Supercritical CO2 Mixtures for Advanced Brayton Power Cycles in Line-Focusing Solar Power Plants
Abstract
:1. Introduction
2. Assumptions and Methods
3. Results and Discussion
3.1. Results of ‘Group A’ Mixtures (Substances for Reducing the Critical Temperature)
3.2. Results of Group B Mixtures (Substances for Increasing the Critical Temperature)
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Nomenclature
CO2 | Carbon Dioxide |
CH4 | Methane |
C2H6 | Ethane |
C3H8 | Propane |
C4H8 | 1-Butene |
C4H10 | Butane |
C5H10 | Cyclopentane |
C5H12 | Isopentane |
C6H6 | Benzene |
CIP | Compressor Inlet Pressure |
CIT | Compressor Inlet Temperature |
CSP-sCO2 | Concentrated Solar Power Plant coupled to s-CO2 Brayton power cycles |
FM | Flow Mixture |
FS | Flow Split |
G | Generator |
H2S | Hydrogen Sulfide |
He | Helium |
HTF | Heat Transfer Fluid |
HTR | High Temperature Recuperator |
Kr | Krypton |
LF | Linear Fresnel |
LTR | Low Temperature Recuperator |
MC | Main Compressor |
NIST | National Institute of Standards and Technology |
PC | Precooler |
PHX | Primary Heat Exchanger |
PTC | Parabolic Trough Solar Collector |
RC | Recompressor |
RCMCI | Recompression with Main Compression and Intercooling Cycle |
REFPROP | Reference Fluid Thermodynamic and Transport Properties Database |
s-CO2 | Supercritical Carbon Dioxide |
SF | Solar Field |
T | Turbine |
TIT | Turbine Inlet Temperature |
TIP | Turbine Inlet Pressure |
UA | Heat Exchanger Conductance |
References
- Guo, J.-Q.; Li, M.-J.; Xu, J.-L.; Yan, J.-J.; Wang, K. Thermodynamic Performance Analysis of Different Supercritical Brayton Cycles using CO2-based binary Mixtures in the Molten Salt Solar Power Tower Systems. Energy 2019, 173, 785–798. Available online: https://linkinghub.elsevier.com/retrieve/pii/S0360544219301975 (accessed on 13 October 2019). [CrossRef]
- Bonalumi, D.; Lasala, S.; Macchi, E. CO2-TiCl4 Working Fluid for High-Temperature Heat Source Power Cycles and Solar Application. Renew. Energy 2018. [Google Scholar] [CrossRef]
- Li, M.-J.; Tao, W.-Q. Review of Methodologies and Polices for Evaluation of Energy Efficiency in High Energy-Consuming Industry. Appl. Energy 2017, 187, 203–215. [Google Scholar] [CrossRef]
- Rivera-González, L.; Bolonio, D.; Mazadiego, L.F.; Valencia-Chapi, R. Long-Term Electricity Supply and Demand Forecast (2018–2040): A LEAP Model Application towards a Sustainable Power Generation System in Ecuador. Sustainability 2019, 11, 5316. [Google Scholar] [CrossRef] [Green Version]
- Crespi, F.; Gavagnin, G.; Sánchez, D.; Martínez, G.S. Supercritical Carbon Dioxide Cycles for Power Generation: A Review. Appl. Energy 2017, 195, 152–183. [Google Scholar] [CrossRef]
- Zhu, H.-H.; Wang, K.; He, Y.-L. Thermodynamic Analysis and Comparison for Different Direct-Heated Supercritical CO2 Brayton Cycles Integrated into a Solar Thermal Power Tower System. Energy 2017, 140, 144–157. [Google Scholar] [CrossRef]
- Ma, Z.; Turchi, C.S. Advanced Supercritical Carbon Dioxide Power Cycle Configurations for Use in Concentrating Solar Power Systems Modular S-CO2. Power 2011, 4–7. Available online: https://pdfs.semanticscholar.org/fa85/c53c198d807ed65513ac11019c12f095cfad.pdf (accessed on 13 October 2019).
