Exploration of an Extracellular Polymeric Substance from Earthworm Gut Bacterium (Bacillus licheniformis) for Bioflocculation and Heavy Metal Removal Potential
Abstract
:1. Introduction
2. Materials and Methods
2.1. Earthworm Sample
2.2. Isolation and Characterization of the Microorganism
2.3. Production of EPS
2.4. Characterization of EPS
2.5. Determination of Flocculation Activity
2.6. Effect of Operational Parameters on Flocculation Activity
2.7. Determination of Cu(II) and Zn(II) Adsorption Efficiency
2.8. Adsorption Isotherm
2.9. Statistical Analyses
3. Results
3.1. Characteristics of EPS
3.2. Flocculation Activity of EPS
3.3. Adsorption Efficiency of Cu(II) and Zn(II) at Varying pH
3.4. Adsorption Isotherms
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wurst, S.; Sonnemann, I.; Zaller, J.G. Soil macro-invertebrates: Their impact on plants and associated aboveground communities in temperate regions. In Aboveground–Belowground Community Ecology Ecological Studies (Analysis and Synthesis); Ohgushi, T., Wurst, S., Johnson, S., Eds.; Springer: Cham, Switzerland, 2018; Volume 234. [Google Scholar]
- Leon, Y.S.; Wise, D.H.; Perez, J.L.; Norby, R.J.; James, S.W.; Gonzalez-Meler, M.A. Endogeic earthworm densities increase in response to higher fine-root production in a forest exposed to elevated CO2. Soil Biol. Biochem. 2018, 122, 31–38. [Google Scholar] [CrossRef]
- Meier, A.B.; Hunger, S.; Drake, H.L. Differential engagement of fermentative taxa in gut contents of the earthworm Lumbricusterrestris. Appl. Environ. Microbiol. 2017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biswas, J.K.; Banerjee, A.; Majumder, S.; Bolan, N.; Seshadri, B.; Dash, M.C. New extracellular polymeric substance producing enteric bacterium from earthworm, Metaphire posthuma: Modulation through culture conditions. Proc. Zool. Soc. 2017. [Google Scholar] [CrossRef]
- Shi, Y.; Huang, J.; Zeng, G.; Gu, Y.; Chen, Y.; Hu, Y.; Tang, B.; Zhou, J.; Yang, Y.; Shi, L. Exploiting extracellular polymeric substances (EPS) controlling strategies for performance enhancement of biological wastewater treatments: An overview. Chemosphere 2017, 180, 396–411. [Google Scholar] [CrossRef]
- Pawar, S.T.; Bhosale, A.A.; Gawade, T.B.; Nale, T.R. Isolation, screening and optimization of exopolysaccharide producing bacterium from saline soil. J. Microbiol. Biotechnol. Res. 2013, 3, 4–31. [Google Scholar]
- Comte, S.; Guibaud, G.; Baudu, M. Biosorption properties of extracellular polymeric substances (EPS) towards Cd: Cu and Pb for different pH values. J. Hazard. Mater. 2008, 151, 185–193. [Google Scholar] [CrossRef]
- Caruso, C.; Rizzo, C.; Mangano, S.; Poli, A.; Donato, P.D.; Finore, I.; Nicolaus, B.; Marco, G.D.; Michaud, L.; Guidice, A.L. Production and biotechnological potentialities of extracellular polymeric substances 2 from sponge-associated Antarctic bacteria. Appl. Environ. Microbiol. 2017. [Google Scholar] [CrossRef] [Green Version]
