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Abstract: The time-delayed velocity and acceleration feedback control are provided to mitigate
the resonances response of a nonlinear dynamic beam. By use of the method of multiple scales,
the primary resonance and the 1/3 subharmonic resonance response of the controlled beam are
analyzed. The excitation amplitude response peak and critical expression are obtained, and numerical
simulations are also given. The effect of the feedback gains and time delayed on the steady-state
response of the two types of resonances are investigated. The result show that time-delayed
acceleration feedback control can effectively mitigate amplitude, and the main resonance response is
affected periodically. Selecting reasonable control gain and time delay quantity can avoid the main
resonance region and unstable multi-solutions, and can improve the efficiency of the vibration control.
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1. Introduction

Beams are important structural components used in many practical engineering structures, such as
gantry crane, etc. Under the dynamic loads of vehicles, wind, and earthquakes, the dynamic behaviors
become more complicated [1–3]. As a very important topic in structural dynamics, the moving load
problem of the beam is of practical importance in engineering. Kumar et al. [4] proposed a simple and
compact formula to determine the free vibration responses of a uniform beam, which was applied to
both lightly and heavily damped beams. Fiorillo and Ghosn [5] described a procedure to estimate
the nonlinear ultimate load-carrying capacity of continuous beams by use of a combination of linear
elastic influence lines for segments of the beam in appropriately selected damaged configurations.

Up to now, many studies have reported investigating vibration control of structures [6].
Lin et al. [7] studied the PTMD control on a benchmark tv tower under earthquake and wind load
excitations. Sun et al. [8] investigated the exact H2 optimal solutions to inerter-based isolation
systems for building structures. Besides, as a kind of active control, the time-delay feedback control
technology has attracted wide attention because of its easy adjustment, wide application range,
and high control efficiency. The robust control and the time delay control that could achieve good
control performance of a dynamic beam structure system were presented [9,10]. Ji and Leung [11]
studied the primary, superharmonic, and subharmonic resonances of a harmonically excited non-linear
s.d.o.f. system with two distinct time-delays in the linear state feedback. Sadek et al. [12] studied
feedback control with time-delay, which was employed to minimize the maximum deflection of
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a beam subjected to impulsive and/or short-time loads. Taffo and Siewe [13] investigated the
dynamics of a parametrically excited quarter-car model with time delayed feedback position and
linear velocity terms. Li et al. [14] studied the dynamics of a system of two Van der Pol oscillators
with delayed position and velocity coupling by the method of averaging together with truncation of
Taylor expansions. Hu et al. [15] presented analytical and numerical studies of the primary resonance
and the 1/3 subharmonic resonance of a harmonically forced Duffing oscillator under state feedback
control with a time delay. Wang and Hu [16] studied the stabilization of vibration systems via delayed
state difference feedback. Maccari [17] investigated the primary resonance of a cantilever beam under
state feedback control with a time delay. Zhao and Xu [18] applied the delayed feedback control to
suppress the vibration of vertical displacement in a two-degree-of-freedom nonlinear system with
external excitation. Alhazza et al. [19] investigated the non-linear vibrations of parametrically excited
cantilever beams subjected to non-linear delayed-feedback control. More specifically, three non-linear
cubic delayed-feedback control methodologies: position, velocity, and acceleration delayed feedback
were examined. Peng et al. [20–22] studied the time delayed feedback control for beam structures.
Lü et al. [23] investigated the local dynamics of an axially moving string under aerodynamic forces
with a time-delayed velocity feedback controller.

In all the studies cited above, the linear and nonlinear dynamics were investigated. The primary
resonance, super/subharmonic resonance and multi-frequency excitation resonance responses are all
involved. These resonance forms are particularly important in flexible structures [24,25]. So the primary
and 1/3 subharmonic resonance responses of a dynamics beam with moving load and time-delayed
feedback is investigated in this study. Moreover, the vibration control equations we derived belong
to duffing equations [26], which are delay differential equations with cubic nonlinearity. Despite
the present work being focused on the dynamical response of a structural element, the amplitude
equations describing its dynamics are also common to a wide variety of phenomena. They naturally
appear in systems involving oscillations, ranging from population [27] and climate [28] cycles in
the natural environment, the oscillatory nature of waves in fluids [29], or various applications in
microelectromechanical systems (MEMS) [30,31], among others.