- Manente, G.; Lazzaretto, A. Innovative Biomass to Power Conversion Systems Based on Cascaded Supercritical CO2 Brayton Cycles. Biomass Bioenergy 2014, 69, 155–168. [Google Scholar] [CrossRef]
- Wu, C.; Yin, X.; Ma, L.; Zhou, Z.; Chen, H. Design and Operation of a 5.5 MWe Biomass Integrated Gasification Combined Cycle Demonstration Plant. Energy Fuels 2008, 22, 4259–4264. [Google Scholar] [CrossRef]
- Mecheri, M.; Le, Y. Supercritical CO2 Brayton Cycles for Coal- Fired Power Plants. Energy 2016, 103, 758–771. [Google Scholar] [CrossRef]
- Park, S. Thermodynamic and Economic Investigation of Coal-Fired Power Plant Combined with Various Supercritical CO2 Brayton Power Cycle. Appl. Therm. Eng. 2017, 130, 611–623. [Google Scholar] [CrossRef]
- Moullec, Y.L. Conceptual Study of a High Efficiency Coal-Fired Power Plant with CO2 Capture Using a Supercritical CO2 Brayton Cycle. Energy 2013, 49, 32–46. [Google Scholar] [CrossRef]
- Li, M.-J.; Zhu, H.-H.; Guo, J.-Q.; Wang, K.; Tao, W.-Q. The Development Technology and Applications of Supercritical CO2 Power Cycle in Nuclear Energy, Solar Energy and other Energy Industries. Appl. Eng. 2017, 126, 255–275. [Google Scholar] [CrossRef]
- Li, M.-J.; Jie, Y.-J.; Zhu, H.-H.; Qi, G.-J.; Li, M.-J. The Thermodynamic and Cost-Benefit-Analysis of Miniaturized Lead-Cooled Fast Reactor with Supercritical CO2 Power Cycle in the Commercial Market. Prog. Nucl. Energy 2018, 103, 135–150. [Google Scholar] [CrossRef]
- Qi, H.; Gui, N.; Yang, X.; Tu, J.; Jiang, S. The Application of Supercritical CO2 in Nuclear Engineering: A Review. J. Comput. Multiph. Flows 2018. [Google Scholar] [CrossRef] [Green Version]
- Angelino, G. Carbon Dioxide Condensation Cycles for Power Production. J. Eng. Gas Turbines Power 1968, 90, 287. Available online: http://gasturbinespower.asmedigitalcollection.asme.org/article.aspx?doi=10.1115/1.3609190 (accessed on 13 October 2019). [CrossRef]
- Angelino, G. Real Gas Effects in Carbon Dioxide Cycles. In Power for Land, Sea, and Air; Turbo Expo: London, UK, 1969; Volumes 1–12. [Google Scholar] [CrossRef] [Green Version]
- Sulzer, G. Verfahren zur Erzeugung von Arbeit aus Warme. 1950. Available online: https://worldwide.espacenet.com/patent/search/family/004477343/publication/CH269600A?q=pn%3DCH269600A (accessed on 13 October 2019).
- Feher, E.G. The Supercritical Thermodynamic Power Cycle. Energy Convers. 1968, 8, 85–90. Available online: http://linkinghub.elsevier.com/retrieve/pii/0013748068901058 (accessed on 13 October 2019). [CrossRef]
- Al-Sulaiman, F.A.; Atif, M. Performance Comparison of Different Supercritical Carbon Dioxide Brayton Cycles Integrated with a Solar Power Tower. Energy 2015, 82, 61–71. [Google Scholar] [CrossRef]
- Coco-Enríquez, L. Nueva Generación de Centrales Termosolares Con Colectores Solares Lineales Acoplados A Ciclos Supercriticos de Potencia. Ph.D. Thesis, Universidad Politécnica de Madrid, Madrid, Spain, 2017. [Google Scholar] [CrossRef]
- Dyreby, J.J. Modeling the Supercritical Carbon Dioxide Brayton Cycle with Recompression. Ph.D. Thesis, University of Wisconsin-Madison, Madison, WI, USA, 2014. [Google Scholar]
- Rowan, T.H. Functional Stability Analysis of Numerical Algorithms. Ph.D. Thesis, The University of Texas at Austin, Austin, TX, USA, 1990. Available online: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.31.5708 (accessed on 13 October 2019).
