virtual reality: Dimensions determining telepresence. J. Commun. 1992, 42, 73–93. [Google Scholar] [CrossRef]
- Nincarean, D.; Alia, M.B.; Halim, N.D.A.; Rahman, M.H.A. Mobile Augmented Reality: the potential for education. Procedia-Soc. Behav. Sci. 2013, 103, 657–664. [Google Scholar] [CrossRef] [Green Version]
- Bajura, M.; Neumann, U. Dynamic registration correction in video-based augmented reality systems. IEEE Comput. Gr. Appl. 1995, 15, 52–60. [Google Scholar] [CrossRef] [Green Version]
- Yung, R.; Khoo-Lattimore, C. New realities: A systematic literature review on virtual reality and augmented reality in tourism research. Curr. Issues Tour. 2019, 22, 2056–2081. [Google Scholar] [CrossRef]
- Kimura, Y.; Manabe, S.; Ikeda, S.; Kimura, A.; Shibata, F. Can Transparent Virtual Objects Be Represented Realistically on OST-HMDs? In Proceedings of the 2019 IEEE Conference on Virtual Reality and 3D User Interfaces (VR), Osaka, Japan, 23–27 March 2019; pp. 1327–1328. [Google Scholar]
- Opriş, D.; Pintea, S.; García-Palacios, A.; Botella, C.; Szamosközi, Ş.; David, D. Virtual reality exposure therapy in anxiety disorders: A quantitative meta-analysis. Depress. Anxiety 2012, 29, 85–93. [Google Scholar] [CrossRef] [PubMed]
- Powers, M.B.; Emmelkamp, P.M. Virtual reality exposure therapy for anxiety disorders: A meta-analysis. J. Anxiety Disord. 2008, 22, 561–569. [Google Scholar] [CrossRef] [PubMed]
- Gartner’s Hype Cycle. Available online: https://www.gartner.com/en/research/methodologies/gartner-hype-cycle (accessed on 26 December 2019).
- Lai, Z.; Hu, Y.C.; Cui, Y.; Sun, L.; Dai, N.; Lee, H.S. Furion: Engineering High-Quality Immersive Virtual Reality on Today’s Mobile Devices. IEEE Trans. Mob. Comput. 2019. [Google Scholar] [CrossRef]
- Kruijff, E.; Swan, J.E.; Feiner, S. Perceptual issues in augmented reality revisited. In Proceedings of the 9th IEEE International Symposium on Mixed and Augmented Reality 2010: Science and Technology, ISMAR 2010, Seoul, Korea, 13–16 October 2010. [Google Scholar] [CrossRef]
- Hagbi, N.; Bergig, O.; El-Sana, J.; Billinghurst, M. Shape recognition and pose estimation for mobile augmented reality. IEEE Trans. Vis. Comput. Gr. 2011. [Google Scholar] [CrossRef] [PubMed]
- Murphy-Chutorian, E.; Trivedi, M.M. Head pose estimation and augmented reality tracking: An integrated system and evaluation for monitoring driver awareness. IEEE Trans. Intell. Transp. Syst. 2010. [Google Scholar] [CrossRef]
- Zhihan, L.; Yin, T.; Han, Y.; Chen, Y.; Chen, G. WebVR-web virtual reality engine based on P2P network. J. Netw. 2011. [Google Scholar] [CrossRef]
- Nicolau, S.; Soler, L.; Mutter, D.; Marescaux, J. Augmented reality in laparoscopic surgical oncology. Surg. Oncol. 2011. [Google Scholar] [CrossRef]
- Vankipuram, M.; Kahol, K.; McLaren, A.; Panchanathan, S. A virtual reality simulator for orthopedic basic skills: A design and validation study. J. Biomed. Inform. 2010. [Google Scholar] [CrossRef]
- Baus, O.; Bouchard, S. Moving from virtual reality exposure-based therapy to augmented reality exposure-based therapy: A review. Front. Hum. Neurosci. 2014. [Google Scholar] [CrossRef] [Green Version]
- Jack, D.; Boian, R.; Merians, A.S.; Tremaine, M.; Burdea, G.C.; Adamovich, S.V.; Recce, M.; Poizner, H. Virtual reality-enhanced stroke rehabilitation. IEEE Trans. Neural Syst. Rehabil. Eng. 2001. [Google Scholar] [CrossRef]
- Hondori, H.M.; Khademi, M.; Dodakian, L.; Cramer, S.C.; Lopes, C.V. A spatial augmented reality rehab system for post-stroke hand rehabilitation. Stud. Health Technol. Inform. 2013. [Google Scholar] [CrossRef]
- Bujak, K.R.; Radu, I.; Catrambone, R.; MacIntyre, B.; Zheng, R.; Golubski, G. A psychological perspective on augmented reality in the mathematics classroom. Comput. Educ. 2013. [Google Scholar] [CrossRef]
- Cai, S.; Wang, X.; Chiang, F.K. A case study of Augmented Reality simulation system application in a chemistry course. Comput. Hum. Behav. 2014. [Google Scholar] [CrossRef] [Green Version]
- Bressler, D.M.; Bodzin, A.M. A mixed methods assessment of students’ flow experiences during a mobile augmented reality science game. J. Comput. Assist. Learn. 2013. [Google Scholar] [CrossRef]
- Shelton, B.E.; Hedley, N.R. Using augmented reality for teaching Earth-Sun relationships to undergraduate geography students. In Proceedings of the ART 2002—1st IEEE International Augmented Reality Toolkit Workshop, Darmstadt, Germany, 29–29 September 2002. [Google Scholar] [CrossRef]
- Monahan, T.; McArdle, G.; Bertolotto, M. Virtual reality for collaborative e-learning. Comput. Educ. 2008. [Google Scholar] [CrossRef]
- Galambos, P.; Weidig, C.; Baranyi, P.; Aurich, J.C.; Hamann, B.; Kreylos, O. VirCA NET: A case study for collaboration in shared virtual space. In Proceedings of the 3rd IEEE International Conference on Cognitive Infocommunications, CogInfoCom 2012, Kosice, Slovakia, 2–5 December 2012. [Google Scholar] [CrossRef] [Green Version]
