Retrieval of Turbidity on a Spatio-Temporal Scale Using Landsat 8 SR: A Case Study of the Ramganga River in the Ganges Basin, India
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.1.1. Climatic Condition and Rainfall
2.1.2. Geology
2.2. Sample Collection and Analysis
2.3. Satellite Images
2.4. Statistical Summary of Ramganga River In Situ Measurements
2.5. Image Acquisition
2.6. Methodology
2.6.1. Rescaling
2.6.2. Masking
2.7. Regression Models
3. Results
3.1. Retrieval of Turbidity
3.2. Algorithm Validation
3.3. Additional Validation for the Retrieved Model
4. Discussion
- The samples collected may not be representative in relation to the total area of the water body;
- Water contains many soluble substances that hinder the process ofobtaining the precise signature of the studied parameters;
- The difference in date between the acquisition of the satellite data and the insitu data;
- The relatively low spatial resolution of satellite images may affect their accuracy;
- The uncertainty of the locations of the pixels and insitu samples;
- The small number of samples affects the regression model, as well as the validation process.
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zheng, G.J. Hydrodynamics and Water Quality: Modeling Rivers, Lakes, and Estuary; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2007; pp. 130–134. [Google Scholar]
- Güttler, F.N.; Niculescu, S.; Gohin, F. Turbidity retrieval and monitoring of Danube Delta waters using multisensor optical remote sensing data: An integrated view from the delta plain lakes to the western–northwestern Black Sea coastal zone. Remote Sens. Environ. 2013, 132, 86–101. [Google Scholar] [CrossRef] [Green Version]
- Zablotskii, V.R.; Le, T.G.; Dinh, T.T.H.; Le, T.T.; Trinh, T.T.; Nguyen, T.T.N. Estimation of suspended sediment concentration using vnredsat–1A multispectral data, a case study in red river, hanoi, vietnam. Geogr. Environ. Sustain. 2018, 11, 49–60. [Google Scholar]
- Chalov, S.; Golosov, V.; Tsyplenkov, A.; Theuring, P.; Zakerinejad, R.; Märker, M.; Samokhin, M. A toolbox for sediment budget research in small catchments. Geogr. Environ. Sustain. 2017, 10, 43–68. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Fang, L.; Zhang, L.; Huang, W. Remote sensing of turbidity in seawater intrusion reaches of Pearl River Estuary–A case study in Modaomen water way, China. Estuar. Coast. Shelf Sci. 2009, 82, 119–127. [Google Scholar] [CrossRef]
- Minnesota Pollution Control Agency. Turbidity: Description, Impact on Water Quality, Sources, Measures—A General Overview, USA. 2008. Available online: https://www.pca.state.mn.us/sites/default/files/wq-iw3-21.pdf (accessed on 25 June 2019).