- Powell, M.J.D. The NEWUOA Software for Unconstrained Optimization without Derivatives; Springer: Berlin/Heidelberg, Germany, 2006; pp. 255–297. Available online: http://link.springer.com/10.1007/0-387-30065-1_16 (accessed on 13 October 2019).
- Powell, M. The BOBYQA Algorithm for Bound Constrained Optimization without Derivatives. NAREP 2009, 39. Available online: http://www6.cityu.edu.hk/rcms/publications/preprint26.pdf (accessed on 13 October 2019).
- Lemmon, E.W.; Bell, I.H.; Huber, M.L.; McLinden, M.O. NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP; version 10.0; Natl Inst Stand Technol Stand Ref Data Program: Gaithersbg, MD, USA, 2018. Available online: https://www.nist.gov/sites/default/files/documents/2018/05/23/refprop10a.pdf (accessed on 13 October 2019).
- Thermoflow Inc. Thermoflow Software. Available online: http://www.thermoflow.com/ (accessed on 13 October 2019).
- Honeywell International Inc. UniSim® Software. 2017. Available online: https://www.honeywellprocess.com/en-US/online_campaigns/unisim-design/Pages/index.html# (accessed on 13 October 2019).
- Vesely, L.; Dostal, V.; Stepanek, J. Effect of Gaseous Admixtures on Cycles with Supercritical Carbon Dioxide. In Proceedings of the ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition, Seoul, Korea, 13–17 June 2016. [Google Scholar] [CrossRef]
- Hu, L.; Chen, D.; Huang, Y.; Li, L.; Cao, Y.; Yuan, D. Investigation on the Performance of the Supercritical Brayton Cycle with CO2-Based Binary Mixture as Working Fluid for an Energy Transportation System of a Nuclear Reactor. Energy 2015, 89, 874–886. Available online: https://ideas.repec.org/a/eee/energy/v89y2015icp874-886.html (accessed on 13 October 2019). [CrossRef]
- Kulhánek, M.; Dostál, V. Thermodynamic Analysis and Comparison of Supercritical Carbon Dioxide Cycles. 2011. Available online: http://www.sCO2powercyclesymposium.org/resource_center/system_concepts/thermodynamic-analysis-and-comparison-of-supercritical-carbon-dioxide-cycles (accessed on 13 October 2019).
- Wang, K.; Li, M.-J.; Guo, J.-Q.; Li, P.; Liu, Z. A Systematic Comparison of Different S-CO2 Brayton Cycle Layouts Based on Multi-Objective Optimization for Applications in Solar Power Tower Plants. Appl. Energy 2018, 212, 109–121. [Google Scholar] [CrossRef]
- Holaind, N.; Bianchi, G.; De Miol, M.; Saravi, S.S.; Tassou, S.A.; Leroux, A. Design of Radial Turbomachinery for Supercritical CO2 systems using Theoretical and Numerical CFD Methodologies. Energy Procedia 2017, 123, 313–320. [Google Scholar] [CrossRef]
- Cho, S.K.; Bae, S.J.; Jeong, Y.; Lee, J.; Lee, J.I. Direction for High-Performance Supercritical CO2 Centrifugal Compressor Design for Dry Cooled Supercritical CO2 Brayton Cycle. Appl. Sci. 2019, 9, 4057. [Google Scholar] [CrossRef] [Green Version]
- Vesely, L. Study of Power Cycle with Supercritical CO2. Ph.D. Thesis, Czech Technical University in Prague, Prague, Czech Republic, 2018. Available online: https://pdfs.semanticscholar.org/4914/4a496e3456eb45e0ea5cc2f07bffa2964f4e.pdf?_ga=2.199714603.422084581.1576280964-1144149164.1576280964 (accessed on 13 October 2019).
