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Abstract: Automatic welding technology is a solution to increase welding productivity and improve
welding quality in offshore pipe welding. To increase welding productivity, it is necessary to save
time during the assembly/disassembly of the guide track from the welding carriage and pipe to
move the next station. The guide track consists of a pneumatic system that does not separate the
welding carriage, and two welding carriages operate on a half-pipe joint to increase productivity.
These welding carriages automatically operate under the controller command. An automatic welding
system consists of a DC motor module, a step motor module, a welding control module, a welding
monitoring module, and a central control module. The control systems incorporate control modules
and transmit commands to each module for an automatic welding system. In order to minimize the
inevitable misalignment between the centerline of the welding seam and the welding torch for each
welding pass, a moving average algorithm for seam tracking is proposed, which was proven to be
suitable for the root pass, filling pass, and cap pass. Welding experiments were also carried out to
verify the validity of the weld seam tracking system.

Keywords: automatic welding system; pneumatic system; guide track; seam tracking; offshore
pipe welding

1. Introduction

An automatic welding system has the advantages of low labor intensity, good welded joint
appearance, and high-speed welding in the offshore pipeline industry [1–6]. A welding system in
pipeline construction must be capable of working in harsh environments with minimal maintenance
intervention. The equipment should embrace modern technology, but it should be easy to set up by the
operator. From the perspective of offshore pipeline projects, productivity and reliability are the most
essential features of an automatic welding system. Pipe welding in many industrial applications, such
as oil drilling platforms and chemical factories, must be handled by an automatic welding machine
because of the precision needed to avoid a hazardous leak. An automatic welding system should offer
high-quality welding performance for a long period of time and not break down.

If the water is deep, the pipe can be installed on the seafloor using several methods. The main
ways that subsea pipes are laid include the S-lay and J-lay method, as shown in Figure 1. In the
S-lay method, the pipe joints are welded together onboard the vessel in a horizontal production line.
The seagoing pipe is supported by a stinger to control the radius when the pipe bends towards the
seabed. Due to the high production rate and the possibility of installing pipes, the S-lay method
is extremely suitable for pipe installation in shallow and intermediate waters. The J-lay method is
suitable for deep water because the pipe leaves the lay system in the vertical position, and the pipeline
is bent while arriving at the seabed. This reduced amount of bending is beneficial for installing
pipelines that are sensitive to fatigue. The J-lay method has a relatively low production rate due to the
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single position welding of the pipe. To ensure the competitiveness of offshore pipeline laying, it is
necessary to maintain production balance among the welding processes, minimize the work process
time, and ensure perfect welding quality. Since the work process is performed on a barge floating on
the sea, working conditions are more difficult than those on land. Moreover, it is difficult to accurately
obtain the various automated pieces of equipment used in pipeline work due to their high cost. After
aligning pipes with an internal clamp and finishing construction work, more time is spent on repetitive
work, which separates the welding carriage with loosening a screw in guide track independently in a
conventional welding system. There are two different situations where automatic welding machines
are used. Semi-automatic welding uses a pre-programmed automatic welding machine, but the parts
are loaded onto the welding bench by an operator who arranges them and switches on the welding
machine until the weld is completed. The operator then removes the finished workpiece and repeats
the process as many times as necessary. Fully automatic welding removes the human element, except
as an overall observer to make sure the machines are running properly. In these set-ups, the parts and
finished workpieces are moved by other machines, such as conveyor belts, and the welding operation
is continuous over a large number of individual pieces.
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Welding productivity is also greatly influenced by the geometry of the weld joint. In narrow
groove, welding time can be minimized by reducing the amount of welding, but the narrow groove
can increase the welding defect, such as a lack of fusion on sidewalls [7,8]. To get the most out of
narrow groove welding, the welding system incorporates an automatic seam tracking, and an without
operator intervention is essential to compensate for the fit-up condition. Since automatic pipe welding
systems incorporate tandem welding processes to increase production, but multiple arc behavior
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makes it difficult to observe the weld centerline, so an automatic seam tracking system is necessarily
required [9–12]. If the calculation of the correction value for seam tracking is incorrect, the weld
centerline of the weaving motion deviates from the weld centerline. When the welding torch is brought
close to the sidewall, an undercut welding defect occurs. On the other sidewall, the welding torch
position is far away from the weld groove wall, and incomplete penetration occurs. This study has
developed an advanced automatic welding system that increases productivity and saves time using
a pneumatic system. The guide track with a pneumatic system is an integral part of the welding
carriage as it automatically connects the pipe joints. The automatic welding system communicates
with each control module for automatic welding and commands the welding carriage. The arc sensor
was developed to achieve high seam tracking accuracy to fully automate the welding system.