- Kumar, A.; MMS, C.P.; Chaturvedi, A.K.; Shabnam, A.A.; Subrahmanyam, G.; Mondal, R.; Yadav, K.K. Lead Toxicity: Health Hazards, Influence on Food Chain, and Sustainable Remediation Approaches. Int. J. Environ. Res. Public Health 2020, 17, 2179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mishra, S.; Kumar, A. Estimation of physicochemical characteristics and associated metal contamination risk in river Narmada, India. Environ. Eng. Res. 2020, 26, 190521. [Google Scholar] [CrossRef]
- Kumar, A.; Sharma, M.P.; Yang, T. Estimation of carbon stock for greenhouse gas emissions from hydropower reservoirs. Stoch. Environ. Res. Risk Assess. 2018, 32, 3183–3193. [Google Scholar] [CrossRef]
- Aksnes, D.L.; Dupont, N.; Staby, A.; Fiksen, Ø.; Kaartvedt, S.; Aure, J. Coastal water darkening and implications for mesopelagic regime shifts in Norwegian fjords. Mar. Ecol. Prog. Ser. 2009, 387, 39–49. [Google Scholar] [CrossRef]
- Carson, A.B.; Benjamin, M.J.; Krista, K.B.; Daniel, B.Y.; Christian, E.Z. Reconstructing turbidity in a glacially influenced lake using the Landsat TM and ETM+ surface reflectance climate data record archive, Lake Clark, Alaska. Remote Sens. 2015, 7, 13692–13710. [Google Scholar]
- Khan, M.Y.A.; Gani, K.M.; Chakrapani, G.J. Assessment of surface water quality and its spatial variation. A case study of Ramganga River, Ganga Basin, India. Arab. J. Geosci. 2016, 9, 28. [Google Scholar]
- Khan, M.Y.A.; Khan, B.; Chakrapani, G.J. Assessment of spatial variations in water quality of Garra River at Shahjahanpur, Ganga Basin, India. Arab. J. Geosci. 2016, 9, 516. [Google Scholar] [CrossRef]
- Khan, M.Y.A.; Gani, K.M.; Chakrapani, G.J. Spatial and temporal variations of physicochemical and heavy metal pollution in Ramganga River—A tributary of River Ganges, India. Environ. Earth Sci. 2017, 76, 231. [Google Scholar] [CrossRef]
- Khan, M.Y.; Hu, H.; Tian, F.; Wen, J. Monitoring the spatio-temporal impact of small tributaries on the hydrochemical characteristics of Ramganga River, Ganges Basin, India. Int. J. River Basin Manag. 2019, 18, 231–241. [Google Scholar] [CrossRef]
- Gernez, P.; Barille, L.; Lerouxel, A.; Mazeran, C.; Lucas, A.; Doxaran, D. Remote sensing of suspended particulate matter in turbid oyster farming ecosystems. J. Geophys. Res. Oceans 2014, 119, 7277–7294. [Google Scholar] [CrossRef]
- Khan, M.Y.A.; Tian, F. Understanding the potential sources and environmental impacts of dissolved and suspended organic carbon in the diversified Ramganga River, Ganges Basin, India. Proc. Int. Assoc. Hydrol. Sci. 2018, 379, 61–66. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.; Yang, T.; Sharma, M.P. Greenhouse gas measurement from Chinese freshwater bodies: A review. J. Clean. Prod. 2019, 233, 368–378. [Google Scholar] [CrossRef]
- Kumar, A.; Sharma, M.P.; Taxak, A.K. Analysis of water environment changing trend in Bhagirathi tributary of Ganges in India. Desal. Water Treat. 2017, 63, 55–62. [Google Scholar] [CrossRef]
- Kumar, A.; Sharmab, M.P.; Raic, S.P. A novel approach for river health assessment of Chambal using fuzzy modeling, India. Desal. Water Treat. 2017, 58, 72–79. [Google Scholar] [CrossRef]
