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Abstract: As one of the core technologies of the Internet of Things, wireless sensor network
technology is widely used in indoor localization systems. Considering that sensors can be deployed
to non-line-of-sight (NLOS) environments to collect information, wireless sensor network technology
is used to locate positions in complex NLOS environments to meet the growing positioning needs of
people. In this paper, we propose a novel time of arrival (TOA)-based localization scheme. We regard
the line-of-sight (LOS) environment and non-line-of-sight environment in wireless positioning as a
Markov process with two interactive models. In the NLOS model, we propose a modified probabilistic
data association (MPDA) algorithm to reduce the NLOS errors in position estimation. After the
NLOS recognition, if the number of correct positions is zero continuously, it will lead to inaccurate
localization. In this paper, the NLOS tracer method is proposed to solve this problem to improve the
robustness of the probabilistic data association algorithm. The simulation and experimental results
show that the proposed algorithm can mitigate the influence of NLOS errors and achieve a higher
localization accuracy when compared with the existing methods.

Keywords: wireless sensor network; indoor localization; time of arrival (TOA); NLOS; modified
probabilistic data association (MPDA)

1. Introduction

Due to there being many obstacles, it is difficult to provide accurate localization indoors. Applying
wireless sensor network technology to indoor localization can solve the problem of indoor localization.
Wireless positioning systems usually use time of arrival (TOA), time difference of arrival (TDOA),
angle of arrival (AOA), and received signal strength (RSS) to estimate the location information to
realize the tracking and positioning of a mobile node. This paper uses the TOA method to obtain the
Euclidean distance measurements between the beacon nodes and the mobile node. The principle of
the TOA method is to calculate the arrival time from the mobile node to the beacon nodes, and then
these measurements are multiplied by the speed of light in order to obtain the Euclidean distance
measurements between the beacon nodes and the mobile node. Trilateration techniques can be used to
estimate the position of the mobile node. If the channels between the mobile node and the beacon nodes
have a direct path, the channels are considered to be in line-of-sight (LOS) and the TOA measurements
obtained in LOS environments are perfect. The accurate position can be obtained using the extended
Kalman filter to process the TOA measurements. However, the assumption of the LOS channel is ideal
and impractical [1]. In practice, obstacles such as persons, furniture, or walls block the propagation
path, causing diffraction and refraction. The propagation path of the signal becomes long, and the
channel is in a non-line-of-sight (NLOS) environment. The NLOS factor results in a positive bias of the
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TOA measurements, leading to a decreased positioning accuracy. Thus, algorithms that reduce NLOS
errors can achieve high-precision positioning.

Many positioning algorithms have emerged based on various positioning methods. A semidefinite
programming algorithm was proposed in Su et al. [2], where it transforms a TDOA model into a
TOA model and uses new constraints to mitigate NLOS errors. A bisection-based approach is
proposed in Tomic and Beko [3], which can accurately solve the maximum likelihood estimation
derived from the measurement model through the bisection procedure to achieve accurate positioning.
Yang et al. [4] proposed a high-precision and low-complexity localization algorithm based on an
imported vector machine (IVM), which employs the probability output of an input vector machine,
and has a higher localization accuracy than the corresponding methods, such as a support vector
machine (SVM) and correlation vector machine (RVM). Zhang et al. [5] proposed a novel distributed
consensus-based adaptive Kalman estimation algorithm. In order to estimate the states of the target
more precisely, an optimal Kalman gain is obtained by minimizing the mean-squared estimation error.
An adaptive consensus factor is employed to adjust the optimal gain, as well as to acquire a better
filtering performance. In the filter’s information exchange, dynamic cluster selection and a two-stage
hierarchical fusion structure are employed to get a more accurate estimation. When all the range
measurements estimation is from the LOS environments, the position estimation obtained by the
least-squares method is accurate; if there is at least a range measurement estimate from the NLOS
condition, the position estimation of the mobile node will be inaccurate, which will deviate from the
real position. The more NLOS data that is used, the less accurate the positioning is. According to the
idea of data fusion, combining different positioning methods is also a common method to improving
positioning accuracy. An improved positioning method was proposed to improve the accuracy by
combining TOA and AOA positioning methods [6,7]. Vaghefi and Buehrer [8] used semidefinite
programming to solve the problem of collaborative localization. In Vaghefi and Buehrer [9], a novel
cooperative localization algorithm of source nodes is proposed. Based on the interrelation of multiple
source nodes, the novel extended Kalman filter (EKF) integrated with semidefinite programming
method is used for localization. It not only solves the problem of the cooperative localization using
multiple source nodes, but also improves the localization performance compared with the classic EKF.
In addition, it can also be used for traditional non-cooperative localization.

In the localization algorithms, many algorithms are studied to mitigate the interference of NLOS
factors [10–17]. Chen [10] proposed a residual weighting (RWGH) algorithm, which can mitigate
NLOS errors to a certain extent, but the computational complexity is high. The algorithm proposed
by Park and Chang [11] also uses a residual weighting method.Jiao and coworkers [12,13] used a
method that selects the smallest normalized residual combination using different methods, and then
performs weighted summation, which reduces the complexity of the residual weighting algorithm.
The introduction of iterative ideas in the NLOS algorithms and the optimization of the calculation
results are also effective methods for reducing the NLOS errors. Li [15] proposed an iterative minimum
residual algorithm, which iteratively selects the minimum residual combination as the final estimated
position of the mobile station (MS) by iterating the residual size in each combination whose value
is less than the predetermined threshold. Horiba and coworkers [16,17] used a TOA/AOA hybrid
positioning method to improve the performance of the iterative minimum residual algorithm by
selecting the appropriate iterative minimum residual criterion. In References [18–20], the NLOS
mitigation algorithms proposed by the authors can reduce the NLOS errors without prior knowledge
of the NLOS errors.