2. The Automatic Welding System

The automatic welding system consists of welding machines, a welding controller, and a guide
track that performs the motion needed to weld the carriages. The automatic welding system is
illustrated in Figure 2. The welding controller sends its control commands to the welding carriage.
The welding carriage consists of dual torches to save welding time and increase productivity. The two
welding carriages perform along half the guide track. The construction of a wire feeder box is shown
in Figure 3 and consists of a gas flow meter, a wire feeder calibration, a welding wire, and voltage and
current sensors. The gas flow meter measures the constant flow rate during welding.
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3. Characteristics of the Automatic Welding System

3.1. Control System

The automatic welding system consists of the DC motor module (DMM), the step motor module
(SMM), the welding control module (WCM), the welding monitoring module (WMM), and the central
control module (CCM) as shown in Figure 4. Each module was the integration of the control module
into the automatic welding system and sends a command to the welding carriage.
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3.2. Welding Carriage

The welding carriage operates in the circumference direction of the pipe and performs the motion
of the welding torches. The welding carriages are dependent on the servo motor and move along the
guide track. The step motor controller (SMC) controls the movement of a welding torch. The structure
of the welding carriage is shown in Figure 5.



Appl. Sci. 2020, 10, 324 5 of 14
Appl. Sci. 2020, 10, 324 5 of 14 

 

Figure 5. Structure of the welding carriage: (a) Vertical view and (b) horizontal view. 

3.3. Control of the SMM 

The SMM communicates with the SMC. Four SMC boards control the four welding torches on 

the half welding system. A heat sink bar was installed to prevent overheating, as shown in Figure 6. 

 

Figure 6. Step motor module (SMM) board block diagram. 

3.4. Control of the CCM 

The electronic control equipment receives information from the remote pendant and transmits 

the control commands to the welding carriages. A block diagram of the CCM is shown in Figure 7. 

The user can set the welding conditions in the data base manager (DBM), as shown in Figure 8, and 

Figure 5. Structure of the welding carriage: (a) Vertical view and (b) horizontal view.

3.3. Control of the SMM

The SMM communicates with the SMC. Four SMC boards control the four welding torches on the
half welding system. A heat sink bar was installed to prevent overheating, as shown in Figure 6.
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3.4. Control of the CCM

The electronic control equipment receives information from the remote pendant and transmits the
control commands to the welding carriages. A block diagram of the CCM is shown in Figure 7. The
user can set the welding conditions in the data base manager (DBM), as shown in Figure 8, and sends
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commands to the welding carriages. From the set values, the welding carriage performs welding on
pipes whenever the welding situation changes based on the sequence index. The information of the
DBM corresponds to the selected program transferred from the remote pendant to the WCM. The
WCM, DMM, and SMC receive the status of each module in the welding controller.
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3.5. Control of the WCM

The WCM controls the welding carriage during the welding process. The welding carriage
receives the welding settings from the DBM, as planned by the user. The WCM receives the current
position of the welding carriage from its angle sensor at 100 ms intervals and compares the angle
values that are defined in each sequence of the DBM. After transmitting the control command, the
DMM and SMC perform welding movements using set values in the DBM. The block diagram of the
WCM is shown in Figure 9.
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3.6. Control of WMM

For acquiring the welding signals, a voltage sensor was connected to the torch line (+) and ground
(−) position, and a current sensor was used as a Hall sensor in WMM. The analog input is automatically
adjusted for gain and offset, as shown in Figure 10.
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4. Integrated Welding Carriage with a Guide Track

The structure of the guide track is shown in Figure 11. The pneumatic guide track automatically
assembles the pipe with a locking device. To fix the pipe firmly, a vertical guide is used. The spring
blocks that can adjust the tension force by which the guide track is tightly fixed to the outer surface of
the pipe. A locking device tightly fixes the pipe to the pipe position. The guide track adjusts to the
pneumatic system without separating the welding carriage, as shown in Figure 12.
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5. Application of the Automatic Welding System

Welding Seam Tracking

The seam tracking automatically welds the weld centerline via signal processing during the
welding process. Various types of signal processing algorithms have been developed, such as curve
fitting, the integral method, and the moving average [9–12]. The requirement for a seam tracking
algorithm is the measurement of welding signals (voltage or current) and determination of the geometry
offset that deviates from the weld centerline. This study conducts a moving average method based on
voltage values.

The number of samplings was divided into the measurement of the voltage values in the left
(forward) and right (backward) directions, as shown in Figure 13. In consideration of the geometry of
the U-groove shape, the selection of the signal section (start location and end location) differently set
for stable seam tracking. The signals measured near the arc center is flat because the groove shape
at the center position is similar to a flat shape. It means that the seam tracking sensor cannot detect
the signal difference between the left and right side during a weaving motion. Hence, the ratio of
measuring interval plays an important role in the sensitivity and reliability of the seam tracking sensor.
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The average value was calculated and stored as a representative value. The signal section where
the measured value suddenly changed according to the shape of the welding groove was excluded from
the representative value calculation. The procedure of welding seam tracking is shown in Figure 14.
Table 1 shows the procedure of welding seam tracking in each sequence with the control modules.
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Table 1. Function of the control module in welding seam tracking.