We organize the rest of this paper as follows. In Section 2, we introduce a nonlinear mathematical
model of a dynamic beam subjected to moving load and time-delayed feedback. In Sections 3 and 4,
the resonance response of time-delayed velocity and acceleration feedback control are discussed by
using the method of multiple scales, respectively. A discussion on comparing and a summary of results
are presented in Sections 5 and 6.

2. Controlled Beam Model and Equations of Motion

In this study, we consider a dynamic beam structure subjected to the dynamic load P, which moves
along the longitudinal direction of the beam with a velocity V and under active control by a
servomechanism, as shown in Figure 1. The motion equation of the beam is shown as follows [9]:

EIv′′′′ + mv̈ + cv̇ = Pδ(x−Vt) + M0δ′(x− a)−M0δ′(x− L + a), (1)

where the prime indicates the derivative with respecting to x and the dot indicates the derivative with
respect to t; E is the Young’s modulus of the beam; I is the moment of inertia of the cross-section; v(x, t)
is the transverse displacement of the beam; m is the mass per unit length of the beam; c is the damping
coefficient; δ is the Dirac delta function and δ′ is the derivative; L is the span length of the beam; a is the
distance between the servohinge and the end of the beam; In order to balance the bending deformation
of the beam under moving load, a servomechanism is installed below the middle of the beam span
to generate a control torque M0. The working principle is to adjust the control spring to achieve the
control effect. The control torque is designated as:

M0 = lK∆ = Kl
[
u(t) + lv′(a, t)− lv′(L− a, t)

]
, (2)
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where K is the stiffness of the spring; l is the arm length of servomechanism; u(t) is the spring
displacement caused by servomechanism, and ∆ is the displacement of the spring. When u(t) = 0, it
is a passive control system.

0

Dynamic Load P

x

y

Beam

VControl Torque M0 M0 Control Torque

Control Unita a

l

Beam ResponseMoving Load

Sensor
Actuator and 

Controlled Spring

Feedback

Controller
(Delay Control System)

τ

Figure 1. The simple controlled beam structure model.

Using the Galerkin method, the equation of motion of the first mode can be written as (the details
of the derivations are given in the Appendix A):

q̈(t) + ω2
0q(t) + µq̇(t) = f sin ωt + αq3(t) + u(t), (3)

where q(t) = (2/L)
∫ L

0 v(x, t)φ1(x)dx, ω2
0 = ω2

1 − 2πKl cos πa
L , µ = 2ζω1, f = 2P/(mL),

α = π4E2/(L4 A2), A is the cross-section area of the beam. u(t) is the active control force. In this
paper, the time-delay speed feedback and time-delay acceleration feedback control strategies are
adopted. Next, in Sections 3 and 4, the primary resonance response and 1/3 subharmonic resonance
response of the beam with the two different feedback controls are studied respectively.

3. Time Delayed Velocity Feedback Control

In this section, the time delayed velocity feedback control strategy is adopted, i.e., u(t) = pq̇(t− τ),
P is the control gain and τ is the time delay. Then using the method of multiple scales [26,32,33],
the primary and 1/3 subharmonic resonances of the time delayed velocity feedback control are studied.

3.1. Nonlinear Primary Resonance Response

By using the method of multiple scales, the perturbation solution of Equation (3) is assumed
as follows:

q = q0(t0, t1) + εq1(t0, t1) + · · · , (4)

where T0 = t, T1 = εt. In the case of primary resonance, we let

ω = ω0 + εσ, (5)

where σ is the detuning parameter. Substituting Equations (4) and (5) into Equation (3) and equating
coefficients of similar powers of ε yield the following equations:

D2
0q0 + ω2

0q0 = 0. (6)

D2
0q1 + ω2

0q1 =− 2D0D1q0 − µD0q0 + αq3
0 + f sin(ω0T0 + σT1) + pD0q0(t− τ). (7)

