Virtual Bone Augmentation in Atrophic Mandible to Assess Optimal Implant-Prosthetic Rehabilitation—A Finite Element Study
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Buser, D.; Sennerby, L.; De Bruyn, H. Modern implant dentistry based on osseointegration: 50 years of progress, current trends and open questions. Periodontol. 2000 2017, 73, 7–21. [Google Scholar] [CrossRef]
- Chappuis, V.; Buser, R.; Bragger, U.; Bornstein, M.M.; Salvi, G.E.; Buser, D. Long-term outcomes of dental implants with a titanium plasma-sprayed surface: A 20-year prospective case series study in partially edentulous patients. Clin. Implant Dent. Relat. Res. 2013, 15, 780–790. [Google Scholar] [CrossRef]
- Merli, M.; Moscatelli, M.; Pagliaro, U.; Mariotti, G.; Merli, I.; Nieri, M. Implant prosthetic rehabilitation in partially edentulous patients with bone atrophy. An umbrella review based on systematic reviews of randomised controlled trials. Eur. J. Oral Implantol. 2018, 11, 261–280. [Google Scholar]
- Herford, A.S.; Nguyen, K. Complex bone augmentation in alveolar ridge defects. Oral Maxillofac. Surg. Clin. N. Am. 2015, 27, 227–244. [Google Scholar] [CrossRef]
- Camargo, I.B.; Van Sickels, J.E. Surgical complications after implant placement. Dent. Clin. N. Am. 2015, 59, 57–72. [Google Scholar] [CrossRef]
- Elnayef, B.; Monje, A.; Gargallo-Albiol, J.; Galindo-Moreno, P.; Wang, H.L.; Hernández-Alfaro, F. Vertical Ridge Augmentation in the Atrophic Mandible: A Systematic Review and Meta Analysis. Int. J. Oral Maxillofac. Implant. 2017, 32, 291–312. [Google Scholar] [CrossRef] [Green Version]
- Amine, M.; Guelzim, Y.; Benfaida, S.; Bennani, A.; Andoh, A. Short implants (5–8 mm) vs. long implants in augmented bone and their impact on peri-implant bone in maxilla and/or mandible: Systematic review. J. Stomatol. Oral Maxillofac. Surg. 2018, 120, 133–142. [Google Scholar] [CrossRef]
- Mendonça, J.A.; Francischone, C.E.; Senna, P.M.; Matos de Oliveira, A.E.; Sotto-Maior, B.S. A retrospective evaluation of the survival rates of splinted and non-splinted short dental implants in posterior partially edentulous jaws. J. Periodontol. 2014, 85, 787–794. [Google Scholar] [CrossRef] [PubMed]
- Rossi, F.; Botticelli, D.; Cesaretti, G.; De Santis, E.; Storelli, S.; Lang, N.P. Use of short implants (6 mm) in a single-tooth replacement: A 5-year follow-up prospective randomized controlled multicenter clinical study. Clin. Oral Implant. Res. 2016, 27, 458–464. [Google Scholar] [CrossRef] [PubMed]
- Alexandru, A.; Cimpoesu, R.; Melian, A.; Salceanu, M. Study on the behavior of dental alloy COCrWnBMOV in artificial saliva. Rev. Chim. 2019, 70, 165–168. [Google Scholar]
- Starch-Jensen, T.; Nielsen, H.B. Prosthetic Rehabilitation of the Partially Edentulous Atrophic Posterior Mandible with Short Implants (≤8 mm) Compared with the Sandwich Osteotomy and Delayed Placement of Standard Length Implants (>8 mm): A Systematic Review. J. Oral Maxillofac. Res. 2018, 9, e2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clelland, N.; Chaudhry, J.; Rashid, R.G.; McGlumphy, E. Split-mouth comparison of splinted and nonsplinted prostheses on short implants: 3-year results. Int. J. Oral Maxillofac. Implant. 2016, 31, 1135–1141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Misch, C.E.; Judy, K.W. Classification of partially edentulous arches for implant dentistry. Int. J. Oral Implantol. 1987, 4, 7–13. [Google Scholar] [PubMed]
- Correia, A.; Piloto, P.; Reis Campos, J.C.; Vaz, M. Finite element analysis of the mechanical behavior of a partially edentulous mandible as a function of cancellous bone density. J. Dent. Sci. 2009, 24, 22–27. [Google Scholar]
- Bozkaya, D.; Muftu, S.; Muftu, A. Evaluation of load transfer characteristics of five different implants in compact bone at different load levels by finite elements analysis. J. Prosthet. Dent. 2004, 92, 523–530. [Google Scholar] [CrossRef] [PubMed]