The NLOS identification methods can effectively eliminate the influence of NLOS errors on the
positioning accuracy. Wylie and Holtzman [1] proposed a method for judging whether the range
measurements contain NLOS errors based on the measurement variance (standard deviation). Location
spoofing is an important factor for producing NLOS errors, and Liu et al. [21] eliminated NLOS errors
by identifying location spoofing. Han proposed a probabilistic position selection algorithm [22], which
is based on the received signal strength indication (RSSI) and pedestrian dead reckoning (PDR) in
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the mixed LOS environment and NLOS environment for low-complexity identification. In the case
of an unknown LOS/NLOS propagation prior probability, NLOS propagation can be identified by
examining whether the range measurements obey a Gaussian distribution [23–25]. In recent years,
Kolmogorov-Smirnov (K-S), Aderson-Drling (A-D), chi-square, Gruss test, skewness test, and kurtosis
test have appeared successfully [26–28]. If the LOS/NLOS propagation prior probability is known,
the NLOS can be identified using a generalized likelihood ratio test based on the statistical distribution
of the different probabilities of the error. Large outliers sometimes occur in the range measurements.
These outliers can seriously interfere with the positioning result, resulting in a positioning failure, thus
we need to discard the outliers.

In this paper, we propose a robust tracking algorithm based on an improved modified probabilistic
data association (MPDA) and an interacting multiple model (IMM). In this paper, the improved
probabilistic data association filter is used in the NLOS model. Through NLOS recognition, the position
estimation with the NLOS error is discarded, and the correct position estimation is weighted with the
corresponding correlation probability to obtain the final position estimation to reduce the NLOS error.
The proposed algorithm in this paper has the following advantages:

(1) The traditional MPDA algorithm is used for the NLOS recognition, where there may be
continuous incorrect position estimation, resulting in inaccurate positioning. Therefore, the NLOS
tracer method is proposed in this paper to record the occurrence of an incorrect position estimation.
When we use the NLOS tracer method to find that there are two or more consecutive occurrences of
incorrect position estimation, the EKF is used for updating to reduce the adverse influence of this
situation on positioning and improve the robustness of the algorithm.

(2) The improved probabilistic data association algorithm has a high positioning accuracy and
robustness to NLOS errors, therefore it is used to reduce the NLOS errors.

(3) The simulation and experimental results show that the proposed algorithm in this paper can
mitigate the influence of NLOS errors when the NLOS error obeys different distributions.

The paper is structured as follows. Section 2 introduces the signal model and provides an overview
of existing techniques from the literature. The proposed algorithm is explained in Section 3, and
Section 4 illustrates the simulation results. Conclusions are drawn in Section 5.

2. Problem Statement

2.1. Signal Model

The signal transmission channel between the mobile node and the beacon nodes changes between
the LOS condition and NLOS condition, where this transformation is considered a switching mode
system, as shown in the two-state Markov process of Figure 1. The state vector of the mobile node is

x(k) =
[

x(k) y(k)
.
x(k)

.
y(k)

]T
, where (x(k), y(k)) denotes the position of the mobile node and( .

x(k),
.
y(k)

)
denotes the velocity of the mobile node.
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Figure 1. Markov switching model. LOS: line of sight, NLOS: non-LOS.

The state vector of the mobile node changes over time according to a force model:

x(k) = Ax(k− 1) + Cω(k− 1); k = 1, . . . , K, (1)
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where, K is the number of time steps, and:

A =


1 0 ∆t 0
0 1 0 ∆t
0 0 1 0
0 0 0 1

, C =


∆t2/2

0
∆t
0

0
∆t2/2

0
∆t

,
where, A is the state transition matrix that describes the movement of the mobile node between two
consecutive time steps. C is the interference input matrix describing the mapping of the randomness
and the velocity of the mobile node, and ∆t is the sampling period. The process driving noise ω(k)
due to the acceleration of the mobile node is assumed to have a zero-mean, white Gaussian with a
covariance matrix Q(k). Assume that there are M beacon nodes around the mobile node to detect the
signal of the mobile node. We can let D(k) = [d1(k), d2(k), . . . , dM(k)]T denote the range measurements
based on the TOA data between the mobile node and M beacon nodes at time step k. Then:

D(k) = h(x(k)) + v(k), k = 1, . . . , K, (2)

where h(x(k)) = [h1(x(k)), h2(x(k)), . . . , hM(x(k))]T and the Euclidean distance between the mobile
node and the mth beacon node with the position

(
xbn,m, ybn,m

)
at time step k is:

hm(x(k)) =

√(
x(k) − xbn,m

)2
+

(
y(k) − ybn,m

)2
, m = 1, . . . , M. (3)

The noise vector v(k) = [v1(k), v2(k), . . . , vM(k)]T contains random variables with a variance
describing Gaussian sensor noise due to the NLOS propagation. The measurement covariance
matrix is:

R(k) = E
{
[v(k) − E

{
v(k)

}
][v(k) − E

{
v(k)

}
]T

}
, (4)

which is defined as:
R(k) = diag

[
σ2

1, σ2
2, . . . , σ2

M

]
, (5)

where the elements σ2
m in R(k) are defined as:

σ2
m =

{
σ2

L if LOS condition
σ2

L + σ2
NLOS if NLOS condition

. (6)

We assume that the sensor noise variance σ2
L, and process covariance matrix Q(k) are known.

σ2
NLOS is unknown.

2.2. A Brief Introduction of Existing Methods

The interacting multiple model (IMM) algorithm is used to track and locate in NLOS environments.
In Vaghefi and Buehrer [8], the IMM algorithm uses two Kalman filters to smooth the TOA range
measurements in both the LOS model and the NLOS model. In order to reduce the NLOS errors,
the TOA range measurements smoothed by the Kalman filter is used to subtract the NLOS mean
error in the NLOS model. The distance estimates between the mobile node and the beacon nodes are
determined by combining the state estimate in the LOS model with the state estimate in the NLOS
model, which eliminates the NLOS errors. Then, the location of the mobile node is determined using a
geometric method based on the smoothed distance estimates. According to the idea of data fusion,
Chen et al. [29] proposed an IMM algorithm based on TOA and RSS data fusion to find the location of
a mobile node. Almost all IMM algorithms need to presuppose NLOS statistical errors to solve the
NLOS interference problem, but in practice, the NLOS statistical errors are unknown. The robust IMM
(RIMM) algorithm proposed in Li et al. [30] does not need prior knowledge of the NLOS error. In the
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LOS model, EKF is used to estimate the location of a mobile node. In the NLOS model, REKF is used to
transform the EKF equation into a linear regression problem, which is solved using robust techniques
in Hammes and Zoubir [31]. Then, the state vectors of the two models are weighted using likelihood
function values to determine the final state vectors of the mobile node.