The solution of Equation (6) is written as follows:

q0 = A(T1)eiωT0 + A(T1)e−iωT0 . (8)



Appl. Sci. 2020, 10, 3685 4 of 15

Substituting Equation (8) into Equation (7) we obtain

D2
0q1 + ω2

0q1 = [−2iωD1 A− iµω0 A + 3αA2 A +
f
2

eiσT1

+ iωp(cos ωτ − i sin ωτ)A]eiω0T0 + αA3e3iωT0 + cc,
(9)

where cc denotes the conjugate term. Eliminating secular terms from Equation (9), we have

− 2iω0D1 A− iµω0 A + 3αA2 A +
f
2

eiσT1 + iω0 p(cos ωτ − i sin ωτ)A = 0. (10)

Let A = 1
2 a exp(iβ) and substituting it into Equation (10) and separating the real and imaginary

part yield the averaged equation as follows:

a′ =
−µa

2
− f

2ω
sin γ +

ap
2

cos ω0τ,

aγ′ = σa +
3αa3

8ω0
+

f
2ω

cos γ− ap
2

sin ω0τ,
(11)

where γ = σT1 − β. Then the frequency response relations are obtained by:

f 2

4ω2
0
=

1
4
(µ− p cos ω0τ)2a2 + [(σ− p

2
sin ω0τ)− 3αa2

8ω0
]2a2,

tan γ =
4ω0(µ− p cos ω0τ)

8ω0(σ− p
2 sin ω0τ) + 3αa2

.
(12)

For a special case, the parameters µ, ω, α are confirmed as µ = 0.02, ω = 1, α = 0.4.
The frequency-response curves (a versus σ) for the primary response are depicted in Figure 2. Selecting
the control gain value p = −0.05, it can be seen from the frequency amplitude curve that by adjusting
different time delay, a better control effect can be obtained, and the peak value of the response can
be significantly reduced. Figure 3 shows the variation of the response amplitude with the excitation
amplitude for several values of σ and τ. These curves were obtained directly from Equation (12).
We note that, depending on the value of σ, some curves are multivalued while others are single-valued.
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Figure 2. Frequency response curves showing the primary resonances response of the nonlinear beam
with time delayed velocity feedback.
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Figure 3. Amplitude of the response as a function of amplitude of the excitation for several detunings.

It is seen that the saddle-node (SN) bifurcations located on the primary branch. Then, to determine
the lowest excitation amplitude, the locus of the SN bifurcation points in the f − σ plane is obtained in
Figure 4 for p = −0.05 and different values of τ. It is shown that the minimum point determines the
minimum excitation level below and the excitation frequency band can also be determined. As the
time delay increases, the amplitude of the minimum excitation also decreases.
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Figure 4. Loci of saddle-node bifurcation points, for p = −0.05 and different values of τ with velocity feedback.

The trajectories of the damped motions of the nonlinear beam are plotted in Figure 5. Points P1

and P2 are stable foci, and point P3 is a saddle point. All initial conditions in the shaded area lead
to the steady-state solution on the lower branch P1, while all initial conditions in the unshaded area
lead to the upper branch P2. Thus all the shaded area constitutes the domain of attraction of point P1,
and all the unshaded area constitutes the domain of attraction of point P2.

Again, a small change in the initial conditions can produce large change in the response of the
system: this is evidenced in Figure 6 by comparing the laws a(t), γ(t) corresponding to conditions
which just differ very little with regarding the amplitude.

The peak amplitude of the primary resonance, obtained from the first equation of Equations (12),
is given by

ap =
f

2|ue|ω
. (13)

The critical force amplitude fc obtained from Equation (12) is

fc = 2ωµe
√

2ωµe/3α, (14)

for f < fc there is only one solution while for f > fc there are three.
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Figure 5. State plane for the response of the nonlinear beam (σ = 0.25, p = −0.05, f = 0.02, µ = 0.02).
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Figure 6. Attraction of amplitude and phase to different constant values.