- Wagner, D.; Barakonyi, I. Augmented reality kanji learning. In Proceedings of the 2nd IEEE and ACM International Symposium on Mixed and Augmented Reality, ISMAR 2003, Tokyo, Japan, 10 October 2003. [Google Scholar] [CrossRef] [Green Version]
- Gavish, N.; Gutiérrez, T.; Webel, S.; Rodríguez, J.; Peveri, M.; Bockholt, U.; Tecchia, F. Evaluating virtual reality and augmented reality training for industrial maintenance and assembly tasks. Interact. Learn. Environ. 2015. [Google Scholar] [CrossRef]
- Wang, J.; Feng, Y.; Zeng, C.; Li, S. An augmented reality based system for remote collaborative maintenance instruction of complex products. IEEE Int. Conf. Autom. Sci. Eng. 2014. [Google Scholar] [CrossRef]
- De Crescenzio, F.; Fantini, M.; Persiani, F.; Di Stefano, L.; Azzari, P.; Salti, S. Augmented reality for aircraft maintenance training and operations support. IEEE Comput. Gr. Appl. 2011. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Dunston, P.S. Comparative effectiveness of mixed reality-based virtual environments in collaborative design. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 2011. [Google Scholar] [CrossRef]
- Back, M.; Kimber, D.; Rieffel, E.; Dunnigan, A.; Liew, B.; Gattepally, S.; Foote, J.; Shingu, J.; Vaughan, J. The virtual chocolate factory: Building a real world mixed-reality system for industrial collaboration and control. In Proceedings of the 2010 IEEE International Conference on Multimedia and Expo, ICME 2010, Suntec City, Singapore, 19–23 July 2010. [Google Scholar] [CrossRef] [Green Version]
- Poppe, E.; Brown, R.; Johnson, D.; Recker, J. A prototype augmented reality collaborative process modelling tool. In Proceedings of the CEUR Workshop Proceedings, Clermont-Ferrand, France, 28 August–2 September 2011. [Google Scholar]
- Matsas, E.; Vosniakos, G.C. Design of a virtual reality training system for human–robot collaboration in manufacturing tasks. Int. J. Interact. Des. Manuf. 2017. [Google Scholar] [CrossRef]
- Qiao, X.; Ren, P.; Dustdar, S.; Liu, L.; Ma, H.; Chen, J. Web AR: A Promising Future for Mobile Augmented Reality-State of the Art, Challenges, and Insights. Proc. IEEE 2019. [Google Scholar] [CrossRef]
- Huang, W.; Alem, L.; Tecchia, F.; Duh, H.B.L. Augmented 3D hands: a gesture-based mixed reality system for distributed collaboration. J. Multimodal User Interfaces 2018. [Google Scholar] [CrossRef]
- Sutcliffe, A.G.; Kaur, K.D. Evaluating the usability of virtual reality user interfaces. Behav. Inf. Technol. 2000. [Google Scholar] [CrossRef]
- Comport, A.I.; Marchand, É.; Chaumette, F. A real-time tracker for markerless augmented reality. In Proceedings of the 2nd IEEE and ACM International Symposium on Mixed and Augmented Reality, ISMAR 2003, Washington, DC, USA, 7–10 October 2003. [Google Scholar] [CrossRef] [Green Version]
- Wagner, D.; Reitmayr, G.; Mulloni, A.; Drummond, T.; Schmalstieg, D. Real-time detection and tracking for augmented reality on mobile phones. IEEE Trans. Vis. Comput. Gr. 2010. [Google Scholar] [CrossRef] [PubMed]
- Bastug, E.; Bennis, M.; Medard, M.; Debbah, M. Toward Interconnected Virtual Reality: Opportunities, Challenges, and Enablers. IEEE Commun. Mag. 2017. [Google Scholar] [CrossRef]
- Specht, M.; Ternier, S.; Greller, W. Dimensions of Mobile Augmented Reality for Learning: A First Inventory. Res. Educ. Technol. (RCET) 2011, 7, 117–127. [Google Scholar]
- Galambos, P.; Baranyi, P. VirCA as virtual intelligent space for RT-middleware. In Proceedings of the IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Budapest, Hungary, 3–7 July 2011. [Google Scholar] [CrossRef]
- Papagiannakis, G.; Singh, G.; Magnenat-Thalmann, N. A survey of mobile and wireless technologies for augmented reality systems. Comput. Anim. Virtual Worlds 2008. [Google Scholar] [CrossRef] [Green Version]
- Schmalstieg, D.; Langlotz, T.; Billinghurst, M. Augmented reality 2.0. In Virtual Realities: Dagstuhl Seminar 2008; Springer: Vienna, Austria, 2011. [Google Scholar] [CrossRef]
- Marchand, E.; Uchiyama, H.; Spindler, F. Pose estimation for augmented reality: A hands-on survey. IEEE Trans. Vis. Comput. Gr. 2015, 22, 2633–2651. [Google Scholar] [CrossRef] [Green Version]
- Mulloni, A.; Seichter, H.; Schmalstieg, D. Handheld augmented reality indoor navigation with activity-based instructions. In Proceedings of the Mobile HCI 2011—13th International Conference on Human-Computer Interaction with Mobile Devices and Services, Stockholm, Sweden, 30 August–2 September 2011. [Google Scholar] [CrossRef]
- Olsson, T.; Lagerstam, E.; Kärkkäinen, T.; Väänänen-Vainio-Mattila, K. Expected user experience of mobile augmented reality services: A user study in the context of shopping centres. Pers. Ubiquitous Comput. 2013. [Google Scholar] [CrossRef]