EKF can achieve accurate positioning in LOS environments, but the positioning accuracy is not
high in NLOS environments. Therefore, it is necessary to improve the filters of the IMM algorithm
to improve the positioning accuracy. The RIMM algorithm is used to improve the filter of the NLOS
model in the IMM algorithm. The MPDA algorithm in Hammes et al. [32] has a high positioning
accuracy and can mitigate NLOS errors. The MPDA algorithm is a sub-optimal filtering algorithm
based on the Bayesian formula, which divides the range measurements between the beacon nodes and
the mobile node into different groups. Each group obtains the corresponding position estimation via
a least-squares method and optimizes the position estimation by using the Gauss–Newton iteration
method. The optimized location estimation is identified using NLOS detection, and the location
estimation that does not fall into the validation gate is discarded. The location estimation that falls
into the validation gate is weighted by the corresponding association probability to determine the
location of the mobile node. Choosing an appropriate validation gate is a prerequisite for realizing
the probability data association. The common validation gate forms are a rectangular gate, elliptic
gate, sector gate, etc. Among them, the elliptic gate is the most widely used. The positioning accuracy
of the MPDA algorithm is very high, but it is sensitive to outliers. These outliers often fail to locate,
so it is necessary to abandon the outliers to ensure the positioning accuracy of the MPDA algorithm.
Compared with the MPDA algorithm, the EKF algorithm has better robustness.

3. Proposed Method

3.1. General Concept

As shown in Figure 2, we assumed that the initial values of the state estimation and covariance
matrix are known. The initial values of the model probability and the transition matrix are given
according to empirical knowledge, and the mixed probability, mixed state estimation, and mixed
covariance matrix are calculated to complete the interactive process, and then model matching is
conducted. The proposed algorithm uses an extended Kalman filter in the LOS model and proposes
an improved modified probabilistic data association filter in the NLOS model. The two filters work
in parallel to achieve the model-matching process. In the NLOS model, the improved modified
probabilistic data association filter first divides the measured values into N different groups. Each
group gets a corresponding position estimation via a least-squares estimation. The N different position
estimates are obtained for NLOS recognition through a validation gate, where the position estimates
falling in the validation gate around the predicted position estimates are the correct position estimates.
Furthermore, the position estimates that do not fall in the validation gate are discarded. The correlation
probability corresponding to the correct position estimation is calculated, the correct position estimation
with the corresponding correlation probability is weighted, and the updated position estimation is
produced. Through the NLOS recognition, the position estimates with a large error are discarded to
reduce the NLOS errors. When the NLOS interference is relatively serious, there will be no correct
position estimation, which will have no significant impact on the positioning results. If there is no
correct position estimation after successive attempts, a positioning failure will occur. Therefore, the
NLOS tracer method is proposed to record the situation of incorrect position estimation. When no
correct position estimation occurs the first time, the predicted state is regarded as the updated state.
If no correct position estimation occurs twice or more times, the EKF will be used to update the position.
The model probability is updated according to the result of model matching, and the updated model
probability is used to weight the updated state estimation of the corresponding model to obtain the
final state estimation.
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3.2. Interaction

We determine the initial value of the prior probability µi(k− 1), the Markov transition probabilities
pi j, the prior state X̂i(k− 1|k− 1), and covariance matrix Pi(k− 1|k− 1) of the proposed algorithm.
However, the transition probabilities pi j are not known in practice, so the initial of the transition
probabilities pi j are chosen based on the prior knowledge. Before the interaction, determination of the
mixing probabilities µi| j(k− 1|k− 1) is required. The mixing probability µi| j(k− 1|k− 1) is given as:

µi| j(k− 1|k− 1) =
(
1/c j

)
pi jµi(k− 1), k = 1, . . . , K. (7)

The normalization factor c j is:

c j =
∑

i

pi jµi(k− 1), (8)

where, the mixed probabilities µi| j(k− 1|k− 1) obtained are applied to the interaction process.
Furthermore:

X̂0 j(k− 1|k− 1) =
∑

i

X̂i(k− 1|k− 1)µi| j(k− 1|k− 1), (9)

X̃i j(k− 1|k− 1) = X̂i(k− 1|k− 1) − X̂0 j(k− 1|k− 1), (10)

P0 j(k− 1|k− 1) =
∑

i

µi| j(k− 1|k− 1)
{
Pi(k− 1|k− 1) + X̃i j(k− 1|k− 1)X̃T

ij(k− 1|k− 1)
}
, (11)

where X̂0 j(k− 1|k− 1) is the mixed state estimate of the LOS/NLOS model at time step k − 1 and
P0 j(k− 1|k− 1) is the mixed state covariance matrix estimate of the LOS/NLOS model at time step k− 1.
Model matching of the proposed algorithm is performed after the interaction is completed.
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3.3. Model Matching

Prediction: The mixed state estimates and the mixed covariance matrix estimates obtained after
the interaction are provided as initial estimates to the two model-matched filters for prediction:

X̂ j(k|k− 1) = AX̂0 j(k− 1|k− 1) (12)

P j(k|k− 1) = AP0 j(k− 1|k− 1)AT + CQ(k)CT (13)

where X̂ j(k|k− 1) is the state prediction of the LOS/NLOS model at time step k and P j(k|k− 1) is the
error covariance matrix prediction of the LOS/NLOS model at time step k.

Update: When j = 1, the state estimate update and the error covariance matrix estimate update
are performed using the extended Kalman filter. Furthermore:

H1(k) =
∂h(X(k))
∂X(k)

∣∣∣∣∣∣X(k)=X̂1(k|k−1), (14)

v1(k) = D(k) − h
(
X̂1(k|k− 1)

)
, (15)

S1(k) = H1(k)P1(k|k− 1)HT
1 (k) + R∗1(k), (16)

where H1(k) is the Jacobian matrix at time step k. v1(k) denotes the innovation at time step k.S1(k|k− 1)
is the innovation covariance matrix. R∗1(k) is the covariance matrix of the measurement errors vector.
Furthermore:

K1(k) = P1(k|k− 1)HT
1 (k)S

−1
1 (k|k− 1), (17)

X̂1(k|k) = X̂1(k|k− 1) + K1(k)v1(k), (18)

P1(k|k) = (I4 −K1(k)H1(k))P1(k|k− 1), (19)

Λ1(k) = N(v1(k); 0, S1(k)), (20)

where K1(k) is the extended Kalman gain at time k, X̂1(k|k) is the updated state estimate, P1(k|k) denotes
the updated error covariance matrix, and Λ1(k) is the likelihood function.