Figure 7 corresponds to the critical force amplitude and the peak of the primary resonance
changing with time delay τ. We must point out that the change rule of the critical force amplitude and
the peak of the primary resonance are not wholly conformable. So the proper value of τ may take into
account the requirement of engineering. By way of example, Figures 8 and 9 shown the time history
curves, phase diagram and frequency power spectrum of the primary resonance response are obtained
numerically at time delay τ = π/2 and τ = π, respectively.
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Figure 7. The curves of the critical force amplitude and peak of the primary resonance relate with time delay.
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Figure 8. The primary resonance response with time delay τ = π/2, (a) The time history curves, (b) the
phase diagram and (c) frequency power spectrum.
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Figure 9. The primary resonance response with time delay τ = π, (a) The time history curves, (b) the
phase diagram and (c) frequency power spectrum.

3.2. 1/3 Subharmonic Resonance

To analyze subharmonic resonance for Equation (3), we introduce the detuning parameter σ

according to

ω0 =
1
3

ω + εσ. (15)

Substituting Equations (4) and (15) into Equation (3) and equating coefficients of like powers of e
yields the following equations:

D2
0q0 +

1
9

ω2q0 = f sin ωT0, (16)

D2
0q1 +

1
9

ω2q1 =− 2D0D1q0 −
2
3

ωσq0 − µD0q0 + αq3
0 + pD0q0(t− τ). (17)

By solving Equation (16) for q0, we have

q0 = A(T1)eiωT0/3 +
9

16ω2 FieiωT0 + cc, (18)

where ’cc’ denotes the conjugate term. Substituting Equation (18) into Equation (17) yields

D2
0q1 +

1
9

ω2q1 =

[
−2

3
D1iωA− 2

3
ωσA− i

3
µωA + 3αA2 A +

243
128ω2 αF2 A +

27
16ω2 iαFA

− i
3

ωp
(

cos
1
3

ωτ − i sin
1
3

ωτ

)
A
]

eiωT0/3 + cc.
(19)

The secular term of Equation (19) vanishes if and only if

− 2
3

D1iωA− 2
3

ωσA− i
3

µωA + 3αA2 A +
243

128ω2 αF2 A

+
27

16ω2 iαFA− i
3

ωp
(

cos
1
3

ωτ − i sin
1
3

ωτ

)
A = 0.

(20)

Letting A = a exp(iϕ) into Equation (20) and separating the real part and the imaginary part,
we obtain the autonomous differential equations governing the amplitude and the phase

a′ = −1
2
(µ + p cos

1
3

ωτ)a− 81
32

αFa2 cos φ,

aφ′ = (σ +
p

2ω
sin

1
3

ωτ)a +
729

256ω
αFa− 9α

2ω
a3 − 81

32
αFa2 sin φ,

(21)

where φ(T1) = σT1 − 3ϕ(T1). From Equation (21), we get a set of algebraic equations that governs the
amplitude a and the phase ϕ of the steady-state 1/3 subharmonic resonance
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−1
2
(µ + p cos

1
3

ωτ)a =
81
32

αFa2 cos φ,

(σ +
p

2ω
sin

1
3

ωτ)a +
729

256ω
αFa− 9α

2ω
a3 =

81
32

αFa2 sin φ,
(22)

whereby we have the frequency response relation between a and σ and that between ϕ and σ

1
4

µ2
e a2 +

(
σe −

729
256ω

αF2 − 9α

2ω
a2
)2

a2 − (
81
32

αF)2a4 = 0,

tan φ +
2σe + 729αF/(256ω)− 9αa2/ω

µe
= 0,

(23)

where
µe = µ + p cos

1
3

ωτ, σe = σ +
p

2ω
sin

1
3

ωτ. (24)

The first equation in Equations (23) shows that either a = 0 or

1
4

µ2
e +

(
σe −

729
256ω

αF2 − 9α

2ω
a2
)2

= (
81
32

αF)2a2, (25)

which is quadratic in a2. Its solution is

a2 = $± ($2 − ι)1/2, (26)

where

$ =
2ωσe

9α
− 405

512
F2, ι =

(
2ω

9α

)2
[(

σe −
729

256ω
aF2
)2

+
1
4

µ2
e

]
. (27)