- Dyreson, A.; Miller, F. Night Sky Cooling for Concentrating Solar Power Plants. Appl. Energy 2016, 180, 276–286. [Google Scholar] [CrossRef]
- Muñoz, J.; Martínez-Val, J.M.; Abbas, R.; Abánades, A. Dry Cooling with Night Cool Storage to Enhance Solar Power Plants Performance in Extreme Conditions Areas. Appl. Energy 2012, 92, 429–436. [Google Scholar] [CrossRef] [Green Version]
- Wright, S.A.; Davidson, C.S.; Scammell, W.O. Bulk Energy Storage using a Supercritical CO2 Waste Heat Recovery Power Plant. In Proceedings of the 4th Int Symp—Supercrit CO2 Power Cycles, Pittsburg, PA, USA, 9–10 September 2014; Available online: http://sCO2symposium.com/papers2014/systemConcepts/84-Wright.pdf (accessed on 13 October 2019).
- González-Portillo, L.F.; Muñoz-Antón, J.; Martínez-Val, J.M. Thermodynamic Mapping of Power Cycles Working Around the Critical Point. Energy Convers. Manag. 2019, 192, 359–373. [Google Scholar] [CrossRef]
- González-Portillo, L.F. A New Concept in Thermal Engineering Optimization: The Pericritical Cycle with Multi-Heating and its Application to Concentrating Solar Power. Ph.D. Thesis, E.T.S.I. Industriales (UPM), Madrid, Spain, 2019. [Google Scholar] [CrossRef]
- Turchi, C.S.; Ma, Z.; Dyreby, J. Supercritical Carbon Dioxide Power Cycle Configurations for Use in Concentrating Solar Power Systems. In ASME Turbo Expo 2012: Turbine Technical Conference and Exposition; American Society of Mechanical Engineers Digital Collection: Copenhagen, Denmark, 2012; Volumes 1–7. [Google Scholar] [CrossRef]
- Coco-Enríquez, L.; Muñoz-Antón, J.; Martínez-Val, J.M. New Text Comparison Between CO2 and other Supercritical Working Fluids (Ethane, Xe, CH4 and N2) in Line-Focusing Solar Power Plants Coupled to Supercritical Brayton Power Cycles. Int. J. Hydrogen Energy 2017, 42, 17611–17631. [Google Scholar] [CrossRef]
- Vijaykumar, R.; Bauer, M.L.; Lausten, M.; Shultz, A.M. Optimizing the Supercritical CO2 Brayton Cycle for Concentrating Solar Power Application. In Proceedings of the 6th Int Symp—Supercrit CO2 Power Cycles, Pittsburgh, PA, USA, 27–29 March 2018; Available online: http://sCO2symposium.com/papers2018/power-plants-applications/093_Paper.pdf (accessed on 13 October 2019).