- Sevimay, M.; Turhan, F.; Kiliçarslan, M.A.; Eskitascioglu, G. Three-dimensional finite element analysis of the effect of different bone quality on stress distribution in an implant-supported crown. J. Prosthet. Dent. 2005, 93, 227–234. [Google Scholar] [CrossRef]
- Chun, H.J.; Park, D.N.; Han, C.H.; Heo, S.J.; Heo, M.S.; Koak, J.Y. Stress distribution in maxillary bone surrounding overdenture implants with different overdenture attachments. J. Oral Rehabil. 2005, 32, 193–205. [Google Scholar] [CrossRef]
- Papavasiliou, G.; Tripodakis, A.P.; Kamposiora, P.; Strub, J.R.; Bayne, S.C. Finite element analysis of ceramic abutment-restoration combinations for osseointegrated implants. Int. J. Prosthodont. 1996, 9, 254–260. [Google Scholar]
- Reinhardt, R.A.; Krejci, R.F.; Pao, Y.C.; Stannard, J.G. Dentin stresses in post-reconstructed teeth with diminishing bone support. J. Dent. Res. 1983, 62, 1002–1008. [Google Scholar] [CrossRef]
- Holmes, D.C.; Diaz-Arnold, A.M.; Leary, J.M. Influence of post dimension on stress distribution in dentin. J. Prosthet. Dent. 1996, 75, 140–147. [Google Scholar] [CrossRef]
- Sato, Y.; Tsuga, K.; Abe, Y.; Asahara, S.; Akagawa, Y. Finite element analysis on preferable I-bar clasp shape. J. Oral Rehabil. 2001, 28, 413–417. [Google Scholar] [CrossRef] [PubMed]
- Vaillancourt, H.; Pilliar, R.M.; Mccammond, D. Finite-element analysis of crestal bone loss around porous-coated dental implants. J. Appl. Biomater. 1995, 6, 267–282. [Google Scholar] [CrossRef] [PubMed]
- Grandin, H.M.; Berner, S.; Dard, M. A review of titanium zirconium (TiZr) alloys for use in endosseous dental implants. Materials 2012, 5, 1348–1360. [Google Scholar] [CrossRef] [Green Version]
- Souder, W.H.; Paffenbarger, G.C. Physical Properties of Dental Materials. In National Bureau of Standards Circular No. C433; Government Printing Office: Washington, DC, USA, 1992. [Google Scholar]
- Frost, H.M. Bone mass and the mechanostat: A proposal. Anat. Rec. 1987, 219, 1–9. [Google Scholar] [CrossRef]
- Frost, H.M. A 2003 update of bone physiology and Wolff s law for clinicians. Angle Orthod. 2004, 74, 3–15. [Google Scholar]
- Piccinini, M.; Cugnoni, J.; Botsis, J.; Ammann, P.; Wiskott, A. Numerical prediction of peri-implant bone adaptation: Comparison of mechanical stimuli and sensitivity to modeling parameters. Med. Eng. Phys. 2016, 38, 1348–1359. [Google Scholar] [CrossRef] [Green Version]
- McGarry, M.D.J.; Van Houten, E.E.W.; Perriñez, P.R.; Pattison, A.J.; Weaver, J.B.; Paulsen, K.D. An Octahedral Shear Strain Based measure of SNR for 3D MR Elastography. Phys. Med. Biol. 2011, 56, N153–N164. [Google Scholar] [CrossRef] [Green Version]
- Miyamoto, I.; Tsuboi, Y.; Wada, E.; Suwa, H.; Iizuka, T. Influence of cortical bone thickness and implant length on implant stability at the time of surgery–clinical, prospective, biomechanical, and imaging study. Bone 2005, 37, 776–780. [Google Scholar] [CrossRef]
- Berglundh, T.; Persson, L.; Klinge, B. A systematic review of the incidence of biological and technical complications in implant dentistry reported in prospective longitudinal studies of at least 5 years. J. Clin. Periodontol. 2002, 29, 197–212. [Google Scholar] [CrossRef]
- Baqain, Z.H.; Moqbel, W.Y.; Sawair, F.A. Early dental implant failure: Risk factors. Br. J. Oral Maxillofac. Surg. 2012, 50, 239–243. [Google Scholar] [CrossRef]
- Tonetti, M.S.; Schmid, J. Pathogenesis of implant failures. Periodontol. 2000 1994, 4, 127–138. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Frias, V.; Lee, K.W.; Wright, R.F. Effect of implant size and shape on implant success rates: A literature review. J. Prosthet. Dent. 2005, 94, 377–381. [Google Scholar] [CrossRef] [PubMed]
- Almas, K.; Smith, S.; Kutkut, A. What is the Best Micro and Macro Dental Implant Topography? Dent. Clin. N. Am. 2019, 63, 447–460. [Google Scholar] [CrossRef] [PubMed]
- Groning, F.; Fagan, M.; O’higgins, P. Modeling the Human Mandible Under Masticatory Loads: Which Input Variables are Important? Anat. Rec. 2012, 295, 853–863. [Google Scholar] [CrossRef] [PubMed]