When j = 2, the improved MPDA filter is used to update the state estimation prediction and
error covariance matrix prediction in the NLOS model. The proposed method divides the range

measurements into N =

(
M
3

)
different subgroups, which are used together with the positions of the

corresponding beacon nodes to determine the position of the mobile node, and each subgroup uses the
least squares estimation to obtain the corresponding position estimation zn(k). The position estimation
prediction ẑ(k|k− 1) of the mobile node is given as:

ẑ(k|k− 1) = BX̂2(k|k− 1), (21)

v2,n(k) = zn(k) − ẑ(k|k− 1), n = 1, . . . , N, (22)

where B =

[
1 0 0 0
0 1 0 0

]
is the observation matrix, v2,n(k) is the innovation for the position

estimate from subgroup n at time step k. Then, we perform the NLOS detection for the position
estimation obtained to determine the correct position estimation.

NLOS detection: If all the innovations do not exist as NLOS errors, then there are:

v2,n(k) ∼ N(0, S2,n(k)), n = 1, . . . , N. (23)
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In order to validate Equation (21), we define N hypotheses and alternatives:

ζ0,n : v2,n(k) ∼ N(0, S2,n(k)), n = 1, . . . , N (24)

ζ1,n : not ζ0,n, n = 1, . . . , N (25)

If the beacon nodes from subgroup n are in the LOS condition, the hypothesis ζ0,n holds true, and
the position estimate zn(k) from subgroup n falls into the validation region; otherwise, the hypothesis
ζ1,n holds true. The test statistic Tn(k) can be expressed as:

Tn(k) = vT
2,n(k)S

−1
2,n(k)v2,n(k). (26)

Tn(k) is verified with the validation gate γ to determine whether the position estimate zn(k) is
within the validation region. If Tn(k) is not larger than the validation gate γ, the hypothesis ζ0,n holds
true, and zn(k) is accurate. If Tn(k) is larger than the validation gate γ, the hypothesis ζ0,n is rejected,
and zn(k) is discarded due to it being an NLOS error. Furthermore:

S2,n(k) = BP2(k|k− 1)BT + σ2
G

(
HT

2,n(zn)H2,n(zn)
)−1

, (27)

H2,n(zn) =
∂h2,n

(
[x, y]T

)
∂[x, y]

∣∣∣∣∣∣∣x=x̂,y=ŷ, (28)

where S2,n(k) is the innovation covariance matrix for the position estimation from subgroup n at time
step k. The number of zn(k) that falls into the validation region is calculated and is referred to as
NV(k)(0 ≤ NV(k) ≤ N). In order to judge whether NV(k) = 0 is continuous or not, we propose the
NLOS tracer method, which is used to record NV(k) = 0. Therefore, we define:

L(k) =

1 if NV(k) > 0

0 if NV(k) = 0
, (29)

When NV(k) is larger than zero, we need to calculate the association probabilities used to weight
the position estimation zn(k), which are also called the posterior probabilities. The premise of accurately
calculating the association probabilities are to determine the threshold value of the validation region,
and the selection of the threshold is related to the tracking threshold probability PG. The tracking
threshold probability PG denotes the probability that the position estimation zn(k) determined from
LOS beacon nodes with smallest error covariance falls into the valid region. Furthermore:

γ∫
0

fx2(2)(x)dx = PG = 1− PFA, (30)

where fx2(2)(·) is the chi-square probability density function with two degrees of freedom, and PFA is
the preset false alarm rate. Giving the probability PG, the threshold value γ can be determined using
the chi-square distribution table.

Data Association: In order to facilitate the calculation of the association probabilities, we define
the following association events, following the approach taken in [33]:

θl(k): {zl(k) is determined from the LOS beacon nodes with the smallest error covariance,
l = 1, . . . , NV(k)}.

θ0(k): {none of the position estimates zl(k) at time step k stems from the LOS beacon nodes}.
The associated probabilities are:

βl(k) = Pr
{
θl(k)

∣∣∣Zk
}
= Pr

{
θl(k)

∣∣∣Z(k), NV(k), Zk−1
}
, l = 1, . . . , NV(k), (31)
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where Z(k) =
{
Zl(k)

}NV(k)
l=1 and Zk is the cumulative set of the position estimation, i.e., Zk =

{
Z(i)

}k
i=1.

Since the associated probabilities are calculated based on the Bayesian formula, assuming that the
innovations v2,n(k) are independent, Equation (31) can be rewritten as:

βl(k) =
1
c

f
[
Z(k)

∣∣∣θl(k), NV(k), Zk−1
]
× Pr

{
θl(k)

∣∣∣NV(k), Zk−1
}
, l = 0, 1, . . . , NV(k), (32)

where c is the normalization factor and f (·) is the joint probability density function for the
position estimation.

Assuming that the probability density function of the correct position estimates obeys the Gaussian
distribution, and the probability density function of the inaccurate position estimate obeys the uniform
distribution, the probability density function for the correct position estimates is:

f
[
zl(k)

∣∣∣θl(k), NV(k), Zk−1
]
= P−1

G N
(
zl(k); ẑ(k|k− 1), S2,l(k)

)
, (33)

= P−1
G N

(
v2,l(k); 0, S2,l(k)

)
, (34)

= P−1
G

exp
{
−

1
2 vT

2,l(k)S
−1
2,l (k)v2,l(k)

}
2π

∣∣∣S2,l(k)
∣∣∣0.5 , (35)

where
∣∣∣S2,l(k)

∣∣∣ denotes the determinant of matrix S2,l(k). The probability density function of the
inaccurate position estimate is:

f
[
zl(k)

∣∣∣θl(k), NV(k), Zk−1
]
= V−1

l (k), (36)

Vl(k) = γπ
∣∣∣S2,l(k)