Index Weaving WCM WMM SMM

1 1O→ 2O Calculation of weaving time −
Correction value
for left and right

2 2O→ 3O Transmit the measurement of
the voltage value

Receive the
measurement of

voltage
−

3 3O→ 4O −

Receive the voltage
value and number

of samples
−

4 4O→ 1O
Receive the voltage value

Calculate the correction value
Transmit the correction value

Calculate the mean
moving average

Transmit the
voltage value

Receive the
correction value

The moving average is calculated in Equation (1):

Valuea(k) =
{
( f actor− 1) ×Valuea(k− 1) + Valuem(k)

}
f actor

(1)

The moving average method has the advantage of changing factors to easily determine the cut
off frequency, and this paper used a digital low-pass filter in the voltage signal. The forward-moving
average (FMA) method is calculated in Equation (2), and the sampling number is set to a number from
1 to 80. The backward moving average (BMA) method is calculated in Equation (3), and the sampling
number is set from 80 to 1 in Equation (3). After calculating the FMA and BMA, the mean value of the
moving average is calculated in Equation (4), and the welding signal is shown in Figure 15.

Value f orward(kk=1∼80) =

{
(a− 1) ×Valuea(k− 1) + Valuem(k)

}
f actor

(2)

Valuebackward(kk=80∼1) =

{
(a− 1) ×Valuea(k) + Valuem(k− 1)

}
f actor

(3)
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Valuemean(k) =
Value f orward(k) + Valuebackward(k)

2
(4)

where Valuea(k) is the averaged value at k step. Valuem(k− 1) is the averaged value at k − 1 step.
Valuem(k) is the measured signal value (voltage) at k step, and a is the moving average factor. To
calculate the correction value, the weaving time is calculated during the weaving motion from left to
right or right to left. The voltage signals are consecutively measured during a weaving motion. The
weaving width is fixed to avoid the abrupt weaving motion. Finally, the correction value for deviations
(VL, VR) of the welding seam tracking is transmitted to the weaving motion. The calculation of the
correction value is performed in Equation (5). The welding torch from left to right seam tracking
function compares the average of the measured signals between the start location and the end location
and determines the extent of the left and right deviation of the welding torch according to the signs
(+, −) and the value of the result. The maximum correction value should be modified according to the
oscillation frequency in order to implement a reliable seam tracking system. In case of high oscillation
frequency in root pass welding, the number of corrections can be increased. When the oscillation
frequency is low in fill pass welding, the correction frequency is reduced. Therefore, the maximum
correction value in the root pass is limited as 0.1 mm and fill pass is limited as 0.2 mm.

D =
VLe f t −VRight

k
(5)

where k is a constant in the weld database. VLe f t is the averaged voltage value in data processing range,
and VRight is the averaged voltage value in the data processing range. Figure 16 shows a schematic of
the U-groove geometry and welding sequence. Table 2 summarizes the experiment condition. The
welding time is cut in half compared with the single carriage welding system, and the preparation of
weld time for installation is reduced by 1/3. The fusion zone shape was shown in Figure 17a, and the
value for the deviation of the weld centerline is ±0.3 mm in Figure 17b.
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Table 2. Welding condition.

Pass
No.

Current &
Polarity

Current (A) &
Lead/Trail

Voltage (V)
& Lead/Trail

Travel
Speed

(cm/min)

Ocill.
Width
(mm)

Ocill.
Frequency

[spm]

Root DC (+) Lead: 252 Lead: 25.5
63 0.6 220Trail: 246 Trail: 24.5

Hot DC (+) Lead: 252 Lead: 25.5
63 0.6 220Trail: 246 Trail: 24.5

Fill 1 DC (+) Lead: 247 Lead: 25
62 1.8 200Trail: 233 Trail: 24.5

Fill 2 DC (+) Lead: 243 Lead: 25 63 2.7 200
Strip DC (+) Trail: 237 Trail: 25.5 62 2.7 200

Cap DC (+) Lead: 247 Lead: 24.5
66 2.7 200Trail: 233 Trail: 24
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of seam tracking in fill pass welding.

6. Conclusions

This paper developed an automatic welding system to increase productivity and improve the
welding quality of pipe welding. The automatic welding system consists of the DC motor module,
the step motor module, the welding control module, the welding monitoring module, and the central
control module. The control systems incorporated control modules and transmitted commands to
each module for the automatic welding system. The guide track incorporated a welding carriage
using a pneumatic system to save time and increase productivity. The arc sensor was developed to
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achieve high seam tracking accuracy to increase welding quality. The result of the deviation of the
seam tracking was ±0.3 mm.
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