- Drakou, E.M.; Amorium, C.L.; Castro, P.M.L.; Panagiotou, F.; Vyrides, I. Wastewater valorization by pure bacterial cultures to extracellular polymeric substances (EPS) with high emulsifying potential and flocculation activities. Waste Biomass Valorization 2017. [Google Scholar] [CrossRef] [Green Version]
- Xiao, R.; Yang, X.; Li, M.; Li, X.; Wei, Y.; Cao, M.; Ragauskas, A.; Thies, M.; Ding, J.; Zheng, Y. Investigation of composition, structure and bioactivity of extracellular polymeric substances from original and stress-induced strains of Thraustochytrium striatum. Carbohydr. Polym. 2018. [Google Scholar] [CrossRef]
- Busi, S.; Karuganti, S.; Rajkumari, J.; Paramanandham, P.; Pattnaik, S. Sludge settling and algal flocculation activity of extracellular polymeric substance (EPS) derived from Bacillus cereus SK. Water Environ. J. 2017, 31, 97–104. [Google Scholar] [CrossRef]
- Pakdel, P.M.; Peighambardoust, S.J. A review on acrylic based hydrogels and their applications in wastewater treatment. J. Environ. Manag. 2018, 217, 123–143. [Google Scholar] [CrossRef] [PubMed]
- Pennisi, M.; Malaguarnera, G.; Puglisi, V.; Vinciguerra, L.; Vacante, M.; Malaguarnera, M. Neurotoxicity of acrylamide in exposed workers. Int. J. Environ. Res. Public Health 2013, 10, 3843–3854. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, P.; Zhang, J.; Esquivel-Elizondo, S.; Ma, L.; Wu, Y. Uncovering the flocculating potential of extracellular polymeric substances produced by periphytic biofilms. Bioresour. Technol. 2017. [Google Scholar] [CrossRef] [PubMed]
- Dobrowolski, R.; Szczes, A.; Czemierska, M.; Jarosz-Wikołazka, A. (2017) Studies of cadmium(II), lead(II), nickel(II), cobalt(II) and chromium(VI) sorption on extracellular polymeric substances produced by Rhodococcus opacus and Rhodococcus rhodochrous. Bioresour. Technol. 2017, 225, 113–120. [Google Scholar] [CrossRef]
- Lakherwal, D. Adsorption of heavy metals: A review. Int. J. Environ. Res. Dev. 2014, 4, 41–48. [Google Scholar]
- Biswas, J.K.; Mondal, M.; Rinklebe, J.; Sarkar, S.K.; Chaudhuri, P.; Rai, M.; Shaheen, S.M.; Song, H.; Rizwan, M. Multi-metal resistance and plant growth promotion potential of a waste water bacterium Pseudomonas aeruginosa and its synergistic benefits. Environ. Geochem. Health 2017, 39, 1583–1593. [Google Scholar] [CrossRef]
- Gupta, P.; Diwan, B. Bacterial exopolysaccharide mediated heavy metal removal: A review on biosynthesis, mechanism and remediation strategies. Biotechnol. Rep. 2017, 13, 58–71. [Google Scholar] [CrossRef]
- Osyczka, P.; Rola, K. Integrity of lichen cell membranes as an indicator of heavy-metal pollution levels in soil. Ecotoxicol. Environ. Saf. 2019, 174, 26–34. [Google Scholar] [CrossRef]
- Biswas, J.K.; Banerjee, A.; Rai, M.K.; Rinklebe, J.; Shaheen, S.M.; Sarkar, S.K.; Dash, M.C.; Kaviraj, A.; Langer, U.; Song, H.; et al. Exploring potential applications of a novel extracellular polymeric substance synthesizing bacterium (Bacillus licheniformis) isolated from gut contents of earthworm (Metaphire posthuma) in environmental remediation. Biodegradation 2018. [Google Scholar] [CrossRef]