∣∣∣0.5
, (37)

where Vl(k) is the area of the validation region [33] of the NV(k) accepted hypothesis, and the prior
probabilities in Equation (32) are:

Pr
{
θl(k)

∣∣∣NV(k), Zk−1
}
=

PdPG

NV(k)
, l = 1, . . . , NV(k), (38)

Pr
{
θl(k)

∣∣∣NV(k), Zk−1
}
= 1− PdPG, l = 0, (39)

where the prior probabilities of the correct position estimates are given by Equation (35), and the prior
probability of the inaccurate position estimate is given by Equation (36). The detection probability
Pd represents the probability that the position estimation that falls into the verification area can be
correctly detected. The joint probability density function for the correct position estimates is:

f
[
Z(k)

∣∣∣θl(k), NV(k), Zk−1(k)
]
=

NV(k)∏
i = 1 i , l

N
(
v2,l(k); 0, S2,l(k)

)
Vi(k)PG

, l = 1, . . . , NV(k). (40)

The joint probability density function for an inaccurate position estimation is:

f
[
Z(k)

∣∣∣θl(k), NV(k), Zk−1(k)
]
=

NV(k)∏
i=1

V−1
i (k), l = 0. (41)
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Multiplying the probability density function of the position estimates by the prior
probabilities gives:

β′l (k) =
N
(
v2,l(k); 0, S2,l(k)

)
PG

(
PdPG

NV(k)

) NV(k)∏
i = 1 i , l

V−1
i (k), l = 1, . . . , NV(k), (42)

β′0(k) = (1− PdPG)

NV(k)∏
i=1

V−1
i (k), l = 0, (43)

Thus, the association probabilities of the correct position estimate are modeled as:

βl(k) =
β′l (k)

β′0(k) +
NV(k)∑

l=1
β′l (k)

. (44)

The association probability of an inaccurate position estimation is modeled as:

β0(k) =
β′0(k)

β′0(k) +
NV(k)∑

l=1
β′l (k)

. (45)

When updating, we need to obtain the innovation covariance matrix S2(k) and the Kalman
gain K2(k):

S2(k) = BP2(k|k− 1)BT + σ2
GI2, (46)

K2(k) = P2(k|k− 1)BTS−1
2 (k). (47)

The updated state estimation X̂2(k|k) is given as:

X̂2(k|k) = X̂2(k|k− 1) + K2(k)
NV(k)∑

l=1

βl(k)v2,l(k). (48)

The error covariance matrix P2(k|k) update is modeled as:

P2(k|k) = β0(k)P2(k|k− 1) + (1− β0(k))Pc(k) + P̃(k), (49)

Pc(k) = (I4 −K2(k)B)P2(k|k− 1), (50)

P̃(k) = K2(k)


NV(k)∑

l=1

βl(k)v2,l(k)vT
2,l(k) − v2(k)vT

2 (k)

KT
2 (k), (51)

v2(k) =
NV(k)∑

l=1

βl(k)v2,l(k), (52)

Λ2(k) = βl(k)Λ2,l(k) (53)

= βl(k)N
(
v2,l(k); 0, S2,l(k)

)
, (54)

where Pc(k) is the posterior covariance matrix of the standard Kalman filter and P̃(k) with the weighted
innovation v2(k) corrects for the measurement uncertainty. Λ2(k) is the likelihood function when
NV(k) is larger than zero at time step k.
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When NV(k) is zero at time step k, the algorithm judges whether NV(k) is also zero at time
step k− 1. The proposed algorithm records the situation of NV(k) at time step k− 1 using the NLOS
tracer method. If L(k− 1) is 1, it indicates that NV(k) = 0 appears separately, and the prediction of
the state estimation and error covariance matrix are used as the updated state estimation and error
covariance matrix:

X̂2(k|k) = X̂2(k|k− 1), (55)

P2(k|k) = P2(k|k− 1), (56)

S2(k) = BP2(k|k)BT + 3σ2
GI2, (57)

Λ2(k) =
1

2π
∣∣∣S2(k)

∣∣∣0.5 . (58)

If L(k− 1) is zero, it indicates that NV(k) = 0 appears successively. Thus, we use the extended
Kalman filter to update the state estimate and the error covariance matrix estimate in the NLOS model:

H2(k) =
∂h(X(k))
∂X(k)

∣∣∣∣∣∣X(k)=X̂2(k|k−1), (59)

v2(k) = D(k) − h
(
X̂2(k|k− 1)

)
, (60)

S2(k) = H2(k)P2(k|k− 1)H2(k) + R∗2(k), (61)

K2(k) = P2(k|k− 1)HT
2 (k)S

−1
2 (k|k− 1), (62)

X̂2(k|k) = X̂2(k|k− 1) + K2(k)v2(k), (63)

P2(k|k) = (I4 −K2(k)H2(k))P2(k|k− 1), (64)

Λ2(k) = N(v2(k); 0, S2(k)). (65)

3.4. Model Probability Update

The model probabilities are updated using:

µ j(k) = (1/c)Λ j(k)c j, (66)

c =
∑

j

Λ j(k)c j, (67)

where µ j(k) is the updated model probability and c is the normalization factor.

3.5. Combination

The combination output estimation results are as follows:

X̂(k|k) =
∑

j

X̂ j(k|k)µ j(k), (68)

P(k|k) =
∑

j

{
P j(k|k) +

[
X̂ j(k|k) −X(k|k)

]
×

[
X̂ j(k|k) −X(k|k)

]T
}
µ j(k|k). (69)

4. Experiment and Result Analysis

This part mainly discusses the simulation results of the experiment. In this paper, six beacon
nodes were randomly deployed in a 100 × 100 area, and the mobile node ran along a fixed trajectory
shown in Figure 3 with a moving step of 100. The sampling period was ∆t = 0.5 s and the mobile node
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initial state X j(0) =
[