We note that ι always positive, and thus nontrivial free-oscillation amplitudes occur only when
$ > 0 and $2 ≥ ι, these conditions require that

F2 <
1024ωσe

3645α
,

αF2

ω

(
σe −

6561αF2

2048ω

)
− 128

729
µ2

e ≥ 0. (28)

It follows from Equation (28) that, for given F and σ, nontrivial solutions can exist only if

ρ− (4ρ2 − 6561)1/2 ≤ ν ≤ ρ + (4ρ2 − 6561)1/2, (29)

where
ρ =

σe

µe
, ν =

6561αF
1024ωµe

. (30)

In the (ρ, ν)-plane the boundary of the region where nontrivial solutions can exist is given by

ν = ρ± (4ρ2 − 6561)1/2, (31)

which is shown in Figure 10 for α > 0. When these conditions hold, it is possible for the system to
respond in such a way that the free-oscillation term does not decay to zero in spite of the presence
of damping and in contrast with the linear solution. Moreover, in the steady-state, the nonlinearity
adjusts the frequency of the free-oscillation term to one third the frequency of the excitation so that the
response is periodic. Since the frequency of the free-oscillation term is one third that of the excitation,
such resonances are called subharmonic resonances. Several frequency-response curves are shown
in Figure 11.
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Figure 10. Regions where subharmonic responses exist.
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Figure 11. Subharmoic response for the nonlinear beam.

4. Time Delayed Acceleration Feedback Control

In this section, we study the nonlinear response of the beam under time-delayed acceleration
feedback, i.e., u(t) = pq̈(t− τ). Similar to the derivation process in Section 3, the frequency response
equation of primary resonance response are obtained as follows:

f 2

4ω2
0
=

1
4
(µ− pω0 sin ω0τ)2a2 + [(σ +

pω0

2
cos ω0τ)− 3αa2

8ω0
]2a2,

tan γ =
4ω0(µ− pω0 sin ω0τ)

8ω0(σ + pω0
2 cos ω0τ) + 3αa2

.
(32)

The frequency-response curves of the first mode amplitude a as a function of the detuning
parameter σ for the primary resonances response are shown in Figure 12. Compared with time-delayed
velocity feedback, the same control parameters are selected here. As can be seen from the Figure 12,
when the control gain is p = −0.05 and different time delay values are selected, the response amplitude
of the system is suppressed to a certain extent when it is uncontrolled (p = 0). When τ = π, the control
effect is not obvious, and when τ = π/2, the amplitude is reduced by about 20% compared with the
uncontrolled one. Meantime, Figure 13 shows the variation of the amplitude of the response with the
amplitude of the excitation for several values of σ and τ. These curves were obtained directly from
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Equation (32). We note that, depending on the value of σ, some curves are multivalued while others
are single-valued.
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Figure 12. Frequency response curves showing the primary resonances response of the nonlinear beam
with time delayed acceleration feedback.
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Figure 13. Amplitude of the response as a function of amplitude of the excitation for several detunings.

Figure 14 shows that the locus of the SN bifurcation points in the f − σ plane for p = −0.05 and
different values of τ. It is worth noting that, unlike the speed feedback control, as the time delay
increases, the amplitude of the minimum excitation also increases.
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Figure 14. Loci of saddle-node bifurcation points, for p = −0.05 and different values of τ with
acceleration feedback.
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Similar to the derivation of Equation (25), the the frequency response equation of 1/3 subharmonic
resonance response are obtained as follows:

1
4
(µ + p sin

1
3

ωτ)
2
a2 +

(
σ− p

2ω
cos

1
3

ωτ − 729
256ω

αF2 − 9α

2ω
a2
)2

a2 − (
81
32

αF)
2
a4 = 0, (33)

Figure 15 shown that the frequency-response curves of 1/3 subharmonic resonance response with
time delayed acceleration feedback. When the time delay increases, the response amplitude increases
with the time delay.
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Figure 15. Amplitude of the response as a function of amplitude of the excitation for several detunings
with acceleration feedback.