- Gervautz, M.; Schmalstieg, D. Anywhere interfaces using handheld augmented reality. Computer 2012. [Google Scholar] [CrossRef]
- Hürst, W.; Van Wezel, C. Gesture-based interaction via finger tracking for mobile augmented reality. Multimed. Tools Appl. 2013. [Google Scholar] [CrossRef] [Green Version]
- Clark, A.; Dünser, A. An interactive augmented reality coloring book. In Proceedings of the 2012 IEEE Symposium on 3D User Interfaces (3DUI), Costa Mesa, CA, USA, 4–5 March 2012; pp. 7–10. [Google Scholar]
- Vera, L.; Gimeno, J.; Coma, I.; Fernández, M. Augmented mirror: Interactive augmented reality system based on kinect. In IFIP Conference on Human-Computer Interaction; Springer: Berlin/Heidelberg, Germany, 2011; pp. 483–486. [Google Scholar]
- Gugenheimer, J.; Stemasov, E.; Frommel, J.; Rukzio, E. Sharevr: Enabling co-located experiences for virtual reality between hmd and non-hmd users. In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems, Denver, CO, USA, 6–11 May 2017; pp. 4021–4033. [Google Scholar]
- Kantonen, T.; Woodward, C.; Katz, N. Mixed reality in virtual world teleconferencing. In Proceedings of the IEEE Virtual Reality, Waltham, MA, USA, 20–24 March 2010. [Google Scholar] [CrossRef]
- Benko, H.; Jota, R.; Wilson, A.D. MirageTable: Freehand interaction on a projected augmented reality tabletop. In Proceedings of the Conference on Human Factors in Computing Systems, Austin, TX, USA, 5–10 May 2012. [Google Scholar] [CrossRef]
- Maimone, A.; Fuchs, H. Computational augmented reality eyeglasses. In Proceedings of the 2013 IEEE International Symposium on Mixed and Augmented Reality, ISMAR 2013, Adelaide, SA, Australia, 1–4 October 2013. [Google Scholar] [CrossRef]
- Azmandian, M.; Hancock, M.; Benko, H.; Ofek, E.; Wilson, A.D. Haptic retargeting: Dynamic repurposing of passive haptics for enhanced virtual reality experiences. In Proceedings of the Conference on Human Factors in Computing Systems, San Jose, CA, USA, 7–12 May 2016. [Google Scholar] [CrossRef]
- Wu, D.; Courtney, C.G.; Lance, B.J.; Narayanan, S.S.; Dawson, M.E.; Oie, K.S.; Parsons, T.D. Optimal arousal identification and classification for affective computing using physiological signals: Virtual reality stroop task. IEEE Trans. Affect. Comput. 2010. [Google Scholar] [CrossRef]
- Bau, O.; Poupyrev, I. REVEL: Tactile feedback technology for augmented reality. ACM Trans. Gr. 2012. [Google Scholar] [CrossRef]
- Linder, N.; Maes, P. LuminAR: Portable robotic augmented reality interface design and prototype. In Proceedings of the UIST 2010—23rd ACM Symposium on User Interface Software and Technology, Adjunct Proceedings, New York, NY, USA, 3–6 October 2010. [Google Scholar] [CrossRef] [Green Version]
- Dunleavy, M. Design Principles for Augmented Reality Learning. TechTrends 2014. [Google Scholar] [CrossRef]
- Squire, K.; Klopfer, E. Augmented reality simulations on handheld computers. J. Learn. Sci. 2007. [Google Scholar] [CrossRef]
- Lee, T.; Höllerer, T. Handy AR: Markerless inspection of augmented reality objects using fingertip tracking. In Proceedings of the International Symposium on Wearable Computers, ISWC, Boston, MA, USA, 11–13 October 2007. [Google Scholar] [CrossRef] [Green Version]
- Bozgeyikli, E.; Raij, A.; Katkoori, S.; Dubey, R. Point & teleport locomotion technique for virtual reality. In Proceedings of the 2016 Annual Symposium on Computer-Human Interaction in Play, Austin, TX, USA, 16–19 October 2016; pp. 205–216. [Google Scholar]
- Carmigniani, J.; Furht, B.; Anisetti, M.; Ceravolo, P.; Damiani, E.; Ivkovic, M. Augmented reality technologies, systems and applications. Multimed. Tools Appl. 2011. [Google Scholar] [CrossRef]
- Roesner, F.; Kohno, T.; Molnar, D. Security and privacy for augmented reality systems. Commun. ACM 2014, 57, 88–96. [Google Scholar] [CrossRef]
- Wilson, A.D.; Benko, H.; Izadi, S.; Hilliges, O. Steerable augmented reality with the Beamatron. In Proceedings of the UIST’12—Proceedings of the 25th Annual ACM Symposium on User Interface Software and Technology, Cambridge, MA, USA, 7–10 October 2012. [Google Scholar]
- Hahn, J. Mobile augmented reality applications for library services. New Libr. World 2012. [Google Scholar] [CrossRef]
- Roth, D.; Lugrin, J.L.; Galakhov, D.; Hofmann, A.; Bente, G.; Latoschik, M.E.; Fuhrmann, A. Avatar realism and social interaction quality in virtual reality. In Proceedings of the 2016 IEEE Virtual Reality (VR), Greenville, SC, USA, 19–23 March 2016; pp. 277–278. [Google Scholar]
- Kasahara, S.; Heun, V.; Lee, A.S.; Ishii, H. Second surface: Multi-user spatial collaboration system based on augmented reality. In Proceedings of the SIGGRAPH Asia 2012 Emerging Technologies, SA 2012, Singapore, 28 November–1 December 2012. [Google Scholar] [CrossRef] [Green Version]