- Ueda, N.; Takayama, Y.; Yokoyama, A. Minimization of dental implant diameter and length according to bone quality determined by finite element analysis and optimized calculation. J. Prosthodont. Res. 2017, 61, 324–332. [Google Scholar] [CrossRef] [PubMed]
- Korabi, R.; Shemtov-Yona, K.; Dorogoy, A.; Rittel, D. The failure envelope concept applied to the bone-dental implant system. Sci. Rep. 2017, 7, 2051. [Google Scholar] [CrossRef] [Green Version]
- Nemati, S.; Khorramymehr, S. Three Dimensional Evaluation of a Dental Implant in Different Angles by Finite Element Method. Bioeng. Res. 2019, 1, 42–53. [Google Scholar]
- Van Staden, R.C.; Guan, H.; Loo, Y.C. Application of the finite element method in dental implant research. Comput. Methods Biomech. Biomed. Eng. 2006, 9, 257–270. [Google Scholar] [CrossRef] [Green Version]
- Rittel, D.; Shemtov-Yona, K.; Korabi, R. Engineering Dental Implants. Curr. Oral Health Rep. 2017, 4, 239–247. [Google Scholar] [CrossRef]
- Misch, C.E. Single-tooth replacement: Treatment options. In Misch CE. Contemporary Implant Dentistry, 3rd ed.; Mosby: St. Louis, MO, USA, 2008; pp. 327–366. [Google Scholar]
- Iegami, C.M.; Barbosa, W.F.; Furuyama, R.J.; Lima, J.R.; de Campos, T.T.; Minagi, S.; Tamaki, R. Masticatory efficiency in complete denture wearers with reduced dental arches-a randomised cross-over study. J. Oral Rehabil. 2014, 41, 619–623. [Google Scholar] [CrossRef]
- Broadbent, J.M. Chewing and occlusal function. Funct. Orthod. 2000, 17, 34–39. [Google Scholar] [PubMed]
- Li, T.; Hub, K.; Cheng, L.; Dinga, Y.; Ding, Y.; Shao, J.; Kong, L. Optimum selection of the dental implant diameter and length in the posterior mandible with poor bone quality—A 3D finite element analysis. Appl. Math. Model 2011, 35, 446–456. [Google Scholar] [CrossRef]
- Kang, N.; Wu, Y.Y.; Gong, P.; Yue, L.; Ou, G.M. A study of force distribution of loading stresses on implant-bone interface on short implant length using 3-dimensional finite element analysis. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2014, 118, 519–523. [Google Scholar] [CrossRef] [PubMed]
- Dundar, S.; Topkaya, T.; Solmaz, M.Y.; Yaman, F.; Atalay, Y.; Saybak, S.; Asutay, F.; Cakmak, O. Finite element analysis of the stress distributions in peri-implant bone in modified and standard-threaded dental implants. Biotechnol. Biotechnol. Equip. 2016, 30, 127–133. [Google Scholar] [CrossRef] [Green Version]
- Greenstein, G.; Greenstein, B.; Carpentieri, J. The Need to Replace a Missing Second Molar With a Dental Implant Restoration: Analysis of a Controversial Issue. Compend. Contin. Educ. Dent. 2018, 39, 686–693. [Google Scholar] [PubMed]
- Yoshitani, M.; Takayama, Y.; Yokoyama, A. Significance of mandibular molar replacement with a dental implant: A theoretical study with nonlinear finite element analysis. Int. J. Implant. Dent. 2018, 4, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Butnaru-Moldoveanu, S.A.; Munteanu, F.; Forna, N.C. Virtual Bone Augmentation in Atrophic Mandible to Assess Optimal Implant-Prosthetic Rehabilitation—A Finite Element Study. Appl. Sci. 2020, 10, 401. https://doi.org/10.3390/app10010401
Butnaru-Moldoveanu SA, Munteanu F, Forna NC. Virtual Bone Augmentation in Atrophic Mandible to Assess Optimal Implant-Prosthetic Rehabilitation—A Finite Element Study. Applied Sciences. 2020; 10(1):401. https://doi.org/10.3390/app10010401
Chicago/Turabian StyleButnaru-Moldoveanu, Sînziana Anca, Florin Munteanu, and Norina Consuela Forna. 2020. "Virtual Bone Augmentation in Atrophic Mandible to Assess Optimal Implant-Prosthetic Rehabilitation—A Finite Element Study" Applied Sciences 10, no. 1: 401. https://doi.org/10.3390/app10010401
APA StyleButnaru-Moldoveanu, S. A., Munteanu, F., & Forna, N. C. (2020). Virtual Bone Augmentation in Atrophic Mandible to Assess Optimal Implant-Prosthetic Rehabilitation—A Finite Element Study. Applied Sciences, 10(1), 401. https://doi.org/10.3390/app10010401