- Siddiqui, M.; Taimoor, A.; Almitani, K. Energy and Exergy Analysis of the s-CO2 Brayton Cycle Coupled with Bottoming Cycles. Processes 2018, 6, 153. Available online: https://www.mdpi.com/2227-9717/6/9/153 (accessed on 13 October 2019). [CrossRef] [Green Version]
- Marchionni, M.; Bianchi, G.; Tassou, S.A. Techno-Economic Assessment of Joule-Brayton Cycle Architectures for Heat to Power Conversion from High-Grade Heat Sources Using CO2 in the Supercritical State. Energy 2018, 148, 1140–1152. [Google Scholar] [CrossRef]
Nomenclature | Value | Unit | |
---|---|---|---|
Net power output | W | 50.00 | MW |
Compressor inlet temperature | T1 | Optimized 1//[318.15//323.15//328.15//333.15] 2 | K |
Compressor inlet pressure | P1 | Optimized 3//critical pressure 4 | MPa |
Turbine inlet temperature | T6 | 823.15 | K |
Turbine inlet pressure | P6 | 25.00 | MPa |
Main compressor efficiency [31,32] | ηmc | 0.89 | - |
Re-compressor efficiency [31,32] | ηrc | 0.89 | - |
Turbine efficiency [31,32] | ηt | 0.93 | - |
Heat exchanger conductance for low temperature recuperator | UALT | 2500//5000//7500 | kW/K |
Heat exchanger conductance for high temperature recuperator | UAHT | 2500//5000//7500 | kW/K |
Split fraction | γ | Optimized | - |
Molar Mass (kg/kmol) | Density (kg/m3) | Isobaric Heat Capacity (kJ/kg*K) | Kinetic Viscosity (cm2/s) | Thermal Conductivity (W/m*K) | Prandtl Number | Plant Efficiency | |
---|---|---|---|---|---|---|---|
s-CO2 pure | 44.01 | 565.43 | 49.62 | 7.19 × 10−4 | 1.03 × 10−1 | 19.61 | 0.49 |
s-CO2/He (90.0/10.0) | 40.01 | 386.23 | 378.95 | 6.68 × 10−4 | 5.52 × 10−2 | 177.08 | 0.53 |
s-CO2/Kr (68.0/32.0) | 56.74 | 740.15 | 7.95 | 6.20 × 10−4 | 5.94 × 10−2 | 6.13 | 0.53 |
s-CO2/CH4 (67.0/33.0) | 34.78 | 414.49 | 6.59 | 7.42 × 10−4 | 6.52 × 10−2 | 3.11 | 0.52 |
s-CO2/C2H6 (68.0/32.0) | 39.55 | 371.85 | 1830.20 | 7.91 × 10−4 | 9.13 × 10−2 | 597.86 | 0.52 |
Value | Unit | |
---|---|---|
PTC with AISI 347 stainless steel receiver for Solar Salt as HTF | 432 | $/m2 |
LF with AISI 347 stainless steel receiver for Solar Salt as HTF | 300 | $/m2 |
Construction factor | 1.16 | - |
Molar Mass (kg/kmol) | Density (kg/m3) | Isobaric Heat Capacity (kJ/kg*K) | Kinetic Viscosity (cm2/s) | Thermal Conductivity (W/m*K) | Prandtl Number | Plant Efficiency | |
---|---|---|---|---|---|---|---|
s-CO2 pure | 44.01 | 202.44 | 2.45 | 9.62 × 10−4 | 3.17 × 10−2 | 1.50 | 0.42 |
s-CO2/H2S (64.0/34.0) | 40.78 | 323.24 | 17.12 | 7.95 × 10−4 | 9.23 × 10−2 | 14.20 | 0.46 |
s-CO2/C3H8 (92.5/7.5) | 44.02 | 195.79 | 2.64 | 9.71 × 10−4 | 3.29 × 10−2 | 1.52 | 0.46 |
s-CO2/C4H8 (92.5/7.5) | 44.92 | 368.04 | 12.54 | 7.49 × 10−4 | 6.34 × 10−2 | 5.46 | 0.46 |
s-CO2/C5H10 (97.5/2.5) | 44.66 | 311.47 | 6.46 | 7.64 × 10−4 | 5.06 × 10−2 | 3.04 | 0.45 |