- Pejsa, T.; Kantor, J.; Benko, H.; Ofek, E.; Wilson, A. Room2Room: Enabling Life-Size telepresence in a projected augmented reality environment. In Proceedings of the ACM Conference on Computer Supported Cooperative Work CSCW, San Francisco, CA, USA, 27 February–2 March 2016. [Google Scholar] [CrossRef]
- Gelb, D.; Subramanian, A.; Tan, K.H. Augmented reality for immersive remote collaboration. In Proceedings of the 2011 IEEE Workshop on Person-Oriented Vision, POV 2011, Kona, HI, USA, 7 January 2011. [Google Scholar] [CrossRef]
- Slater, M.; Spanlang, B.; Sanchez-Vives, M.V.; Blanke, O. First person experience of body transfer in virtual reality. PLoS ONE 2010. [Google Scholar] [CrossRef] [Green Version]
- Riva, G.; Gaggioli, A.; Grassi, A.; Raspelli, S.; Cipresso, P.; Pallavicini, F.; Vigna, C.; Gagliati, A.; Gasco, S.; Donvito, G. NeuroVR 2—A free virtual reality platform for the assessment and treatment in behavioral health care. Stud. Health Technol. Inform. 2011. [Google Scholar] [CrossRef]
- Larsen, C.R.; Oestergaard, J.; Ottesen, B.S.; Soerensen, J.L. The efficacy of virtual reality simulation training in laparoscopy: A systematic review of randomized trials. Acta Obstet. Gynecol. Scand. 2012. [Google Scholar] [CrossRef]
- Gurusamy, K.S.; Aggarwal, R.; Palanivelu, L.; Davidson, B.R. Virtual reality training for surgical trainees in laparoscopic surgery. Cochrane Database Syst. Rev. 2009, 106, 76–78. [Google Scholar]
- Sielhorst, T.; Feuerstein, M.; Navab, N. Advanced medical displays: A literature review of augmented reality. IEEE/OSA J. Disp. Technol. [CrossRef] [Green Version]
- Riva, G.; Baños, R.M.; Botella, C.; Mantovani, F.; Gaggioli, A. Transforming experience: The potential of augmented reality and virtual reality for enhancing personal and clinical change. Front. Psychiatry 2016. [CrossRef] [PubMed]
- Perrenot, C.; Perez, M.; Tran, N.; Jehl, J.P.; Felblinger, J.; Bresler, L.; Hubert, J. The virtual reality simulator dV-Trainer® is a valid assessment tool for robotic surgical skills. Surg. Endosc. 2012. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Steed, A. Is the rubber hand illusion induced by immersive virtual reality? In Proceedings of the IEEE Virtual Reality, Waltham, MA, USA, 20–24 March 2010. [CrossRef]
- Moglia, A.; Ferrari, V.; Morelli, L.; Ferrari, M.; Mosca, F.; Cuschieri, A. A Systematic Review of Virtual Reality Simulators for Robot-assisted Surgery. Eur. Urol. 2016. [Google Scholar] [CrossRef] [PubMed]
- Optale, G.; Urgesi, C.; Busato, V.; Marin, S.; Piron, L.; Priftis, K.; Gamberini, L.; Capodieci, S.; Bordin, A. Controlling memory impairment in elderly adults using virtual reality memory training: A randomized controlled pilot study. Neurorehabil. Neural Repair 2010. [Google Scholar] [CrossRef]
- Hansen, C.; Wieferich, J.; Ritter, F.; Rieder, C.; Peitgen, H.O. Illustrative visualization of 3D planning models for augmented reality in liver surgery. Int. J. Comput. Assist. Radiol. Surg. 2010. [Google Scholar] [CrossRef] [Green Version]
- Botella, C.; Bretón-López, J.; Quero, S.; Baños, R.; García-Palacios, A. Treating Cockroach Phobia with Augmented Reality. Behav. Ther. 2010. [Google Scholar] [CrossRef]
- Bernhardt, S.; Nicolau, S.A.; Soler, L.; Doignon, C. The status of augmented reality in laparoscopic surgery as of 2016. Med. Image Anal. 2017. [Google Scholar] [CrossRef]
- Meola, A.; Cutolo, F.; Carbone, M.; Cagnazzo, F.; Ferrari, M.; Ferrari, V. Augmented reality in neurosurgery: A systematic review. Neurosurg. Rev. 2017, 40, 537–548. [Google Scholar] [CrossRef]
- Patterson, D.R.; Tininenko, J.R.; Schmidt, A.E.; Sharar, S.R. Virtual reality hypnosis: A case report. Int. J. Clin. Exp. Hypn. 2004, 52, 27–38. [Google Scholar] [CrossRef]
- Bohil, C.J.; Alicea, B.; Biocca, F.A. Virtual reality in neuroscience research and therapy. Nat. Rev. Neurosci. 2011. [Google Scholar] [CrossRef]
- Gor, M.; McCloy, R.; Stone, R.; Smith, A. Virtual reality laparoscopic simulator for assessment in gynaecology. BJOG Int. J. Obstet. Gynaecol. 2003, 110, 181–187. [Google Scholar] [CrossRef]
- Tarr, M.J.; Warren, W.H. Virtual reality in behavioral neuroscience and beyond. Nat. Neurosci. 2002. [Google Scholar] [CrossRef] [PubMed]
- Merians, A.S.; Jack, D.; Boian, R.; Tremaine, M.; Burdea, G.C.; Adamovich, S.V.; Recce, M.; Poizner, H. Virtual reality–augmented rehabilitation for patients following stroke. Physical therapy 2002, 82, 898–915. [Google Scholar] [CrossRef] [Green Version]
- Kandalaft, M.R.; Didehbani, N.; Krawczyk, D.C.; Allen, T.T.; Chapman, S.B. Virtual reality social cognition training for young adults with high-functioning autism. J. Autism Dev. Disord. 2013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reger, G.M.; Holloway, K.M.; Candy, C.; Rothbaum, B.O.; Difede, J.A.; Rizzo, A.A.; Gahm, G.A. Effectiveness of virtual reality exposure therapy for active duty soldiers in a military mental health clinic. J. Trauma. Stress 2011. [Google Scholar] [CrossRef] [PubMed]