5. Discussion on Comparing the Velocity and Acceleration Feedback

In this section, the discussion on comparing the velocity and acceleration feedback control.
Figure 16 shows that the frequency response comparison curve of time-delayed velocity feedback

and time-delayed acceleration feedback at p = −0.05, τ = π, and case 1 is the time-delayed velocity
feedback; case 2 is the time-delayed acceleration feedback. Obviously, when p = −0.05, τ = π,
with acceleration feedback, the primary resonance response of the nonlinear beam increases. From one
aspect, the selection of control parameters is very important.
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Figure 16. Comparison of frequency response curves of primary resonances response between the time
delayed velocity feedback and the time delayed acceleration feedback.
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On the other hand, Figure 7 provides a way for us to choose reasonable control parameters.
The fixed control gain value can select the optimal control parameter according to the response curve
of the peak value and the time delay. Figure 17 shows the relationship between the external excitation
amplitude and the response amplitude. It can be seen that there are multiple values in the interval
[0.015,0.025]. Under the same excitation amplitude, the response amplitude under the time delayed
velocity feedback is slightly higher than the time delayed acceleration feedback.
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stable
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f

Figure 17. Comparison of response amplitude between the time delayed velocity feedback and the
time delayed acceleration feedback.

It can be seen from Figure 18, different from the comparison result of the primary resonance
response, when selects the same control parameter value in the subharmonic resonance response,
i.e., the control gain and the time delay, the control effect under the velocity feedback control is better
than the acceleration feedback control. The interval of resonance also shifts.
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Figure 18. Comparison of frequency response curves of 1/3 subharmonic resonances response between
the time delayed velocity feedback and the time delayed acceleration feedback.

6. Conclusions

The nonlinear primary resonances and subharmonic resonances response of a moving load
excited nonlinear dynamic system with time-delayed velocity feedback control and time-delayed
acceleration feedback control is investigated. The effect of the feedback gains and time delays on
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the nonlinear response of the control system are discussed. It is found that appropriate feedback
can enhance the control performance. A suitable choice of the feedback gains and time-delays can
enlarge the critical force amplitude, and lessen the peak amplitude of the response (or peak amplitude
of the free oscillation term) for the case of primary resonance. Furthermore, proper feedback can
eliminate saddle-node bifurcation, by eliminating jump and hysteresis phenomena taking place in
the corresponding uncontrolled system. For subharmonic resonance, adequate feedback can remove
or eliminate the occurrence of subharmonic resonance response, and the control efficiency under the
velocity feedback is better than the acceleration feedback. With the appropriate control parameters,
the time-delayed acceleration feedback has a better vibration suppression effect than the time-delayed
velocity feedback.
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Appendix A. Discrete Model

According to the Galerkin method, the transverse displacement v(x, t) can be expressed in terms
of the expansion:

v(x, t) =
N

∑
k=1

qk(t)φk(x) (A1)

where qk(t) is the generalized displacement; φk(x) = sin(kπx/L) is the k-th mode shape; N is the
number of the shape functions used in the approximation. Substituting Equation (A1) into Equation (1),
multiplying both sides of the resulting equation by φk(x) and integrating over the span of the beam,
the j-th mode can be obtained as [9]:

q̈k(t) + 2ζωk q̇k(t) + ω2
k qk(t)

=
2P
mL

sin(kωt)− 4kπM0(t)
mL2 cos(kπa/L) sin(kπ/2),

(A2)

where qk(t) = (2/L)
∫ L

0 v(x, t)φk(x)dx is the beam displacement of the k-th mode, ζ is the damping
ratio, ωk = [(k4π4/L4)(EI/m)]1/2 is the natural angular frequency of the k-th mode, ω = πV/L is the
natural angular frequency, and

M0(t) = lK∆ = Kl

[
u(t) + 2l

∞

∑
k=1,3,5,···

kπ

L
cos

kπa
L

qk(t)

]
, (A3)

Since the high order modes of motion contribute little to bending displacement and the nonlinear
characters, only the basic mode is considered. Then Equation (3) of motion can be obtained.
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