s-CO2/C6H6 (92.5/7.5) | 46.57 | 613.85 | 7.30 | 8.28 × 10−4 | 7.26 × 10−2 | 5.11 | 0.46 |
s-CO2/C4H10 (90.0/10.0) | 45.42 | 401.36 | 12.98 | 7.50 × 10−4 | 6.64 × 10−2 | 5.61 | 0.46 |
s-CO2/C5H12 (97.5/2.5) | 44.71 | 287.34 | 5.27 | 8.30 × 10−4 | 4.06 × 10−2 | 2.16 | 0.45 |
Mole Fraction (%) | CIT (K) | Plant Efficiency | PTC Cost (Million USD) | LF Cost (Million USD) | |
---|---|---|---|---|---|
s-CO2 pure | 100.0 | 323.15 | 0.42 | 97.23 | 76.65 |
s-CO2/H2S | 60.0/40.0 | 323.15 | 0.45 | 86.66 | 68.37 |
s-CO2/C3H8 | 65.0/35.0 | 323.15 | 0.45 | 89.80 | 70.56 |
s-CO2/C4H8 | 90.0/10.0 | 323.15 | 0.45 | 90.00 | 70.81 |
s-CO2/C5H10 | 95.0/5.0 | 323.15 | 0.45 | 89.13 | 70.12 |
s-CO2/C6H6 | 90.0/10.0 | 323.15 | 0.44 | 90.28 | 71.72 |
s-CO2/C4H10 | 87.5/12.5 | 323.15 | 0.45 | 90.12 | 70.87 |
s-CO2/C5H12 | 95.0/5.0 | 323.15 | 0.45 | 90.32 | 71.05 |
s-CO2 pure | 100.0 | 328.15 | 0.40 | 99.91 | 78.76 |
s-CO2/H2S | 55.0/45.0 | 328.15 | 0.44 | 90.77 | 71.56 |
s-CO2/C3H8 | 60.0/40.0 | 328.15 | 0.44 | 91.88 | 72.15 |
s-CO2/C4H8 | 87.5/12.5 | 328.15 | 0.44 | 92.10 | 72.41 |
s-CO2/C5H10 | 95.0/5.0 | 328.15 | 0.44 | 92.70 | 72.90 |
s-CO2/C6H6 | 90.0/10.0 | 328.15 | 0.43 | 92.87 | 73.09 |
s-CO2/C4H10 | 85.0/15.0 | 328.15 | 0.44 | 92.47 | 72.67 |
s-CO2/C5H12 | 82.5/7.5 | 328.15 | 0.44 | 91.75 | 72.12 |
s-CO2 pure | 100.0 | 333.15 | 0.39 | 102.59 | 80.87 |
s-CO2/H2S | 50.0/50.0 | 333.15 | 0.43 | 92.73 | 73.09 |
s-CO2/C3H8 | 55.0/45.0 | 333.15 | 0.43 | 93.90 | 73.72 |
s-CO2/C4H8 | 85.0/15.0 | 333.15 | 0.43 | 94.22 | 74.04 |
s-CO2/C5H10 | 92.5/7.5 | 333.15 | 0.43 | 93.97 | 73.85 |
s-CO2/C6H6 | 87.5/12.5 | 333.15 | 0.42 | 95.21 | 74.87 |
s-CO2/C4H10 | 82.5/17.5 | 333.15 | 0.43 | 94.75 | 74.43 |
s-CO2/C5H12 | 92.5/7.5 | 333.15 | 0.43 | 94.91 | 74.58 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valencia-Chapi, R.; Coco-Enríquez, L.; Muñoz-Antón, J. Supercritical CO2 Mixtures for Advanced Brayton Power Cycles in Line-Focusing Solar Power Plants. Appl. Sci. 2020, 10, 55. https://doi.org/10.3390/app10010055
Valencia-Chapi R, Coco-Enríquez L, Muñoz-Antón J. Supercritical CO2 Mixtures for Advanced Brayton Power Cycles in Line-Focusing Solar Power Plants. Applied Sciences. 2020; 10(1):55. https://doi.org/10.3390/app10010055
Chicago/Turabian StyleValencia-Chapi, Robert, Luis Coco-Enríquez, and Javier Muñoz-Antón. 2020. "Supercritical CO2 Mixtures for Advanced Brayton Power Cycles in Line-Focusing Solar Power Plants" Applied Sciences 10, no. 1: 55. https://doi.org/10.3390/app10010055
APA StyleValencia-Chapi, R., Coco-Enríquez, L., & Muñoz-Antón, J. (2020). Supercritical CO2 Mixtures for Advanced Brayton Power Cycles in Line-Focusing Solar Power Plants. Applied Sciences, 10(1), 55. https://doi.org/10.3390/app10010055