- Ce’rantola, S.; Boune´ry, J.D.; Segonds, C.; Marty, N. Exopolysaccharide production by mucoid and non mucoid strains of Burkholderia cepacia. FEMS Microbiol. Lett. 2000, 185, 243–246. [Google Scholar] [CrossRef] [Green Version]
- Cao, Y.; Weia, X.; Cai, P.; Huang, Q.; Rong, X.; Liang, W. Preferential adsorption of extracellular polymeric substances from bacteria on clay minerals and iron oxide. Colloids Surf. B Biointerfaces 2011, 83, 122–127. [Google Scholar] [CrossRef] [PubMed]
- Batool, R.; Yrjala, K.; Shaukat, K.; Jamil, N.; Hasnain, S. Production of EPS under Cr(VI) challenge in two indigenous bacteria isolated from a tannery effluent. J. Basic Microbiol. 2015, 55, 1064–1074. [Google Scholar] [CrossRef] [PubMed]
- Hunter, R.J. Zeta Potential in Colloids Science: Principles and Applications; Academic Press: New York, NY, USA, 1981. [Google Scholar]
- Bala Subramanian, S.; Yan, S.; Tyagi, R.D.; Surampalli, R.Y. Extracellular polymeric substances (EPS) producing bacterial strains of municipal wastewater sludge: Isolation, molecular identification, EPS characterization and performance for sludge settling and dewatering. Water Res. 2010, 44, 2253–2266. [Google Scholar] [CrossRef] [PubMed]
- Sathiyanarayanan, G.; Kiran, G.S.; Selvin, J. Synthesis of silver nanoparticles by polysaccharide bioflocculant produced from marine Bacillus subtilis MSBN17. Colloids Surf. B. 2013, 102, 13–20. [Google Scholar] [CrossRef]
- Sathiyanarayanan, G.; Bhatia, S.K.; Kim, H.J.; Kim, J.H.; Jeon, J.M.; Kim, Y.G.; Park, S.H.; Lee, S.H.; Lee, Y.K.; Yang, Y.H. Metal removal and reduction potential of an exopolysaccharide produced by Arctic psychrotrophic bacterium Pseudomonas sp. PAMC 28620. R. Soc. Chem. 2016. [Google Scholar] [CrossRef]
- Yin, Y.; Hu, Y.; Xiong, F. Sorption of Cu(II) and Cd(II) by extracellular polymeric substances (EPS) from Aspergillus fumigatus. Int. Biodeterior. Biodegrad. 2011, 65, 1012–1018. [Google Scholar] [CrossRef]
- Zhang, Z.; Cai, R.; Zhang, W.; Fu, Y.; Jiao, N. A novel exopolysaccharide with metal adsorption capacity produced by a marine bacterium Alteromonas sp. JL2810. Mar. Drugs 2017, 15, 175. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Sugir, M.E.; Li, Y.; Yuan, L.; Zhou, M.; Lv, P.; Yu, Z.; Wang, L.; Zhou, D. Effects of vermicomposting on the main chemical properties and bioavailability of Cd/Zn in pure sludge. Environ. Sci. Pollut. Res. 2019. [Google Scholar] [CrossRef]
- Pathma, J.; Sakthivel, N. Microbial diversity of vermicompost bacteria that exhibit useful agricultural traits and waste management potential. Springerplus 2012. [Google Scholar] [CrossRef] [Green Version]
- Liu, P.; Zhou, W.; Cui, H.; Tan, J.; Cao, S. Structural characteristics of humic substances in buried ancient paddy soils as revealed by 13C NMR spectroscopy. Environ. Geochem. Health 2019. [CrossRef] [Green Version]
- Antonio, S.; Concetta, G.; Valeria, L.; Teresa, L.M.; Gianluca, A.; Annarita, P.; Barbara, N. A novel EPS-producing strain of Bacillus licheniformis isolated from a shallow vent off Panarea island (Italy). Curr. Microbiol. 2013, 67, 27–29. [Google Scholar]