1 m 20 m 1 m
s 0.5 m

s

]T
. The initial of the error covariance matrix was set to

P j(0) = I4, the Markov transition matrix initial value was p =

[
0.995 0.005
0.005 0.995

]
, and the measurement

noise covariance matrix was R∗j(0) = σ2
mIM. The tracking threshold probability PG was 0.99, and the

detection probability Pd was 0.9. In order to simulate an NLOS environment, a probability value
was generated randomly. Comparing this probability value with the NLOS probability threshold, if
the probability that was generated randomly was less than the NLOS probability, the mobile node
and the corresponding beacon nodes were considered to be in the NLOS condition. The simulation
experiments were carried out under the conditions of NLOS errors obeying Gaussian, uniform, and
exponential distributions. In this paper, we compared the proposed algorithm with the EKF [34],
IMM-EKF [30], and MPDA [35]. The simulation results were obtained using 1000 Monte Carlo runs,
and the root mean square error (RMSE) and the error cumulative distribution function (CDF) of the
average positioning errors were used as the performance indicators for the evaluation algorithm:

RMSE =

√√√√
1

MC
1
K

MC∏
j=1

K∏
k=1

((
x̂ j(k) − x j(k)

)2
+

(
ŷ j(k) − y j(k)

)2
)
, (70)

ALE =
1

MC ·K

MC∑
j=1

K∑
k=1

√
(x̂ j(k) − x j(k))

2 + (ŷ j(k) − y j(k))
2, (71)

where ALE is the average localization error, which represents the average Euclidean distance between
the position estimate and the true position. K = 100 is the number of moving steps, MC = 1000 is the
number of time the Monte Carlo simulation ran.

(
x̂ j(k), ŷ j(k)

)
is the position estimate of the interactive

output in the jth Monte Carlo run and
(
x j(k), y j(k)

)
is the true position of the mobile terminal during

the jth Monte Carlo run.
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4.1. Gaussian Distribution

It was assumed that the NLOS errors obeyed the Gaussian distribution N
(
µNLOS, σ2

NLOS

)
,

the measurement noise obeyed the Gaussian distribution N
(
0, σ2

L

)
, and the range measurements

were irrelevant. The default parameters of the Gaussian distribution simulation experiment are shown
in Table 1.
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Table 1. Gaussian distribution parameter.

Parameter Symbol Default Values

The number of beacon nodes M 6

NLOS error probability PNLOS 0.5

The measurements’ noise N
(
0, σ2

L

)
N

(
0, 12

)
The NLOS errors N

(
µNLOS, σ2

NLOS

)
N

(
5, 62

)
As shown in Figure 4a, with the number of beacon nodes increasing from 4 to 9, the RMSEs of the

four algorithms decreased. This indicates that increasing the number of beacon nodes was helpful for
reducing the NLOS errors and improving the positioning accuracy of the algorithms. When the number
of beacon nodes varied from 4 to 7, the RMSEs of the IMM-EKF, MPDA, and the proposed algorithm
decreased rapidly. When the number of beacon nodes increased to 7, the RMSEs of the MPDA and the
proposed algorithm decreased slowly, and the RMSE of the IMM-EKF hardly changed. The RMSE of
the EKF decreased slowly. From Figure 4a, we can see that the positioning accuracy of the proposed
algorithm was better than that of the EKF, IMM-EKF, and MPDA. When the number of beacon nodes
was 9, the proposed algorithm had a higher positioning accuracy than the EKF, IMM-EKF, and MPDA
at about 65.70%, 59.97%, and 25.16%, respectively.

Figure 4b shows the impact of the NLOS errors probability on RMSE. Compared with the EKF
and IMM-EKF algorithms, the RMSE of the proposed algorithm increased slowly when the probability
of the NLOS error was less than 0.4. However, when the probability of the NLOS error was greater
than 0.4, the RMSE of the proposed algorithm increased rapidly with the increase of the NLOS errors
probability. The change of root mean square error of the MPDA algorithm was similar to that of
the proposed algorithm, but its growth rate was faster than that of the proposed algorithm. When
compared with EKF, IMM-EKF, and MPDA, the proposed algorithm had a higher positioning accuracy.

Figure 4c shows the relationship between the RMSE and the mean value of the NLOS errors.
As the mean value of the NLOS error varied from 3 to 10, the RMSE of the EKF, IMM-EKF, and MPDA
increased. Although the RMSE of the proposed algorithm also increased, its RMSE was always smaller
than that of the EKF, IMM-EKF, and MPDA. From Figure 5, we can see that the growth rate of the root
mean square error of the proposed algorithm was obviously less than that of other three algorithms.
When the mean value of NLOS error was 3, the proposed algorithm improved the positioning accuracy
by about 47.22%, 32.72%, and 28.98% compared with the EKF, IMM-EKF, and MPDA, respectively.
When the mean value of the NLOS error was 10, the proposed algorithm had a higher positioning
accuracy than the EKF, IMM-EKF, and MPDA at about 35.76%, 36.67%, and 30.06%, respectively.

Figure 4d shows the impact of the standard deviation of NLOS errors on the RMSE. The RMSE of
the EKF clearly increased with the increase of the standard deviation, which led to a rapid decline in
its positioning accuracy. When the standard deviation was 10, the RMSE of the EKF, IMM-EKF, MPDA,
and the proposed algorithm were 5.3948 m, 3.9240 m, 3.2254 m, and 2.0257 m, respectively. Compared
with the EKF, IMM-EKF, and MPDA, the proposed algorithm improved the positioning accuracy by
about 62.45%, 48.38%, and 37.20%, respectively.

Figure 4e shows the error cumulative distribution function of the localization errors, which shows
that the 90th percentile of the errors of the proposed algorithm was less than 3.263 m. In contrast, the 90th
percentile of errors of the EKF, IMM-EKF, and MPDA were 6.668 m, 5.494 m, and 4.191 m, respectively.