- Rizzo, A.; Parsons, T.D.; Lange, B.; Kenny, P.; Buckwalter, J.G.; Rothbaum, B.; Difede, J.A.; Frazier, J.; Newman, B.; Williams, J.; et al. Virtual reality goes to war: A brief review of the future of military behavioral healthcare. J. Clin. Psychol. Med. Settings 2011. [Google Scholar] [CrossRef]
- Culbertson, C.; Nicolas, S.; Zaharovits, I.; London, E.D.; Richard De La Garza, I.; Brody, A.L.; Newton, T.F. Methamphetamine craving induced in an online virtual reality environment. Pharmacol. Biochem. Behav. 2010, 96, 454–460. [Google Scholar] [CrossRef] [Green Version]
- Khanal, P.; Vankipuram, A.; Ashby, A.; Vankipuram, M.; Gupta, A.; Drumm-Gurnee, D.; Josey, K.; Tinker, L.; Smith, M. Collaborative virtual reality based advanced cardiac life support training simulator using virtual reality principles. J. Biomed. Inform. 2014. [Google Scholar] [CrossRef] [Green Version]
- Su, L.M.; Vagvolgyi, B.P.; Agarwal, R.; Reiley, C.E.; Taylor, R.H.; Hager, G.D. Augmented Reality During Robot-assisted Laparoscopic Partial Nephrectomy: Toward Real-Time 3D-CT to Stereoscopic Video Registration. Urology 2009. [Google Scholar] [CrossRef]
- Shuhaiber, J.H. Augmented reality in surgery. Arch. Surg. 2004, 139, 170–174. [Google Scholar] [CrossRef] [Green Version]
- Cecil, J.; Ramanathan, P.; Rahneshin, V.; Prakash, A.; Pirela-Cruz, M. Collaborative virtual environments for orthopedic surgery. In Proceedings of the 2013 IEEE International Conference on Automation Science and Engineering (CASE), Madison, WI, USA, 17–20 August 2013; pp. 133–137. [Google Scholar]
- Davis, M.C.; Can, D.D.; Pindrik, J.; Rocque, B.G.; Johnston, J.M. Virtual Interactive Presence in Global Surgical Education: International Collaboration Through Augmented Reality. World Neurosurg. 2016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andújar, J.M.; Mejias, A.; Marquez, M.A. Augmented reality for the improvement of remote laboratories: An augmented remote laboratory. IEEE Trans. Educ. 2011. [Google Scholar] [CrossRef]
- Sommerauer, P.; Müller, O. Augmented reality in informal learning environments: A field experiment in a mathematics exhibition. Comput. Educ. 2014. [Google Scholar] [CrossRef]
- Peña-Ríos, A.; Callaghan, V.; Gardner, M.; Alhaddad, M.J. Remote mixed reality collaborative laboratory activities: Learning activities within the InterReality portal. In Proceedings of the 2012 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology Workshops, WI-IAT 2012, Macau, China, 4–7 December 2012. [Google Scholar] [CrossRef] [Green Version]
- Blum, T.; Kleeberger, V.; Bichlmeier, C.; Navab, N. Mirracle: An augmented reality magic mirror system for anatomy education. In Proceedings of the 2012 IEEE Virtual Reality Workshops (VRW), Costa Mesa, CA, USA, 4–8 March 2012; pp. 115–116. [Google Scholar]
- Billinghurst, M.; Kato, H.; Poupyrev, I. The MagicBook—Moving seamlessly between reality and virtuality. IEEE Comput. Gr. Appl. 2001. [Google Scholar] [CrossRef]
- Lee, K. Augmented Reality in Education and Training. TechTrends 2012. [Google Scholar] [CrossRef]
- Pantelidis, V.S. Reasons to Use Virtual Reality in Education and Training Courses and a Model to Determine When to Use Virtual Reality. Themes Sci. Technol. Educ. 2010, 2, 59–70. [Google Scholar]
- Kamarainen, A.M.; Metcalf, S.; Grotzer, T.; Browne, A.; Mazzuca, D.; Tutwiler, M.S.; Dede, C. EcoMOBILE: Integrating augmented reality and probeware with environmental education field trips. Comput. Educ. 2013. [Google Scholar] [CrossRef] [Green Version]
- Klopfer, E.; Sheldon, J. Augmenting your own reality: Student authoring of science-based augmented reality games. New Dir. Youth Dev. 2010, 2010, 85–94. [Google Scholar] [CrossRef]
- Enyedy, N.; Danish, J.A.; Delacruz, G.; Kumar, M. Learning physics through play in an augmented reality environment. Int. J. Comput. Support. Collab. Learn. [CrossRef]
- Sharma, S.; Agada, R.; Ruffin, J. Virtual reality classroom as an constructivist approach. In Proceedings of the Conference Proceedings—IEEE SOUTHEASTCON, Jacksonville, FL, USA, 4–7 April 2013. [Google Scholar] [CrossRef]
- Ke, F.; Hsu, Y.C. Mobile augmented-reality artifact creation as a component of mobile computer-supported collaborative learning. Internet High. Educ. 2015. [Google Scholar] [CrossRef] [Green Version]
- Galambos, P.; Baranyi, P.; Rudas, I.J. Merged physical and virtual reality in collaborative virtual workspaces: The VirCA approach. In Proceedings of the IECON Proceedings (Industrial Electronics Conference), Dallas, TX, USA, 29 October–1 November 2014. [Google Scholar] [CrossRef]