- Dogliotti, A.I.; Ruddick, K.G.; Nechad, B.; Doxaran, D.; Knaeps, E. A single algorithm to retrieve turbidity from remotely-sensed data in all coastal and estuarine waters. Remote Sens. Environ. 2015, 156, 157–168. [Google Scholar] [CrossRef] [Green Version]
- Ritchie, C.J.; Zimba, V.P.; Everitt, H.J. Remote sensing techniques to assess water quality. Photogramm. Eng. Remote Sens. 2003, 69, 695–704. [Google Scholar] [CrossRef] [Green Version]
- Allan, M.G.; Hamilton, D.P.; Hicks, B.J.; Brabyn, L. Landsat remote sensing of chlorophyll a concentrations in central North Island lakes of New Zealand. Int. J. Remote Sens. 2011, 32, 2037–2055. [Google Scholar] [CrossRef]
- Tassan, S. A procedure to determine the particulate content of shallow water from Thematic Mapper data. Int. J. Remote Sens. 1998, 19, 557–562. [Google Scholar] [CrossRef]
- Khan, M.Y.A.; Chakrapani, G.J. Particle size characteristics of Ramganga catchment area of Ganga River. In Geostatistical and Geospatial Approaches for the Characterization of Natural Resources in the Environment; Janardhana, R.N., Ed.; Springer: Cham, Switzerland, 2016; pp. 307–312. [Google Scholar]
- Khan, M.Y.A. Spatial variation in the grain size characteristics of sediments in Ramganga River, Ganga Basin, India. In Handbook of Environmental Materials Management; Hussain, C.M., Ed.; Springer: Berlin, Germany, 2018. [Google Scholar]
- Khan, M.Y.A.; Daityari, S.; Chakrapani, G.J. Factors responsible for temporal and spatial variations in water and sediment discharge in Ramganga River, Ganga Basin, India. Environ. Earth Sci. 2016, 75, 283. [Google Scholar] [CrossRef]
- Vanhellemont, Q.; Ruddick, K. Turbid wakes associated with offshore wind turbines observed with Landsat 8. J. Remote Sens. Environ. 2014, 145, 105–115. [Google Scholar] [CrossRef] [Green Version]
- Choodarathnakara, A.L.; Kumar, T.A.; Koliwad, S.; Patil, C.G. Mixed pixels: A challenge in remote sensing data classification for improving performance. Int. J. Adv. Res. Comput. Eng. Technol. (IJARCET) 2012, 1, 261. [Google Scholar]
- Kishino, M.; Tanaka, A.; Joji, I. Retrieval of Chlorophyll a, suspended solids, and colored dissolved organic matter in Tokyo Bay using ASTER data. Remote Sens. Environ. 2005, 99, 66–74. [Google Scholar] [CrossRef]
- Lim, H.S.; MatJafri, M.Z.; Abdullah, K.; Asadpour, R. A Two-Band algorithm for total suspended solid concentration mapping using theos data. J. Coast. Res. 2012, 29, 624–630. [Google Scholar]
- Tebbs, E.J.; Remedios, J.J.; Harper, D.M. Remote sensing of chlorophyll-a as a measure of cyanobacterial biomass in Lake Bogoria, a hypertrophic, saline–alkaline, flamingo lake, using Landsat ETM+. Remote Sens. Environ. 2013, 135, 92–106. [Google Scholar] [CrossRef]
- Doxaran, D.; Froidefond, J.M.; Castaing, P.; Babin, M. Dynamics of the turbidity maximum zone in a macrotidal estuary (the Gironde, France): Observations from field and MODIS satellite data. Estuar. Coast. Shelf Sci. 2009, 81, 321–332. [Google Scholar] [CrossRef]