- Nambiar, R.B.; Sellamuthu, P.S.; Perumal, A.B.; Sadiku, E.R.; Phiri, G.; Jayaramudu, J. Characterization of an exopolysaccharide produced by Lactobacillus plantarum HM47 isolated from Human breast milk. Process Biochem. 2018. [Google Scholar] [CrossRef]
- Yang, Y.; Feng, F.; Zhou, Q.; Zhao, F.; Du, R.; Zhou, Z.; Han, Y. Isolation, purification and characterization of exopolysaccharide produced by Leuconostoc pseudomesenteroides YF32 from soybean paste. Int. J. Biol. Macromol. 2017. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Wei, M.; Min, W.; Gao, Y.; Liu, X.; Liu, J. Removal of heavy metal ions in aqueous solution by exopolysaccharides from Atheliarolfsii. Biocatal. Agric. Biotechnol. 2016. [Google Scholar] [CrossRef]
- Zhu, C.; Chen, C.; Zhao, L.; Zhang, Y.; Yang, J.; Song, L.; Yang, S. Bioflocculant produced by Chlamydomonas reinhardtii. J. Appl. Phycol. 2012, 24, 1245–1251. [Google Scholar] [CrossRef]
- Agunbiade, M.O.; Heerden, E.V.; Pohl, C.H.; Ashafa, A.T. Flocculating performance of a bioflocculant produced by Arthrobacter humicola in sewage waste water treatment. BMC Biotechnol. 2017. [Google Scholar] [CrossRef]
- Shih, I.L.; Van, L.C.; Lin, H.G.; Chang, Y.N. Production of biopolymer flocculant from Bacillus licheniformis and its flocculation properties. Bioresour. Technol. 2001, 78, 267–272. [Google Scholar] [CrossRef]
- Xiong, Y.; Wang, Y.; Yu, Y.; Li, Q.; Wang, H.; Chen, R.; He, N. Production and characterization of a novel bioflocculant from Bacillus licheniformis. Appl. Environ. Microbiol. 2010, 76, 2778–2782. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Lin, Z. Microbial flocculant and its application in environmental protection. J. Environ. Sci. 1999, 11, 1–12. [Google Scholar]
- Pan, Y.Z.; Shi, B.; Zhang, Y. Research on flocculation property of bioflocculant PG. a21 Ca. Mod. Appl. Sci. 2009, 3, 106–112. [Google Scholar] [CrossRef]
- Li, Y.; Li, Q.; Hao, D.; Hu, Z.; Song, D.; Yang, M. Characterization and flocculation mechanism of an alkali-activated polysaccharide flocculant from Arthrobacter sp. B4. Bioresour. Technol. 2014, 170, 574–577. [Google Scholar] [CrossRef] [PubMed]
- Ma, F.; Zheng, L.N.; Chi, Y. Applications of biological flocculants (BFs) for coagulation treatment in water purification: Turbidity elimination. Chem. Biochem. Eng. Q. 2008, 22, 321–326. [Google Scholar]
- Zheng, Y.; Ye, Z.L.; Fang, X.L.; Li, Y.H.; Cai, W.M. Production and characteristics of a bioflocculant produced by Bacillus sp. F19. Bioresour. Technol. 2008, 99, 7686–7691. [Google Scholar] [CrossRef] [PubMed]
- Gong, W.; Wang, S.; Sun, X.; Liu, X.; Yue, Q.; Gao, B. Bioflocculant production by culture of Serratia ficaria and its application in waste water treatment. Bioresour. Technol. 2008, 99, 4668–4674. [Google Scholar] [CrossRef] [PubMed]
- Sekelwa, C.; Anthony, U.M.; Vuyani, M.L.; Anthony, O.I. Characterization of a thermostable polysaccharide bioflocculant produced by Virgi bacillus species isolated from Algoa bay. Afr. J. Microbiol. Res. 2013, 7, 2925–2938. [Google Scholar]