- Bottecchia, S.; Cieutat, J.M.; Jessel, J.P. TAC: Augmented reality system for collaborative tele-assistance in the field of maintenance through internet. In Proceedings of the ACM International Conference Proceeding Series, Megève, France, 2–3 April 2010. [Google Scholar] [CrossRef] [Green Version]
- Henderson, S.J.; Feiner, S.K. Augmented reality in the psychomotor phase of a procedural task. In Proceedings of the 2011 10th IEEE International Symposium on Mixed and Augmented Reality, ISMAR 2011, Basel, Switzerland, 26–29 October 2011. [Google Scholar] [CrossRef] [Green Version]
- Henderson, S.; Feiner, S. Exploring the benefits of augmented reality documentation for maintenance and repair. IEEE Trans. Vis. Comput. Gr. 2011. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Du, J.; Zou, Z.; Shi, Y.; Zhao, D. Zero latency: Real-time synchronization of BIM data in virtual reality for collaborative decision-making. Autom. Constr. 2018. [Google Scholar] [CrossRef]
- Gauglitz, S.; Nuernberger, B.; Turk, M.; Höllerer, T. In touch with the remote world: Remote collaboration with augmented reality drawings and virtual navigation. In Proceedings of the ACM Symposium on Virtual Reality Software and Technology, VRST, Edinburgh, UK, 11–13 November 2014. [Google Scholar] [CrossRef]
- Morgan, C.L. (Re)Building çatalhöyük: Changing virtual reality in archaeology. Archaeologies 2009. [Google Scholar] [CrossRef] [Green Version]
- Vlahakis, V.; Ioannidis, M.; Karigiannis, J.; Tsotros, M.; Gounaris, M.; Stricker, D.; Gleue, T.; Daehne, P.; Almeida, L. Archeoguide: An augmented reality guide for archaeological sites. IEEE Comput. Gr. Appl. 2002, 22, 52–60. [Google Scholar] [CrossRef]
- Haugstvedt, A.-C.; Krogstie, J. Mobile augmented reality for cultural heritage: A technology acceptance study. In Proceedings of the ISMAR 2012—11th IEEE International Symposium on Mixed and Augmented Reality 2012, Science and Technology Papers, Atlanta, GA, USA, 5–8 November 2012; 2012. [Google Scholar] [CrossRef]
- Whyte, J. Industrial applications of virtual reality in architecture and construction. Electron. J. Inf. Technol. Constr. 2003, 8, 43–50. [Google Scholar]
- Thomas, B.; Close, B.; Donoghue, J.; Squires, J.; De Bondi, P.; Morris, M.; Piekarski, W. ARQuake: An outdoor/indoor augmented reality first person application. In Proceedings of the Digest of Papers. Fourth International Symposium on Wearable Computers, Atlanta, GA, USA, 16–17 October 2000; pp. 139–146. [Google Scholar]
- Wang, X.; Kim, M.J.; Love, P.E.; Kang, S.C. Augmented reality in built environment: Classification and implications for future research. Autom. Constr. 2013. [Google Scholar] [CrossRef]
- Goulding, J.; Nadim, W.; Petridis, P.; Alshawi, M. Construction industry offsite production: A virtual reality interactive training environment prototype. Adv. Eng. Inform. 2012. [Google Scholar] [CrossRef]
- Chi, H.L.; Kang, S.C.; Wang, X. Research trends and opportunities of augmented reality applications in architecture, engineering, and construction. Autom. Constr. 2013. [Google Scholar] [CrossRef]
- Guttentag, D.A. Virtual reality: Applications and implications for tourism. Tour. Manag. 2010. [Google Scholar] [CrossRef]
- Carrozzino, M.; Bergamasco, M. Beyond virtual museums: Experiencing immersive virtual reality in real museums. J. Cult. Herit. 2010. [Google Scholar] [CrossRef]
- Kounavis, C.D.; Kasimati, A.E.; Zamani, E.D. Enhancing the tourism experience through mobile augmented reality: Challenges and prospects. Int. J. Eng. Bus. Manag. 2012. [Google Scholar] [CrossRef]
- Yovcheva, Z.; Buhalis, D.; Gatzidis, C. Smartphone augmented reality applications for tourism. E-Rev. Tour. Res. 2012, 10, 63–66. [Google Scholar]
- Olshannikova, E.; Ometov, A.; Koucheryavy, Y.; Olsson, T. Visualizing Big Data with augmented and virtual reality: Challenges and research agenda. J. Big Data 2015. [Google Scholar] [CrossRef]
- Belousov, I.R.; Chellali, R.; Clapworthy, G.J. Virtual reality tools for internet robotics. In Proceedings of the 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No. 01CH37164), Seoul, Korea, 21–26 May 2001; Volume 2, pp. 1878–1883. [Google Scholar]
- Levin, M.F. Can virtual reality offer enriched environments for rehabilitation? Exp. Rev. Neurother. 2011. [Google Scholar] [CrossRef]
- Sveistrup, H. Motor rehabilitation using virtual reality. J. Neuroeng. Rehabil. 2004. [Google Scholar] [CrossRef] [Green Version]
- Saposnik, G.; Levin, M.; Group, S.O.R.C.S.W. Virtual reality in stroke rehabilitation: A meta-analysis and implications for clinicians. Stroke 2011, 42, 1380–1386. [Google Scholar] [CrossRef]
- Tsai, M.D.; Hsieh, M.S.; Jou, S.B. Virtual reality orthopedic surgery simulator. Comput. Biol. Med. 2001. [Google Scholar] [CrossRef]
- Wu, H.K.; Lee, S.W.Y.; Chang, H.Y.; Liang, J.C. Current status, opportunities and challenges of augmented reality in education. Comput. Educ. 2013. [Google Scholar] [CrossRef]