- Petus, C.; Chust, G.; Gohin, F.; Doxaran, D.; Froidefond, J.M.; Sagarminaga, Y. Estimating turbidity and total suspended matter in the Adour River plume (South Bay of Biscay) using MODIS 250-m imagery. Cont. Shelf Res. 2010, 30, 379–392. [Google Scholar] [CrossRef] [Green Version]
- Ouillon, S.; Douillet, P.; Petrenko, A.; Neveux, J.; Dupouy, C.; Froidefond, J.M.; Andréfouët, S.; Caravaca, A.M. Optical algorithms at satellite wavelengths for Total Suspended Matter in tropical coastal waters. Sensor 2008, 8, 4165–4185. [Google Scholar] [CrossRef]
- Tong, P.H.S.; Truong, M.C.; Hoang, C.T. Detecting chlorophyll-a concentration and bloom patterns at upwelling area in South central Vietnam by high resolution multi-satellite data. J. Environ. Sci. Eng. A 2015, 4, 215–224. [Google Scholar]
- Ali, P.Y.; Jie, D.; Sravanthi, N. Remote sensing of chlorophyll-a as a measure of red tide in Tokyo Bay using hotspot analysis. J. Remote Sens. Appl. Soc. Environ. 2015, 2, 11–25. [Google Scholar]
- Zhang, Y.; Zhang, Y.; Shi, K.; Zha, Y.; Zhou, Y.; Liu, M. A Landsat 8 OLI-Based, semianalytical model for estimating the total suspended matter concentration in the slightly turbid Xin’anjiang reservoir (China). IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 398–413. [Google Scholar] [CrossRef]
- Daityari, S.; Khan, M.Y. Temporal and spatial variations in the engineering properties of the sediments in Ramganga River, Ganga Basin, India. Arab. J. Geosci. 2017, 10, 134. [Google Scholar] [CrossRef]
- Khan, M.Y.A.; Hasan, F.; Panwar, S.; Chakrapani, G.J. Neural network model for discharge and water-level prediction for Ramganga River catchment of Ganga Basin, India. Hydrol. Sci. J. 2016, 61, 2084–2095. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.Y.A.; Hasan, F.; Tian, F. Estimation of suspended sediment load using three neural network algorithms in Ramganga River catchment of Ganga Basin, India. Sustain. Water Resour. Manag. 2019, 5, 1115–1131. [Google Scholar] [CrossRef]
- Khan, M.Y.A.; Tian, F.; Hasan, F.; Chakrapani, G.J. Artificial neural network simulation for prediction of suspended sediment concentration in the River Ramganga, Ganges Basin, India. Int. J. Sediment Res. 2019, 34, 95–107. [Google Scholar] [CrossRef]
- CWC. Environmental Evaluation Study of Ramganga Major Irrigation Project; Central Water Commission: Uttar Pradesh, India, 2012; Volume 1, p. 16.
- Gupta, R.P.; Joshi, B.C. Landslide hazard zoning using the GIS approach—A case study from the Ramganga catchment, Himalayas. Eng. Geol. 1990, 28, 119–131. [Google Scholar] [CrossRef]
- Khan, A.U.; Rawat, B.P. Quaternary Geology and Geomorphology of a Part of Ganga Basin in Parts of Bareilly, Badaun, Shahjahanpur and Pilibhit District, Uttar Pradesh; Geological Survey of India (GSI): Kolkata, India, 1992.
- American Public Health Association (APHA). Standard Methods for the Examination of Water and Wastewater, 20th ed.; American Public Health Association: Washington, DC, USA, 1998. [Google Scholar]
- Islam, M.R.; Yamaguchi, Y.; Ogawa, K. Suspended sediment in the Ganges and Brahmaputra Rivers in Bangladesh: Observation from TM and AVHRR data. Hydrol. Process. 2001, 15, 493–509. [Google Scholar] [CrossRef]