- Wang, L.; Ma, F.; Lee, D.; Wang, A.; Ren, N. Bioflocculants from hydrolysates of corns stover using isolated strain Ochrobactium ciceri W2. Bioresour. Technol. 2013, 145, 259–263. [Google Scholar] [CrossRef]
- Guibaud, G.; Comte, S.; Bordas, F.; Dupuy, S.; Baudu, M. Comparison of the complexation potential of extracellular polymeric substances (EPS), extracted from activated sludges and produced by pure bacteria strains, for cadmium, lead and nickel. Chemosphere 2005, 59, 629–638. [Google Scholar] [CrossRef]
- Salehizadeh, H.; Shojaosadati, S.A. Removal of metal ions from aqueous solution by polysaccharide produced from Bacillus firmus. Water Res. 2003, 37, 4231–4235. [Google Scholar] [CrossRef]
Signal Positions | Functional Groups Present in EPS |
---|---|
1H NMR signal positions | |
δ-1.9 ppm | -CH2 protons |
δ-2.0 ppm | -CH proton attached to vinylic carbon |
δ-2.3 ppm | -CH2 protons |
δ-3.5-3.8 ppm | presence of electronegative group deshielding |
δ-3.9-4.8 ppm | peak due to electronegative oxygen comes from ester functional group |
13C NMR signal positions | |
δ-27.58-32.20 ppm | -CH2 protonic groups |
δ-54.78-63.30 ppm | presence of electronegative group |
δ-75.07-80.20 ppm | presence of unsaturated carbon atoms |
δ-104.13 ppm | presence of unsaturation |
δ-175.49 ppm | presence of carbonyl group |
Ions | Flocculation Activity (%) |
---|---|
CaCl2 | 72 ± 1 |
FeCl3 | 51.7 ± 1.3 |
ZnCl2 | 38.5 ± 1.5 |
CuSO4 | 46.5 ± 1.5 |
NaCl | 12.5 ± 3.0 |
KCl | 16.5 ± 1.5 |
Metal Ions | Langmuir Isotherm | Freundlich Isotherm | ||||
---|---|---|---|---|---|---|
b (L mg-1) | qm (mg g-1) | R2 | n-1 | Kf | R2 | |
Cu(II) | 0.27 | 58.82 | 0.9993 | 2.94 | 12.59 | 0.952 |
Zn(II) | 0.29 | 52.45 | 0.9993 | 2.0 | 12.61 | 0.971 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Biswas, J.K.; Banerjee, A.; Sarkar, B.; Sarkar, D.; Sarkar, S.K.; Rai, M.; Vithanage, M. Exploration of an Extracellular Polymeric Substance from Earthworm Gut Bacterium (Bacillus licheniformis) for Bioflocculation and Heavy Metal Removal Potential. Appl. Sci. 2020, 10, 349. https://doi.org/10.3390/app10010349
Biswas JK, Banerjee A, Sarkar B, Sarkar D, Sarkar SK, Rai M, Vithanage M. Exploration of an Extracellular Polymeric Substance from Earthworm Gut Bacterium (Bacillus licheniformis) for Bioflocculation and Heavy Metal Removal Potential. Applied Sciences. 2020; 10(1):349. https://doi.org/10.3390/app10010349
Chicago/Turabian StyleBiswas, Jayanta Kumar, Anurupa Banerjee, Binoy Sarkar, Dibyendu Sarkar, Santosh Kumar Sarkar, Mahendra Rai, and Meththika Vithanage. 2020. "Exploration of an Extracellular Polymeric Substance from Earthworm Gut Bacterium (Bacillus licheniformis) for Bioflocculation and Heavy Metal Removal Potential" Applied Sciences 10, no. 1: 349. https://doi.org/10.3390/app10010349
APA StyleBiswas, J. K., Banerjee, A., Sarkar, B., Sarkar, D., Sarkar, S. K., Rai, M., & Vithanage, M. (2020). Exploration of an Extracellular Polymeric Substance from Earthworm Gut Bacterium (Bacillus licheniformis) for Bioflocculation and Heavy Metal Removal Potential. Applied Sciences, 10(1), 349. https://doi.org/10.3390/app10010349