- Billinghurst, M.; Kato, H. Collaborative augmented reality. Commun. ACM 2002. [Google Scholar] [CrossRef]
- Iwata, N.; Fujiwara, M.; Kodera, Y.; Tanaka, C.; Ohashi, N.; Nakayama, G.; Koike, M.; Nakao, A. Construct validity of the LapVR virtual-reality surgical simulator. Surg. Endosc. 2011. [Google Scholar] [CrossRef]
- Santos, M.E.C.; Chen, A.; Taketomi, T.; Yamamoto, G.; Miyazaki, J.; Kato, H. Augmented reality learning experiences: Survey of prototype design and evaluation. IEEE Trans. Learn. Technol. 2014. [Google Scholar] [CrossRef]
- Liao, H.; Inomata, T.; Sakuma, I.; Dohi, T. 3-D augmented reality for MRI-guided surgery using integral videography autostereoscopic image overlay. IEEE Trans. Biomed. Eng. 2010. [Google Scholar] [CrossRef]
- Ibayashi, H.; Sugiura, Y.; Sakamoto, D.; Miyata, N.; Tada, M.; Okuma, T.; Kurata, T.; Mochimaru, M.; Igarashi, T. Dollhouse vr: A multi-view, multi-user collaborative design workspace with vr technology. In Proceedings of the SIGGRAPH Asia 2015 Emerging Technologies, Kobe, Japan, 2–6 November 2015; p. 8. [Google Scholar]
- Buchmann, V.; Violich, S.; Billinghurst, M.; Cockburn, A. FingARtips: Gesture based direct manipulation in Augmented Reality. In Proceedings of the 2nd International Conference on Computer Graphics and Interactive Techniques in Australasia and South East Asia, Singapore, 15–18 June 2004; pp. 212–221. [Google Scholar]
- Piumsomboon, T.; Clark, A.; Billinghurst, M.; Cockburn, A. User-Defined Gestures for Augmented Reality. In Proceedings of the Conference on Human Factors in Computing Systems, Paris, France, 27 April–2 May 2013. [Google Scholar] [CrossRef]
- Lepetit, V.; Vacchetti, L.; Thalmann, D.; Fua, P. Fully automated and stable registration for augmented reality applications. In Proceedings of the 2nd IEEE and ACM International Symposium on Mixed and Augmented Reality, ISMAR 2003, Tokyo, Japan, 7–10 October 2003. [Google Scholar] [CrossRef] [Green Version]
- Brütsch, K.; Schuler, T.; Koenig, A.; Zimmerli, L.; Koeneke, S.M.; Lünenburger, L.; Riener, R.; Jäncke, L.; Meyer-Heim, A. Influence of virtual reality soccer game on walking performance in robotic assisted gait training for children. J. NeuroEng. Rehabil. 2010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cuendet, S.; Bonnard, Q.; Do-Lenh, S.; Dillenbourg, P. Designing augmented reality for the classroom. Comput. Educ. 2013. [Google Scholar] [CrossRef] [Green Version]
- Gammeter, S.; Gassmann, A.; Bossard, L.; Quack, T.; Van Gool, L. Server-side object recognition and client-side object tracking for mobile augmented reality. In Proceedings of the 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition—Workshops, CVPRW 2010, San Francisco, CA, USA, 13–18 June 2010. [Google Scholar] [CrossRef]
- Agusanto, K.; Li, L.; Zhu, C.; Ng, W.S. Photorealistic rendering for augmented reality using environment illumination. In Proceedings of the 2nd IEEE and ACM International Symposium on Mixed and Augmented Reality, ISMAR 2003, Tokyo, Japan, 7–10 October 2003. [Google Scholar] [CrossRef]
- Nee, A.Y.; Ong, S.K.; Chryssolouris, G.; Mourtzis, D. Augmented reality applications in design and manufacturing. CIRP Ann. Manuf. Technol. [CrossRef]
- Wang, S.; Mao, Z.; Zeng, C.; Gong, H.; Li, S.; Chen, B. A new method of virtual reality based on unity3D. In Proceedings of the 2010 18th International Conference on Geoinformatics, Geoinformatics 2010, Beijing, China, 18–20 June 2010. [Google Scholar] [CrossRef]
- Duque, G.; Boersma, D.; Loza-Diaz, G.; Hassan, S.; Suarez, H.; Geisinger, D.; Suriyaarachchi, P.; Sharma, A.; Demontiero, O. Effects of balance training using a virtual-reality system in older fallers. Clin. Interv. Aging 2013. [Google Scholar] [CrossRef] [Green Version]
- Bower, M.; Howe, C.; McCredie, N.; Robinson, A.; Grover, D. Augmented Reality in education—Cases, places and potentials. Educ. Med. Int. 2014. [Google Scholar] [CrossRef]
- Bower, M.; Lee, M.J.; Dalgarno, B. Collaborative learning across physical and virtual worlds: Factors supporting and constraining learners in a blended reality environment. Br. J. Educ. Technol. 2017. [Google Scholar] [CrossRef]
- Dey, A.; Piumsomboon, T.; Lee, Y.; Billinghurst, M. Effects of sharing physiological states of players in collaborative virtual reality gameplay. In Proceedings of the Conference on Human Factors in Computing Systems, Denver, CO, USA, 6–11 May 2017. [Google Scholar] [CrossRef]
- Wang, X.; Love, P.E.; Kim, M.J.; Wang, W. Mutual awareness in collaborative design: An Augmented Reality integrated telepresence system. Comput. Ind. 2014. [Google Scholar] [CrossRef]
- Piumsomboon, T.; Lee, Y.; Lee, G.; Billinghurst, M. CoVAR: A collaborative virtual and augmented reality system for remote collaboration. In Proceedings of the SIGGRAPH Asia 2017 Emerging Technologies, SA 2017, Bangkok, Thailand, 27–30 November 2017. [Google Scholar] [CrossRef]