Appl. Sci. 2020, 10, 6 14 of 21
Appl. Sci. 2019, 9, x FOR PEER REVIEW 15 of 22 

  
(a) (b) 

  

(c) (d) 

 

(e) 

Figure 4. (a) Performance comparison between the EKF, interacting multiple model (IMM)-EKF, 

modified probabilistic data association (MPDA), and the proposed algorithm (PIMM) under a 

different number of beacon nodes M , where 𝑃𝑁𝐿𝑂𝑆 = 0.5,  N 20,1 , and  N 25,6 . (b) Performance 

comparison between the EKF, IMM-EKF, MPDA, and the proposed algorithm under different 

NLOS error probabilities NLOS
P , where 𝑀 = 6,  N 20,1 , and  N 25,6 . (c) Performance comparison 

between the EKF, IMM-EKF, MPDA, and the proposed algorithm under different mean values 


NLOS  of the Gaussian distribution, where 𝑀 = 6 , 𝜎𝑁𝐿𝑂𝑆 = 6 , 𝑃𝑁𝐿𝑂𝑆 = 0.5 , and  N 20,1 . (d) 

Performance comparison between the EKF, IMM-EKF, MPDA, and the proposed algorithm under 

different standard deviations 
NLOS  of the Gaussian distribution, where 𝑀 = 6 , 𝑃𝑁𝐿𝑂𝑆 = 0.5 , 

𝜇𝑁𝐿𝑂𝑆 = 5, and  N 20,1 . (e) The cumulative distribution function (CDF) of the localization error. 

4.2. Uniform Distribution 

Figure 4. (a) Performance comparison between the EKF, interacting multiple model (IMM)-EKF,
modified probabilistic data association (MPDA), and the proposed algorithm (PIMM) under a
different number of beacon nodes M, where PNLOS = 0.5, N

(
0, 12

)
, and N

(
5, 62

)
. (b) Performance

comparison between the EKF, IMM-EKF, MPDA, and the proposed algorithm under different NLOS
error probabilities PNLOS, where M = 6, N

(
0, 12

)
, and N

(
5, 62

)
. (c) Performance comparison between the

EKF, IMM-EKF, MPDA, and the proposed algorithm under different mean values µNLOS of the Gaussian
distribution, where M = 6, σNLOS = 6,PNLOS = 0.5, and N

(
0, 12

)
. (d) Performance comparison between

the EKF, IMM-EKF, MPDA, and the proposed algorithm under different standard deviations σNLOS of
the Gaussian distribution, where M = 6, PNLOS = 0.5, µNLOS = 5, and N

(
0, 12

)
. (e) The cumulative

distribution function (CDF) of the localization error.
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4.2. Uniform Distribution

It was assumed that the measurements’ noise obeyed a Gaussian distribution N
(
0, σ2

L

)
and the

NLOS errors obeyed a uniform distribution U(a, b). The default parameters for the uniform distribution
simulation experiment are shown in Table 2.

Table 2. Uniform distribution parameter.

Parameter Symbol Default Values

The number of beacon nodes M 6

The NLOS error probability PNLOS 0.5

The measurements’ noise N
(
0, σ2

L

)
N

(
0, 12

)
The NLOS errors U(a, b) U(0, 14)
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Figure 5. (a) Performance comparison between the EKF, IMM-EKF, MPDA, and the proposed algorithm
under a different number of beacon nodes M, where PNLOS = 0.5, N

(
0, 12

)
, and U(0, 14). (b) Performance

comparison between the EKF, IMM-EKF, MPDA, and the proposed algorithm under different NLOS
error probabilities PNLOS, where M = 6, N

(
0, 12

)
, and U(0, 14). (c) Performance comparison between

the EKF, IMM-EKF, MPDA, and the proposed algorithm under different maximum values b of uniform
distribution, where M = 6, PNLOS = 0.5, and N

(
0, 12

)
. (d) The CDF of the localization error.

Figure 5a shows the relationship between the RMSE and the number of beacon nodes when the
NLOS errors took on a uniform distribution. It can be seen that the number of beacon nodes varied
from 4 to 9, and the RMSEs of the EKF and IMM-EKF algorithms decreased slowly in a similar trend.
The change in the number of beacon nodes had a great impact on the positioning results of the MPDA
and the proposed algorithm. The proposed algorithm had a higher positioning accuracy than the EKF,
IMM-EKF, and MPDA with about 39.70%, 34.81%, and 18.33%, respectively, on average.
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As shown in Figure 5b, increasing the probability of the NLOS error aggravated the interference
of the NLOS factors for positioning, which resulted in increasing the RMSE of the EKF, IMM-EKF,
MPDA, and the proposed algorithm. We can see that the RMSE of the proposed algorithm increased
slowly with the increase of the probability of the NLOS errors when the probability of the NLOS errors
was not more than 0.4, but the growth rate increased gradually. On the whole, the proposed algorithm
showed a significant improvement in positioning accuracy compared with the EKF and IMM-EKF
algorithms when the NLOS error probability was not higher than 0.6. Compared with the MPDA, the
proposed algorithm had a higher positioning accuracy.

Figure 5c shows how the RMSE varied with the maximum value of the NLOS errors. The RMSEs
of the EKF, IMM-EKF, MPDA, and the proposed algorithm increased almost linearly as the maximum
value of the NLOS errors gradually increased. Compared with the EKF and IMM-EKF algorithms, the
proposed algorithm had a greatly improved positioning accuracy. When the maximum of the NLOS
error was 15 m, the proposed algorithm had a higher positioning accuracy than the EKF, IMM-EKF,
and MPDA with about 39.90%, 34.89%, and 21.67%, respectively. It can be seen from Figure 5c that
the proposed algorithm significantly outperformed the other three algorithms in terms of inhibiting
NLOS errors.

The error cumulative distribution function of the localization errors for the same example is
depicted in Figure 5d, which shows that the 90th percentile of the proposed algorithm was less than
5.555 m. In contrast, the 90th percentile of the EKF, IMM-EKF, and MPDA were 8.566 m, 8.228 m, and
7.829 m, respectively.

4.3. Exponential Distribution

It was assumed that the measurements’ noise obeyed a Gaussian distribution N
(
0, σ2

L

)
and the

NLOS errors obeyed an exponential distribution E(λ). The default parameters of the exponential
distribution are shown in the Table 3.

Table 3. Exponential distribution parameter.