- Kaliraj, S.; Chandrasekar, N.; Mages, N.S. Multispectral image analysis of suspended sediment concentration along the Southern coast of Kanyakumari, Tamil Nadu, India. J. Coast. Sci. 2014, 1, 63–71. [Google Scholar]
- Borboudakis, G.; Tsamardinos, I. Forward-backward selection with early dropping. J. Mach. Learn. Res. 2019, 20, 276–314. [Google Scholar]
- Mayo, M.; Gitelson, A.; Yacobi, Y.Z.; Ben-Avraham, Z. Chlorophyll distribution in lakeKinneret determined from Landsat thematic mapper data. Int. J. Remote Sens. 1995, 16, 175–182. [Google Scholar] [CrossRef]
- Fraser, R.N. Hyperspectral remote sensing of turbidity and chlorophyll a among Nebraska Sand Hills lakes. Int. J. Remote Sens. 1998, 19, 1579–1589. [Google Scholar] [CrossRef]
- Bande, P.; Adam, E.; Elbasit, M.A.A.; Adelabu, S. Comparing landsat 8 and sentinel-2 in mapping water quality at vaal dam. In Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS), Valencia, Spain, 22–27 July 2018. [Google Scholar]
- Markogianni, V.; Dimitriou, E.; Tzortziou, M. Monitoring of chlorophyll-a and turbidity in Evros River (Greece) using Landsat imagery. In Proceedings of the First International Conference on Remote Sensing and Geoinformation of the Environment (RSCy2013) International Society for Optics and Photonics, Paphos, Cyprus, 8–10 April 2013; Volume 8795, p. 87950R. [Google Scholar]
- Lathrop, R.G.; Lillesand, T.M. Use of thematic mapper data to assess water quality in Green Bay and central Lake Michigan. Photogramm. Eng. Remote Sens. 1986, 52, 671–680. [Google Scholar]
- Baban, S.M.J. Detecting water quality parameters in the Norfolk Broads, U.K. using Landsat imagery. Int. J. Remote Sens. 1993, 14, 1247–1267. [Google Scholar] [CrossRef]
- Yepez, S.; Laraque, A.; Martinez, J.M.; De Sa, J.; Carrera, J.M.; Castellanos, B.; Lopez, J.L. Retrieval of suspended sediment concentrations using Landsat-8 OLI satellite images in the Orinoco River (Venezuela). Comptes Rendus Geosci. 2018, 350, 20–30. [Google Scholar] [CrossRef]
Band Designation | Band Name | Data Type | Units | Range | Valid Range | Fill Value | Saturate Value | Scale Factor |
---|---|---|---|---|---|---|---|---|
ProductID_sr_band1 | Band1 | INT16 | Reflectance | −2000–16,000 | 0–10,000 | −9999 | 20,000 | 0.0001 |
ProductID_sr_band1 | Band2 | INT16 | Reflectance | −2000–16,000 | 0–10,000 | −9999 | 20,000 | 0.0001 |
ProductID_sr_band2 | Band3 | INT16 | Reflectance | −2000–16,000 | 0–10,000 | −9999 | 20,000 | 0.0001 |
ProductID_sr_band3 | Band4 | INT16 | Reflectance | −2000–16,000 | 0–10,000 | −9999 | 20,000 | 0.0001 |
ProductID_sr_band4 | Band5 | INT16 | Reflectance | −2000–16,000 | 0–10,000 | −9999 | 20,000 | 0.0001 |
ProductID_sr_band5 | Band6 | INT16 | Reflectance | −2000–16,000 | 0–10,000 | −9999 | 20,000 | 0.0001 |
ProductID_sr_band6 | Band7 | INT16 | Reflectance | −2000–16,000 | 0–10,000 | −9999 | 20,000 | 0.0001 |
Sample ID | Longitude | Latitude | Turbidity (NTU)-March | Turbidity (NTU)-November |
---|---|---|---|---|
RG1 | 79.321581 | 29.984017 | 4.310 | 0.6 |
RG2 | 79.255436 | 29.732233 | 5.600 | 1.2 |
RG3 | 79.261153 | 29.696792 | 2.820 | 0.5 |
RG4 | 79.093611 | 29.606047 | 0.888 | 0.6 |
RG5 | 78.761167 | 29.496639 | 5.270 | 3.5 |