- Bishop, I.D.; Stock, C. Using collaborative virtual environments to plan wind energy installations. Renew. Energy 2010. [Google Scholar] [CrossRef]
- Cho, S.; Ku, J.; Cho, Y.K.; Kim, I.Y.; Kang, Y.J.; Jang, D.P.; Kim, S.I. Development of virtual reality proprioceptive rehabilitation system for stroke patients. Comput. Methods Prog. Biomed. 2014. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Love, P.E.; Kim, M.J.; Park, C.S.; Sing, C.P.; Hou, L. A conceptual framework for integrating building information modeling with augmented reality. Autom. Constr. 2013. [Google Scholar] [CrossRef]
- Le, Q.T.; Pedro, A.; Park, C.S. A Social Virtual Reality Based Construction Safety Education System for Experiential Learning. J. Intell. Robot. Syst. Theory Appl. 2015. [Google Scholar] [CrossRef]
- Akçayır, M.; Akçayır, G. Advantages and challenges associated with augmented reality for education: A systematic review of the literature. Educ. Res. Rev. 2017. [Google Scholar] [CrossRef]
- Yilmaz, R.M. Educational magic toys developed with augmented reality technology for early childhood education. Comput. Hum. Behav. 2016. [Google Scholar] [CrossRef]
- El Sayed, N.A.; Zayed, H.H.; Sharawy, M.I. ARSC: Augmented reality student card. Comput. Educ. 2011. [Google Scholar] [CrossRef]
- Portman, M.E.; Natapov, A.; Fisher-Gewirtzman, D. To go where no man has gone before: Virtual reality in architecture, landscape architecture and environmental planning. Comput. Environ. Urban Syst. 2015. [Google Scholar] [CrossRef]
- Gurevich, P.; Lanir, J.; Cohen, B.; Stone, R. TeleAdvisor: A versatile augmented reality tool for remote assistance. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Austin, TX, USA, 5–10 May 2012; pp. 619–622. [Google Scholar]
Search | Date | Results | Selected |
---|---|---|---|
“Virtual Reality” | 2000 | 1,490,000 | 22 |
“Augmented Reality” | 2000 | 848,000 | 26 |
“Virtual Reality” | 2010 | 322,000 | 29 |
“Augmented Reality” | 2010 | 132,000 | 54 |
“Virtual Reality” collaborative | 2010 | 27,000 | 20 |
“Augmented Reality” collaborative | 2010 | 17,100 | 12 |
Total | 163 |
Year | AR Number of Publications | Variation | VR Number of Publications | Variation |
---|---|---|---|---|
2000 | 2300 | - | 14,100 | - |
2001 | 2570 | 11.74 | 15,900 | 12.77 |
2002 | 3190 | 24.12 | 17,800 | 11.94 |
2003 | 5540 | 73.67 | 19,800 | 11.24 |
2004 | 4640 | −16.25 | 23,200 | 17.17 |
2005 | 5160 | 11.20 | 24,600 | 6.03 |
2006 | 5820 | 12.80 | 29,100 | 18.29 |
2007 | 6670 | 14.60 | 29,900 | 2.75 |
2008 | 7410 | 11.09 | 34,000 | 13.71 |
2009 | 8070 | 8.91 | 36,500 | 7.35 |
2010 | 10,800 | 33.83 | 38,600 | 5.75 |
2011 | 13,400 | 24.07 | 40,200 | 4.14 |
2012 | 16,900 | 26.12 | 42,100 | 4.73 |
2013 | 19,700 | 16.57 | 45,700 | 8.55 |
2014 | 24,400 | 23.86 | 45,900 | 0.44 |
2015 | 27,600 | 13.12 | 46,100 | 0.44 |
2016 | 30,500 | 10.51 | 50,700 | 9.98 |
2017 | 35,400 | 16.06 | 57,400 | 13.21 |
2018 | 31,100 | −12.05 | 47,600 | −17.07 |
2019 | 2570 | −79.92 | 27,700 | −41.81 |
Topic | Region | References | Specialization | Tendency |
---|---|---|---|---|
R&D | EU | [3,14,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55] | Web AR, Tracking, Real-time. | Probably |
USA | [13,16,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73] | Mobile, Web AR, Freehand. | increase | |
Health care | EU | [10,11,74,75,76,77,78,79,80,81,82,83,84,85,86,87] | Psychology, Laparoscopic, Phobias, Surgery. | Increase |
USA | [19,22,88,89,90,91,92,93,94,95,96,97,98,99,100,101] | Rehab, Surgery, Stroke. | ||
Education | EU | [27,29,102,103,104,105] | Maths, Science, Anatomy, Language. | Decrease |
USA | [23,25,26,106,107,108,109,110,111,112,113] | |||
Industry | EU | [30,32,36,114,115] | Maintenance, Assembly, Aircraft. | Stable or |
USA | [34,116,117,118,119] | Procedural task, Remote collaboration. | few publication |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muñoz-Saavedra, L.; Miró-Amarante, L.; Domínguez-Morales, M. Augmented and Virtual Reality Evolution and Future Tendency. Appl. Sci. 2020, 10, 322. https://doi.org/10.3390/app10010322
Muñoz-Saavedra L, Miró-Amarante L, Domínguez-Morales M. Augmented and Virtual Reality Evolution and Future Tendency. Applied Sciences. 2020; 10(1):322. https://doi.org/10.3390/app10010322
Chicago/Turabian StyleMuñoz-Saavedra, Luis, Lourdes Miró-Amarante, and Manuel Domínguez-Morales. 2020. "Augmented and Virtual Reality Evolution and Future Tendency" Applied Sciences 10, no. 1: 322. https://doi.org/10.3390/app10010322
APA StyleMuñoz-Saavedra, L., Miró-Amarante, L., & Domínguez-Morales, M. (2020). Augmented and Virtual Reality Evolution and Future Tendency. Applied Sciences, 10(1), 322. https://doi.org/10.3390/app10010322