Parameter Symbol Default Values

The number of beacon nodes M 6

The NLOS error probability PNLOS 0.5

The measurements noise N
(
0, σ2

L

)
N

(
0, 12

)
The NLOS errors E(λ) E(8)

We investigated how the positioning accuracy of the EKF, IMM-EKF, MPDA, and the proposed
algorithm varied with the number of beacon nodes when the NLOS errors were exponential distribution
(Figure 6a). As the number of beacon nodes increased, the RMSEs of the EKF, IMM-EKF, MPDA,
and the proposed algorithm all decreased, but the difference was that the RMSEs of the EKF and
IMM-EKF decreased slowly and the improvement of the positioning accuracy was not high, while the
RMSEs of the MPDA and the proposed algorithms decreased rapidly and the positioning accuracy
improved significantly. In the case of a few beacon nodes, the positioning accuracy of the proposed
algorithm was higher than that of the EKF, IMM-EKF, and MPDA algorithms. In the case of more
beacon nodes, the positioning accuracy of the proposed algorithm was slightly higher than that of the
MPDA, and far higher than that of the EKF and IMM-EKF. Compared with the EKF, IMM-EKF, and
MPDA algorithms, the proposed algorithm improved the positioning accuracy by 63.60%, 59.57%, and
20.27%, respectively, on average.

We also explored the influence of different NLOS errors probabilities on the positioning results
of the EKF, IMM-EKF, MPDA, and the proposed algorithm when NLOS errors were given as an
exponential distribution. From Figure 6b, we can see that the positioning accuracy of the EKF, IMM-EKF,
MPDA, and the proposed algorithm declined with the increasing probability of NLOS errors. With the
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increase of the NLOS error probability, the RMSEs of the EKF and IMM-EKF increased almost linearly,
and the RMSE growth rate of the MPDA and the proposed algorithm gradually accelerated. When
the NLOS error was less than 0.3, the positioning accuracy of the proposed algorithm was slightly
higher than that of the MPDA, but significantly higher than that of the EKF and IMM-EKF. When the
probability of the NLOS errors was relatively large, the proposed algorithm had a better localization
performance than the EKF, IMM-EKF, and MPDA. The proposed algorithm had a higher positioning
accuracy than the EKF, IMM-EKF, and MPDA with about 65.83%, 53.01%, and 18.56%, respectively,
on average.

In Figure 6c, the influence of changing the parameter λ of exponential distribution on the
localization accuracy is shown. We can see that when the parameter λ changed from 3 to 10, the RMSEs
of the EKF and IMM-EKF algorithm increased rapidly, while the RMSE of the MPDA algorithm grew
slowly. The change of the parameterλ from 3 to 10 had no significant impact on the localization accuracy
of the proposed algorithm. Compared with the EKF, IMM-EKF, and MPDA algorithms, the proposed
algorithm improved the positioning accuracy by at least 36.16%, 33.35%, and 11.43%, respectively.

The error cumulative distribution function of the localization errors is depicted in Figure 6d. It
shows that the 90th percentile of the proposed algorithm was less than 3.882 m. In contrast, the 90th
percentile of the EKF, IMM-EKF, and MPDA were achieved at 12.22 m, 10.54 m, and 5.065 m, respectively.
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Figure 6. (a) Performance comparison between the EKF, IMM-EKF, MPDA, and the proposed algorithm
under different numbers of beacon nodes M, where PNLOS = 0.5, N

(
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)
, and E(8). (b) Performance

comparison between the EKF, IMM-EKF, MPDA, and the proposed algorithm under different NLOS
error probabilities PNLOS, where M = 6, N

(
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)
, and E(8). (c) Performance comparison between the

EKF, IMM-EKF, MPDA, and the proposed algorithm under different parameters (λ) the exponential
distribution, where M = 6, PNLOS = 0.5, and N

(
0, 12

)
. (d) The CDF of the localization error.



Appl. Sci. 2020, 10, 6 18 of 21

4.4. Experimental Results

In order to further verify the positioning accuracy of the proposed algorithm, we carried out
experiments in a real environment. Ultra-wideband (UWB) technology was used to transmit signals
between beacon nodes and a mobile node to obtain the range measurements. The time-based UWB
positioning system makes use of the accurate TOA of the information exchange between devices [36]
and has a high positioning accuracy. Therefore, in recent years, UWB has been widely used in indoor
positioning. As shown in Figure 7a, there were six beacon nodes and a mobile node moved uniformly
along the trajectory shown. In order to avoid the reflection of UWB signal from the ground, the mobile
node was moved to 1.2 m above the ground. The room was 10 meters long and 7 meters wide. Because
there were many obstacles in the room, the measurements were prone to be disturbed by NLOS factors,
resulting in larger errors. Six beacon nodes sampled mobile nodes every 0.6 m for a total of 16 times.
Each beacon node took 20 measurements at each sampling position, and the average value was taken
as the final measurement.
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Figure 7. (a) The deployment of beacon nodes and the true trajectory of the mobile node. (b) The
localization error at each sample point. (c) The CDF of the localization error.

The initial state of the mobile node was set X(0) =
[

1.2 m 1.8 m 0.6 m/s 0 m/s
]T

,
the sampling period ∆t was 1s, and other parameters were consistent with the simulation. The
error distribution of each sample point is shown in Figure 7b, and the CDF of the localization error
is shown in Figure 7c. Because there were some obstacles in the experimental environment, and
the interference of NLOS factors was serious, the localization errors of the EKF and IMM-EKF were
relatively large in most cases. Compared with the EKF and IMM-EKF, the localization errors of the
MPDA and the proposed algorithm were smaller at most sample points, but the positioning accuracy
of the proposed algorithm was slightly higher than that of the MPDA.
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5. Conclusions

This paper proposed an NLOS error mitigation algorithm for tracking a mobile node based on
the TOA measurements in a mixed LOS/NLOS environment. An improved MPDA algorithm with a
stronger robustness was proposed in this paper. We applied the improved MPDA filter to the IMM-EKF
algorithm framework. In this paper, an extended Kalman filter was used in the LOS model, and an
improved MPDA filter was used in parallel with the NLOS model. The second filter discarded the
position estimates with large errors through NLOS recognition to mitigate the NLOS errors. After
updating the model probability of each model, the state estimation calculated using the two filters was
based on the updated model probability weighted combination to obtain the final state estimation.
The simulation and experimental results showed that the proposed algorithm outperformed the EKF,
IMM-EKF, and MPDA in an NLOS environment. The proposed algorithm had a high positioning
accuracy in the case of a small NLOS error probability. In the case of a high probability of NLOS error,
the positioning accuracy of the proposed algorithm decreased greatly. In the future, the intended
further improvement involved increasing the positioning accuracy of the proposed algorithm in the
case of a high probability of NLOS error.
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