RG6 | 78.636108 | 29.314433 | 24.600 | 14.2 |
RG7 | 78.649336 | 29.243347 | 52.600 | 8.9 |
RG8 | 78.679081 | 29.127161 | 20.600 | 13.3 |
RG9 | 78.698394 | 29.068136 | 75.900 | 15.4 |
RG10 | 78.744111 | 28.890639 | 112.000 | 2.5 |
RG11 | 78.912031 | 28.668564 | 99.900 | 2.3 |
RG12 | 79.229528 | 28.449917 | 106.000 | 2.9 |
RG13 | 79.368028 | 28.294722 | 28.900 | 3.2 |
RG14 | 79.513861 | 28.094222 | 41.700 | 2.7 |
RG15 | 79.623308 | 27.681989 | 64.500 | 2.1 |
RG16 | 79.697544 | 27.497983 | 42.500 | 2.4 |
Parameters | March 2014 | November 2014 |
---|---|---|
Number of Samples | 9 | 9 |
Mean | 62.47 | 7.27 |
Standard Error of the Mean | 12.23 | 1.89 |
Standard Deviation | 36.70 | 5.67 |
Variance | 1346.55 | 32.14 |
Skewness | 0.27 | 0.55 |
Standard Error of Skewness | 0.72 | 0.72 |
Kurtosis | −1.88 | −1.92 |
Standard Error of Kurtosis | 1.4 | 1.4 |
Range | 91.4 | 13.1 |
Minimum | 20.6 | 2.3 |
Maximum | 112.0 | 15.4 |
Bands | March | November |
---|---|---|
b2 | 0.051 | −0.39 |
b3 | −0.141 | 0.196 |
b4 | −0.209 | 0.069 |
b5 | −0.416 | −0.155 |
logb2 | 0.045 | −0.402 |
logb3 | −0.153 | 0.187 |
b2b3 | 0.581 | −0.852 ** |
b2b4 | 0.748 * | −0.756 * |
b2b5 | 0.424 | 0.101 |
b3b4 | 0.523 | 0.391 |
b3b5 | 0.372 | 0.360 |
log(b3/b5) | 0.389 | 0.280 |
b4/b3 | −0.530 | −0.38 |
b4/b5 | 0.348 | 0.331 |
b5b4 | −0.363 | −0.126 |
log(b5/b3) | −0.389 | −0.28 |
log(b5/b4) | −0.360 | −0.236 |
logb2 | 0.045 | −0.402 |
logb3 | −0.153 | 0.187 |
logb4 | −0.211 | 0.045 |
Model | R | R2 | Std.Error of the Estimate | R2 Change | Durbin–Waston | |
---|---|---|---|---|---|---|
March 2014 | −1.1 + 5.8 (b2/b4) | 0.75 | 0.56 | 0.2 | −0.08 | 1.36 |
November 2014 | 3.896 – 4.186 (b2/b3) | 0.852 | 0.687 | 0.202 | −0.002 | 1.972 |
Observed (NTU) | Predicted (NTU) | Square Residual | RMSE | |
---|---|---|---|---|
March 2014 | 5.600 | 2.28803 | 10.969 | 2.2 |
2.820 | 2.14487 | 0.456 | ||
0.888 | 1.45088 | 0.317 | ||
5.270 | 5.45901 | 0.036 | ||
November 2014 | 1.2 | 2.204 | 1.008 | 1.39044 |
0.5 | 0.854 | 0.125 | ||
0.6 | 1.331 | 0.535 | ||
3.5 | 1.3641 | 4.562 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Allam, M.; Yawar Ali Khan, M.; Meng, Q. Retrieval of Turbidity on a Spatio-Temporal Scale Using Landsat 8 SR: A Case Study of the Ramganga River in the Ganges Basin, India. Appl. Sci. 2020, 10, 3702. https://doi.org/10.3390/app10113702
Allam M, Yawar Ali Khan M, Meng Q. Retrieval of Turbidity on a Spatio-Temporal Scale Using Landsat 8 SR: A Case Study of the Ramganga River in the Ganges Basin, India. Applied Sciences. 2020; 10(11):3702. https://doi.org/10.3390/app10113702
Chicago/Turabian StyleAllam, Mona, Mohd Yawar Ali Khan, and Qingyan Meng. 2020. "Retrieval of Turbidity on a Spatio-Temporal Scale Using Landsat 8 SR: A Case Study of the Ramganga River in the Ganges Basin, India" Applied Sciences 10, no. 11: 3702. https://doi.org/10.3390/app10113702
APA StyleAllam, M., Yawar Ali Khan, M., & Meng, Q. (2020). Retrieval of Turbidity on a Spatio-Temporal Scale Using Landsat 8 SR: A Case Study of the Ramganga River in the Ganges Basin, India. Applied Sciences, 10(11), 3702. https://doi.org/10.3390/app10113702